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THE PROBLEM WITH BILATERAL CONTACT

AND NONMONOTONE FRICTION

Zuzana Morávková

1. Problem formulation

We study the generalized plain strain problem with standard boundary conditions
and bilateral contact and nonmonotone friction conditions.

The domain Ω = 100 mm× 10 mm and parts ΓU , ΓP , ΓC of the boundary ∂Ω are
depicted on Figure 1.

PΩ ΓPΓU ΓC

-

-
-

Fig. 1.

The body is made of a linear isotropic material obeying the generalized plane
strain model characterized by the modulus of elasticity E = 2.1 105N/mm2, Poisson’s
ratio σ = 0.3, and the element thickness t = 5 mm. The structure is fixed along ΓU ,
i.e. the zero displacements in both directions are prescribed:

ui = 0 on ΓU , i = 1, 2 . (1)

On the right side of the body the perpendicular surface traction T = (P, 0), where
P = const, P ≥ 0 a.e. on ΓP is applied (see Figure 1):

T1 = P on ΓP . (2)

Now we define the nonmonotone friction of various types on ΓC (see Figure 2).
Moreover we prescribe the bilateral condition:

−T1(x) ∈ b̂(u1(x)) x ∈ ΓC , u2 = 0 on ΓC . (3)

The boundary conditions (1)–(3) are completed with the system of equilibrium
equations:

∂τij(u)

∂xj

= 0 in Ω, i = 1, 2 . (4)

The volume forces are equal to zero.
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Fig. 2.

The stress tensor {τij}
2
i,j=1 is related to the linearized strain tensor {εij}

2
i,j=1 by

means of the following linear generalized Hooke’s law:

τij(u) =
Eσ

1 − σ2
δijϑ +

E

1 + σ
εij(u), i, j = 1, 2 , (5)

where ϑ = εii is the trace of {εij}
2
i,j=1 and δij is the Kronecker symbol.

By a classical solution of the problem with bilateral contact and nonmonotone
friction we call any displacement field u = (u1, u2) satisfying the boundary condi-
tions (1), (2), (3) and the equations (4) with the linear Hooke’s law (5).

In order to give the weak formulation of the previous problem we introduce the
following notations:

V = {v ∈ (H1(Ω))2| v = 0 on ΓU , v2 = 0 on ΓC}

a(u, v) =

∫

Ω

τij(u)εij(v) dx ,

L(v) =

∫

ΓP

Pv ds .

The weak formulation of the problem with bilateral contact and nomonotone

friction is given by the following hemivariational equality (see [1]):







Find (u, Ξ) ∈ V × L2(ΓC) such that

a(u, v) +
∫

ΓC

Ξv1dx1 = L(v) ∀v ∈ V

Ξ(x) ∈ b̂(u1(x)) for a.a. x ∈ ΓC .

(6)

The problem has at least one solution (u, Ξ) ∈ V × L2(ΓC), see [1].
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2. Discretization

We briefly describe the discretization of (6). Let Dh, h → 0+ be a system of
regular triangulations of Ω (see Figure 3).

Fig. 3.

Let us define the space of all continuous piecewise linear vector functions on Dh:
Vh = {vh = (vh1, vh2)) ∈ (C(Ω))2| vh|T ∈ (P1(T ))2 ∀T ∈ Dh; vh = 0 on ΓU , vh2 =
0 on ΓC} .

Now we construct the space Yh. By {xi
h}

m
i=1 we denote the set of all nodes of

triangulation Dh on the part of boundary ΓC\ΓU . Let x
i+1/2

h be the midpoint of
the interval [xi

h, x
i+1

h ], i = 0, . . . , m − 1. The partion Th of ΓC defining the space Yh

consists of all segments Si joining the midpoints x
i−1/2

h , x
i+1/2

h , i = 2, . . . , m− 1 with

the modifications concerning S1 and Sm. Let S1 = [x0
h, x

3/2

h ], Sm = [x
m−1/2

h , xm
h ] (see

Figure 4).
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Fig. 4.

On any such partition Th we shall define the space Yh of all piecewise constant
functions with values at {xi

h}
m
i=1 as the degrees of freedom. The space Wh consists

of all continuous piecewise linear scalar functions over the partition defined by the
nodes {xi

h}
m
i=0 and vanishing at the initial node x0

h. Due to the definition of Yh we
also see that dim Wh = dim Yh.

We define the mapping Ph : Wh → Yh by Ph(wh) =
∑m

i=1
wh(x

i
h)χSi

(x1),
wh ∈ Wh , where χSi

is the characteristic function of the interior of Si. This mapping
associates with a function wh ∈ Wh its piecewise constant Lagrange interpolate on Th

(see Figure 5).
We are able to define the discrete hemivariational equality approximating (6):







Find (uh, Ξh) ∈ Vh × Yh such that

a(uh, vh) +
∫

ΓC

ΞhPhvh1dx1 = L(vh) ∀vh = (vh1, vh2) ∈ Vh

Ξh(x
i
h) ∈ b̂(Ph(uh1)(x

i
h)) ∀i = 1, . . . , m .

(7)

The existence of the solutions and convergence results are described in [1].
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Let us introduce the algebraic form of the problem (7). We suppose that the
points {xi

h}
m
i=0 are equidistant on ΓC . We denote dim Vh = n, dim Yh = m.

We define Ξi := ciΞi, where c1 = 3/2h, c2 = · · · = cm−1 = h, cm = h/2. The
problem (7) can be rewritten in the following form:







Find (u,Ξ) ∈ R
n × R

m such that

(Au, v)R
n + (Ξ,Λ(v))R

m = (f , v)R
n ∀v ∈ R

n

Ξi ∈ cib̂((Λu)i) ∀i = 1, . . . , m ,

(8)

where (Λv)i:= x1-component of vector v in points xi
h, i = 1, . . . , m.

Since the bilinear form a is symmetric, we can construct discrete superpotential L,
which has a quadratic part and lipschitz continuous perturbation Ψ defined by the
rectangular formula Ψ(v) =

∑

i ciΦ((Λv)i), where Φ is a primitive function to b.

(The function b was derived from b̂ by leaving the vertical parts in the graph out.)
The discrete superpotential L corresponding to the algebraic hemivariational

equality has the form:

L(v) =
1

2
(Av, v)R

n − (f , v)R
n + Ψ(v), v ∈ R

n .

Instead of the problem (8) we shall consider the following substationary type

problem:
{

Find u ∈ R
n such that

0 ∈ ∂L(u) ,
(9)

where ∂ denotes the generalized gradient in the sense of Clark.
If mapping Ph maps Wh onto Yh, then the problems (8) and (9) are equivalent un-

der the assumption of existence one-sides limits b(ξ±) for all ξ ∈ R. The problem (9)
can be solved by using nonsmooth bundle type minimization methods (see [2]).
Knowing u in (9) one can recover also the vector Ξ from relation ΛTΞ = f − Au,
such that the pair (u,Ξ) solves (8).

3. The examples

The geometrical and material characteristics are described in Section 1., traction
P = 0.05 N/mm2 and the parameter values in diagrams in Figure 2 are h1 = 4 ·10−6,
g1 = 5, g2 = 4.
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Fig. 6. Fig. 7.
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Figures 6 and 7 illustrate the graph of the tangential components of the displace-
ment and stress vector along the contact part ΓC , respectively. Finally the total
deformation of Ω enlarged 106× is depicted in Figure 8.
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