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FAST AND GUARANTEED A POSTERIORI ERROR ESTIMATOR∗

Tomáš Vejchodský

Abstract

The equilibrated residual method and the method of hypercircle are popular meth-
ods for a posteriori error estimation for linear elliptic problems. Both these methods
are intended to produce guaranteed upper bounds of the energy norm of the error, but
the equilibrated residual method is guaranteed only theoretically. The disadvantage
of the hypercircle method is its globality, hence slowness. The combination of these
two methods leads to local, hence fast, and guaranteed a posteriori error estimator.

1. Introduction

The model problem for our thoughts is a linear elliptic problem on a polygonal
domain in R2 with mixed Dirichlet and Neumann boundary conditions. This problem
is discretized by the finite element method. The difference between the exact and
the finite element solutions is called the discretization error. Henceforward, if we
speak about the error, we have in mind the discretization error.

The goal of this paper is to construct fast and guaranteed a posteriori error esti-
mator. The a posteriori error estimator is a quantity, which is computable from the
knowledge of approximate solution and input data, and which bounds or approxi-
mate suitable norm of the error. By the word guaranteed we mean that the estimator
is really upper bound of the error. By the word fast we mean that the number of
arithmetic operations needed for calculation of the estimator is linerly proportional
to the number of unknowns.

Note that the finite element solution is the mathematically exact solution of
the discrete problem. This solution differs from the numerical solution delivered by
the computer, due to round-off errors, quadrature errors and the iteration errors
(the errors in the iterative solver of linear algebraic systems). In the current paper,
we assume that all arithmetic operations, all integrals and all linear systems are
computed exactly. For that reason the computer realization of the proposed methods
do not give truly guaranteed error estimators.

In this paper we proposed a posteriori error estimator obtained as a combination
of the equilibrated residual method and the method of hypercircle. The idea to com-
bine these two methods is not new. It has already been suggested in [8], but the
a posteriori error estimator proposed there is not completely explicitly computable
in 2D and, moreover, the data are assumed to be piecewise constant. The aim of the
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current paper is to show how to construct completely computable a posteriori error
estimator for arbitrary data.

The organization of the current paper is following. The linear elliptic model
problem is described in Section 2. The equilibrated residual method and the method
of hypercircle are briefly introduced in Sections 3 and 4. A posteriori error estimator
based on the combination of these two methods is presented in Section 5. Finally,
experimental comparison of the mentioned estimators is shown in Section 6.

2. Model problem and notation

Let us consider the following classical formulation of the linear elliptic problem
in two dimensions

−∇ · (A∇ū) = f in Ω, (1)

ū = gD on ΓD,

(A∇ū) · ν = gN on ΓN,

where Ω ⊂ R2 is a polygonal domain with Lipschitz boundary ∂Ω, ν is an outer
unit normal to ∂Ω, ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, ΓN has only a finite number of
components and the dot symbolizes the Euclidean inner product.

For the purpose of the weak formulation, let us assume that the matrix A is
symmetric and uniformly positive definite with entries in L∞(Ω) and that the func-
tion gD is also defined in the interior of Ω such that gD ∈ H1(Ω). The weak solution
ū ∈ H1(Ω) of problem (1) is given as a sum ū = u+gD, where u ∈ V = {v ∈ H1(Ω) :
v = 0 on ΓD} satisfies

(A∇u,∇v) = (f, v)− (A∇gD,∇v) + 〈gN, v〉 ∀v ∈ V. (2)

The right-hand side f and the Neumann boundary condition gN are assumed to be
in L2(Ω) and L2(ΓN), respectively. The following notation is used

(A∇u,∇v) =

∫

Ω

(A∇u) · ∇v dx, u, v ∈ V,

(f, v) =

∫

Ω

fv dx, f, v ∈ L2(Ω),

〈gN, v〉 =

∫

ΓN

gNv ds, gN, v ∈ L2(ΓN).

Note that the L2-inner product for vector functions from [L2(Ω)]
2

and for scalar
functions from L2(Ω) is denoted by the same symbol.

Let us consider an approximate solution ūh = uh + gD of problem (2), where
ūh ∈ H1(Ω) and uh ∈ Vh. The finite element space Vh ⊂ V is based on a triangulation
Th and consists of continuous and piecewise polynomial functions of degree p. The
finite element solution uh ∈ Vh is defined by

(A∇uh,∇vh) = (f, vh)− (A∇gD,∇vh) + 〈gN, vh〉 ∀vh ∈ Vh. (3)
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The well known residual equation follows from (2):

(A∇e,∇v) = R(v) ∀v ∈ V, (4)

where e = u−uh = ū−ūh is the error of the approximate solution and the right-hand
side is called residuum and is given by

R(v) = (f, v)− (A∇ūh,∇v) + 〈gN, v〉 ∀v ∈ V.

We have the L2-norm ‖v‖2
0,Ω = (v, v) and the energy norm ‖v‖2 = (A∇v,∇v) for

all v ∈ V .

3. The equilibrated residual method

The origin of equilibration residual method goes back to works [8], [4], and [3].
It is not our aim to to describe this method in full detail here. We present only
a short overview of the main features of this method. The detailed description of
this method can be found in books [1] and [2].

First, let us introduce the local energy norm ‖v‖2
K = (A∇v,∇v)K on triangle

K ∈ Th and the local inner products

(A∇u,∇v)K =

∫

K

(A∇u) · ∇v dx, u, v ∈ H1(K),

(f, v)K =

∫

K

fv dx, f, v ∈ L2(K),

〈gK , v〉∂K =

∫

∂K

gKv ds, gK , v ∈ L2(∂K).

The error estimator is defined by the following sum

E2
EQ =

∑
K∈Th

‖ΦK‖2
K , (5)

where the functions ΦK ∈ V (K) = {v ∈ H1(K) : v = 0 on ΓD} are the solutions of
the local residual problems

(A∇ΦK ,∇v)K = (f, v)K − (A∇ūh,∇v)K + 〈gK , v〉∂K︸ ︷︷ ︸
REQ

K (v)

∀v ∈ V (K). (6)

The right-hand side of (6) is called local (or equilibrated) residuum and is denoted
by REQ

K (v).
The key role in the definition of the equilibrated residuum play the boundary

fluxes gK . These boundary fluxes approximate the actual fluxes of the true solution
on the element boundaries

gK ≈ ∇u · νK on ∂K,
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where νK denotes the outer unit normal to ∂K. The boundary fluxes are constructed
as polynomials of degree p on edges which are not on ΓN. These fluxes satisfy the
conditions

gK + gK∗ = 0 on ∂K ∩ ∂K∗, (7)

where K and K∗ are two adjacent elements, and

gK = gN on ∂K ∩ ∂ΓN. (8)

It is easily seen that conditions (7) and (8) imply equality

R(v) =
∑

K∈Th

REQ
K (v|K) ∀v ∈ V. (9)

We say that REQ
K (v) forms exact splitting of the residuum R(v). Very important is

that the equilibrated fluxes gK can be determined in such a way that they satisfy
the so-called p-th order equilibration condition:

REQ
K (θK) = (f, θK)K − (A∇ūh,∇θK)K + 〈gK , θK〉∂K = 0 (10)

for all finite element basis functions θK on the element K, i.e., for all polynomials of
degree p on the element K. Note that the procedure of computing boundary fluxes
gK is not easy and it is not our aim to describe it in this paper. The reader can find
this procedure, e.g., in [1].

Let us remark that problem (6) corresponds to the local Neumann problem with
boundary conditions given by gK . This Neumann problem has a solution only if

(f, 1)K + 〈gK , 1〉∂K = 0,

but this is satisfied thanks to equilibration condition (10). The solution of this local
problem is unique up to an additional constant, which is irrelevant, since we are
interested only in the gradient of ΦK , see (5).

Now, let us show that EEQ given by (5) is guaranteed upper bound of the energy
norm of error. First, we rewrite residual equation (4):

(A∇e,∇v) =
∑

K∈Th

REQ
K (v) =

∑
K∈Th

(A∇ΦK ,∇v)K ∀v ∈ V.

The next step is to employ two times the Cauchy-Schwarz inequality:

|(A∇e,∇v)| ≤
∑

K∈Th

‖ΦK‖K ‖v‖K ≤
( ∑

K∈Th

‖ΦK‖2
K

)1/2

‖v‖ .

This implies

‖e‖ = sup
06=v∈V

|(A∇e,∇v)|
‖v‖ ≤

( ∑
K∈Th

‖ΦK‖2
K

)1/2

. (11)
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Thus, the local solutions ΦK provide guaranteed a posteriori error estimator.
The trouble with the error estimate (11) is that the functions ΦK as solutions of
infinitely dimensional problems (6) are not computable. In practice, we usually use
a higher order finite element approximation of ΦK in (11). Therefore, the practical
implementation of the a posteriori error estimator (11) is not guaranteed upper
bound.

4. The method of hypercircle

The method of hypercircle is quite old and has many application. Let us mention
the fundamental book [11].

Let us derive a guaranteed and computable upper bound employing the method of
hypercircle. The standard procedure in the method of hypercircle is the construction
of the dual problem in the sense of the calculus of variations, see for example [9], [10],
[5], [6], etc. We derive the a posteriori error estimator directly without the definition
of the dual problem.

Recall that H(div, Ω) ⊂ [L2(Ω)]
2

denotes the well-known space of functions with
divergence in L2(Ω). Substituting v = e = ū− ūh into weak formulation (2), we get:

− (A∇ū,∇e) = − (f, e)− 〈gN, e〉 . (12)

Introducing a norm ‖q‖2
A−1,Ω = (A−1q,q) for q ∈ H(div, Ω) and employing (12), we

can compute

‖q−A∇ūh‖2
A−1,Ω =

(A−1q−∇ū−∇ūh +∇ū,q−A∇ū−A∇ūh +A∇ū
)

= ‖q−A∇ū‖2
A−1,Ω + 2 (q−A∇ū,∇ū−∇ūh) + ‖ū− ūh‖2

= ‖q−A∇ū‖2
A−1,Ω + 2 (q,∇e)− 2 (f, e)− 2 〈gN, e〉+ ‖ū− ūh‖2

for arbitrary q ∈ H(div, Ω). Defining the following space

Q(f, gN) = {q ∈ H(div, Ω) : (q,∇v) = (f, v) + 〈gN, v〉 ∀v ∈ V } ,

we immediately conclude that

‖q−A∇ūh‖2
A−1,Ω = ‖q−A∇ū‖2

A−1,Ω + ‖ū− ūh‖2 ∀q ∈ Q(f, gN).

Thus, any q ∈ Q(f, gN) gives the guaranteed upper bound

‖e‖2 = ‖ū− ūh‖2 ≤ ‖q−A∇ūh‖2
A−1,Ω . (13)

Note that this estimator is exact if q = A∇ū, but it is unreachable, in general.
The question is, how to find a suitable function q ∈ Q(f, gN), which would produce
a tight upper bound in (13). The crucial ingredient for the answer is the structure
of Q(f, gN):
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Q(f, gN) = p̄ + curlW, (14)

where p̄ ∈ Q(f, gN) is arbitrary but fixed and

W =
{
v ∈ H1(Ω) : v = 0 on ΓN

}
.

Note that the operator curl is defined by curl = (∂/∂x2,−∂/∂x1)
> and that

curlW = Q(0, 0) = {q ∈ H(div, Ω) : (q,∇v) = 0 ∀v ∈ V } .

This structure of Q(f, gN) is proven in [7] as well as the way how to construct p̄:

p̄ = F + curlw, (15)

where

F(x1, x2) =

(
−

∫ x1

0

f(s, x2) ds, 0

)>
(16)

and w ∈ H1(Ω) is an arbitrary function satisfying

curlw · ν = ∇w · τ = gN − F · ν on ΓN, (17)

where τ = (−ν2, ν1) is a unit tangent vector to ΓN. We see that the tangent derivative
of w is given by gN − F · ν. Thus, the values of w on ∂K are given by the primitive
function to gN − F · ν.

Thanks to (14) we can rewrite estimate (13) as follows

‖ū− ūh‖2 ≤ ‖p̄ + curl y −A∇ūh‖2
A−1,Ω ∀y ∈ W. (18)

Now, it is natural to replace W by a finite dimensional subspace Wh ⊂ W in order to
obtain a computable estimate. The easiest way is to construct Wh as a finite element
space based on the same triangulation with the same polynomial degree as Vh. The
optimal choice yh ∈ Wh, which minimizes the right-hand side of (18) over Wh satisfies

(A−1 curl yh, curl vh) = (∇ūh −A−1p̄, curl vh) ∀vh ∈ Wh. (19)

Note that the idea to minimize the right-hand side of (18) over a finite dimensional
space is used, e.g., in [12].

Thus, in order to construct the computable guaranteed upper bound of the energy
norm of the error we construct the function p̄ according to (15), (16), and (17).
Then, we find solution yh ∈ Wh of the finite dimensional problem (19) and compute
the norm ‖p̄ + curl yh −A∇ūh‖A−1,Ω, which gives the guaranteed a posteriori error
estimator – see (18).

The disadvantage of this procedure is that problem (19) is global and its solution
is time-consuming for large problems.
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5. The combined method

In order to obtain the locally computable guaranteed upper bound, we combine
the local but not guaranteed equilibrated residual method with the guaranteed but
not local hypercircle method. The idea is straightforward – compute the boundary
fluxes gK by the equilibrated residual method and then apply the method of hyper-
circle to local residual problems (6). To do that let us rewrite the equality (6) with
v = ΦK :

−(A∇ΦK ,∇ΦK)K = −(f, ΦK)K + (A∇ūh,∇ΦK)K − 〈gK , ΦK〉∂K . (20)

Now, let us compute the following norm for any q ∈ H(div, K):

‖q‖2
A−1,K = ‖q−A∇ΦK‖2

A−1,K + 2 (q−A∇ΦK ,∇ΦK)K + ‖ΦK‖2
K

= 2 (q,∇ΦK)K − 2(f, ΦK)K + 2(A∇ūh,∇ΦK)K − 2〈gK , ΦK〉∂K

+ ‖q−A∇ΦK‖2
A−1,K + ‖ΦK‖2

K , (21)

where (20) is utilized. By analogy with the previous section we define the following
space

QK(f, gK , ūh) = {q ∈ H(div, K) :

(q,∇v)K = (f, v)K − (A∇ūh,∇v)K + 〈gK , v〉∂K ∀v ∈ V (K)} .

The structure of this space is the same as the structure of Q(f, gN) in the previous
section. Namely,

QK(f, gK , ūh) = p̄K + curlW (K),

where p̄K is arbitrary but fixed element of QK(f, gK , ūh) and

W (K) =
{
v ∈ H1(K) : v = 0 on ∂K \ ΓD

}
,

curlW (K) = QK(0, 0, 0) = {q ∈ H(div, K) : (q,∇v)K = 0 ∀v ∈ V (K)} .

From (21) we immediately obtain

‖q‖2
A−1,K = ‖q−A∇ΦK‖2

A−1,K + ‖ΦK‖2
K ∀q ∈ QK(f, gK , ūh).

Hence,

‖ΦK‖K ≤ ‖q‖A−1,K ∀q ∈ QK(f, gK , ūh). (22)

Finally, using (11), (22), and the structure of the space QK(f, gK , ūh), we conclude
that

‖e‖2 ≤
∑

K∈Th

‖ΦK‖2
K ≤

∑
K∈Th

‖q‖2
A−1,K =

∑
K∈Th

‖p̄K + curl yK‖2
A−1,K (23)

holds for all yK ∈ W (K) with q = p̄K + curl yK .
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In order to evaluate the upper bound (23) we consider a finite dimensional sub-
space Wh(K) ⊂ W (K). The subspace Wh(K) may consist, for example, of polyno-
mials of degree p + 1 on the triangle K. The optimal choice for yK ∈ Wh(K), which
minimizes the right-hand side of (23) over Wh(K), satisfies

(A−1 curl yK , curl v
)

K
= − (A−1p̄K , curl v

)
K

∀v ∈ Wh(K). (24)

The only remaining question is how to find the vector p̄K ∈ QK(f, gK , ūh) effi-
ciently. The clue is given in the previous section, see (15), (16), and (17):

p̄K = F + curlwK −A∇ūh, (25)

where A∇ūh is known, F is given by (16) and wK ∈ H1(K) has to satisfy

curlwK · νK =
∂wK

∂τK

= gK − F · νK on ∂K \ ΓD, (26)

where the tangent vector is given by τK = (−νK,2, νK,1)
>. Notice that the values of

wK on the boundary ∂K are given by the primitive function to gK − F · νK . For
example, if we consider the triangle K with vertices A, B, C, then the values wK(x)
for x ∈ ∂K are given by

wK(x) =





wK(A) +
∫ x

A
(gK − F · νK) ds for x ∈ AB,

wK(B) +
∫ x

B
(gK − F · νK) ds for x ∈ BC,

wK(C) +
∫ x

C
(gK − F · νK) ds for x ∈ CA,

where AB, BC, and CA denote the edges of the triangle and the integration is along
these edges. The value wK(A) is arbitrary and the values wK(B) and wK(C) are
chosen such that wK is continuous in the points B and C. Note that the particular
value of wK(A) is irrelevant, because we are interested only in curlwK . The impor-
tant fact is that the values of function wK on ∂K are continuous also in the point A:
Denoting wK(A−) = lim

x→A,x∈AB
wK(x) and wK(A+) = lim

x→A,x∈CA
wK(x), we find that

wK(A+)− wK(A−) =

∫

∂K

∂wK

∂τK

=

∫

∂K

(gK − F · νK) ds =

∫

∂K

gK ds +

∫

K

f dx = 0,

where the last equality follows from equilibration condition (10) with θK = 1.
Thus, the values of wK are continuous on the boundary of ∂K and it is possible

to prolong them into the interior of K such that the prolongation lies in H1(K).
There are infinitely many possibilities how to do this prolongation, but we need the
one which leads to the tight upper bound.

We suggest the prolongation illustrated in Figure 1. Consider the triangle K with
vertices A, B, C and continuous function ω defined on ∂K, i.e., ω ∈ C0(∂K). Let us
define the function ω̃ ∈ C0(K) in the following way. First, construct four auxiliary
functions:
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• The function ˜̀ is a linear function on K such that ˜̀(A) = ω(A), ˜̀(B) = ω(B),
and ˜̀(C) = ω(C), i.e.,

˜̀= ω(A)ϕA + ω(B)ϕB + ω(C)ϕC ,

where ϕA, ϕB, and ϕC are standard linear finite element basis functions on the
triangle K.

• The function z̃3 ∈ C0(K) is zero on ∂K \ AB and is defined by

z̃3(X) = ω(X)− ˜̀(X) for X ∈ AB,

z̃3(X) = 0 for X ∈ BC ∪ CA, (27)

z̃3(X) =
(
ω(D3)− ˜̀(D3)

) |XE3|
|D3E3| for X ∈ K,

where |XE3| denotes the distance between the points X and E3. The point D3

is the intersection of the edge AB and the line which goes through the point
X and is parallel to the edge CA. The point E3 is the intersection of this line
with the edge BC – see Figure 2. Notice that z̃3 is linear on the line D3E3.

• The functions z̃1 ∈ C0(K), which is zero on ∂K \BC, and z̃2 ∈ C0(K), which
is zero on ∂K \ CA, are defined by analogy with the definition of z̃3.

The function ω̃ ∈ C0(K) is then defined by

ω̃(X) = ˜̀(X) + z̃1(X) + z̃2(X) + z̃3(X), X ∈ K. (28)

Notice that ω̃(X) = ω(X) on ∂K. This function ω̃ will be called the prolongation
of ω into interior of K, or simply the prolongation of ω.

The described prolongation has several important properties, which are intro-
duced in the following lemmas. Denote by P p(Θ) the space of polynomials of degree p
defined on a set Θ.

Lemma 5.1. Consider a triangle K and ω ∈ C0(∂K). Moreover, let ω|γ ∈ P p(γ)
for all edges γ of the triangle K and for arbitrary p ∈ N. Then the prolongation ω̃
of the function ω into the interior of K given by (28) is a polynomial of degree p in
K, i.e., ω̃ ∈ P p(K).

Proof. Let us assume without loss of generality that K is a reference triangle
with the vertices A = [0, 0], B = [1, 0], and C = [0, 1]. It is enough to prove that
z̃1, z̃2 and z̃3 in (28) are polynomials of degree p. Consider, therefore, a function
z3 ∈ C0(∂K), which is zero on BC and CA, and which is a polynomial of degree p
on AB. Note that the functions

ϕ1D
n (x) = xn(1− x), n = 1, 2, . . . , p− 1,
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A B

C

K

˜̀

z̃1

z̃2 z̃3

A B

C z̃1

A B

C
z̃2

A B

C

z̃3

Fig. 1: The left figure shows the splitting of wK into the linear part ` and to the rest
parts z1, z2 and z3 corresponding to edges of triangle K. The right figure illustrates the
prolongation of z1, z2 and z3 into the interior of K.

A B

C

D3

E3

X

z̃3(X)z̃3(D3) A B

C

D3

E3

D1

E2

XE1

D2

Fig. 2: The value of z3 at the interior point x.

form a basis of the space P p
0 ([0, 1]) of all polynomials on the interval [0, 1] with zeros

at 0 and 1. Therefore, we can uniquely express the function z3 on interval [0, 1] as
a linear combination of these basis functions:

z3 =

p−1∑
n=1

cnϕ
1D
n on AB = [0, 1].

Now, we can consider the unique prolongation

ẑ3 =

p−1∑
n=1

cnϕ2D
n in K, (29)

where
ϕ2D

n (x1, x2) = xn
1 (1− x1 − x2), n = 1, 2, . . . , p− 1,
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A B

C

D3

E3

D̂3

Ê3

X

X̂

Fig. 3: The position of points D3, E3, D̂3, Ê3, X and X̂.

are the standard finite element basis functions on the reference triangle with zeros on
edges CA and BC. Now, consider lines parallel with the edge CA, i.e., lines described
by the equality x1 = k, k ∈ R. All basis functions ϕ2D

n (x1, x2), n = 1, 2, . . . , p − 1,
are linear on these lines:

ϕ2D
n (k, x2) = kn(1− k − x2), n = 1, 2, . . . , p− 1.

Therefore, also the function ẑ3 is linear on the lines parallel with edge CA, which is
exactly the way, how the prolongation z̃3 described above is constructed. Hence, the
prolongations ẑ3 given by (29) and z̃3 given by (27) of the function z3 coincide and
we conclude that z̃3 is a polynomial of degree p in K. Analogical reasoning can be
done for z1 and z2, too. ¤

Lemma 5.2. Consider a triangle K with vertices A, B, C, function ω ∈ C0(∂K)
and its prolongation ω̃ ∈ C0(K) defined by (28). If there exists a finite tangent
derivative ∂ω/∂τK on all edges of the triangle K then the derivatives of the function

z̃3, defined by (27), in the directions
−→
ED and

−→
XB are given at any interior point

X = (x1, x2) ∈ K by

∂z̃3(X)

∂
−→

E3D3

=
z̃3(D3)

|D3E3| ,

∂z̃3(X)

∂
−→
XB

=
∂z̃3(D3)

∂
−→
AB

|AB|
|XB|

|XE3|
|D3E3|α =

∂z̃3(D3)

∂τK

|AB|
|XB|

|XE3|
|D3E3|α,

where

α =
(B1 − x1)(A1 − C1)− (B2 − x2)(A2 − C2)

(B1 − A1)(A1 − C1)− (B2 − A2)(A2 − C2)
.

Proof. Figure 3 illustrates the used notations. The derivative in the directions
−→

E3D3 is easy to calculate. The derivative in the directions
−→
XB is given by
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lim
r→0

z̃3(X + r(B −X))− z̃3(X)

r |BX| = lim
r→0

z̃3(X̂)− z̃3(X)

r |BX| = lim
r→0

z̃3(D̂3)− z3(D3)

r |BX|
|XE3|
|D3E3| ,

where X̂ = X + r(B −X),

z̃3(X) = z̃3(D3)
|XE3|
|D3E3| , z̃3(X̂) = z̃3(D̂3)

∣∣∣X̂Ê3

∣∣∣
∣∣∣D̂3Ê3

∣∣∣
,

and

|XE3|
|D3E3| =

∣∣∣X̂Ê3

∣∣∣
∣∣∣D̂3Ê3

∣∣∣
,

which holds thanks to the similarity of appropriate triangles. The rest of the proof
is an exercise in the analytical geometry. ¤
Note that the derivatives of z̃1 and z̃2 can be evaluated by analogy with Lemma 5.2.

Let us summarize the way how to compute the guaranteed and locally com-
putable upper bound. First, compute boundary fluxes gK using residual equilibra-
tion method. Then, construct vector p̄K for all triangles K in Th by (25). The values
of wK on ∂K are given by the primitive function to gK −F · ν. These values are pro-
longed into the interior of K according to (28) and this prolongation is denoted also
by wK . Important is that the values of curlwK are easily computable from values
of wK on ∂K and from ∂wK/∂τK = gK − F · ν on ∂K thanks to Lemma 5.2. The
next step is to find a solution yK ∈ Wh(K) of finite dimensional local problem (24).
The final step is to evaluate estimate (23).

Thanks to the properties of prolongation (28) we can prove the following lemma.

Lemma 5.3. Let the finite element solution uh ∈ Vh be exact, i.e., uh = u and
let the matrix A be constant. If the vector p̄K ∈ QK(f, gK , ūh) is constructed as
described above then the error estimator (23) is exact, i.e., p̄K + curl yK = 0.

Proof. Consider a triangle K ∈ Th. The right-hand side f has to be a polynomial
of degree at most p− 2 on K, since uh = u is a polynomial of degree at most p and
A is constant. Therefore, F is a polynomial of degree at most p− 1. The boundary
fluxes gK are constructed as polynomials of degree p on edges of K and they coincide
with the actual fluxes of the exact solution:

gK = ∇ū · νK on ∂K.

By the way, this fact implies that ΦK = 0, see (6). Moreover, it implies that

QK(f, gK , ūh) = {q ∈ H(div, K) : (q,∇v)K = 0 ∀v ∈ V (K)} = curlW (K).
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Thus, the function wK is a polynomial of degree at most p+1 on each edge of K
and Lemma 5.1 implies that the prolongation of these values into the interior of K
is also a polynomial of degree at most p + 1.

Hence, p̄K is a polynomial of degree at most p and that p̄K ∈ curlW (K).
Consequently, p̄K ∈ curlWh(K) and projection (24) gives curl yk = −p̄K . ¤

6. Numerical experiments

The practical behavior of the combined method is compared with the equilibrated
residual method and with the method of hypercircle. The quadratic finite element
method is chosen. In case of equilibrated residual method, the local residual prob-
lem (6) is solved on the space Vh(K) of cubic polynomials on triangle K. In case
of the combined method, local problem (24) is solved on the space Wh(K) of cubic
polynomials, too. The difference between local problems for equilibrated residual
and combined methods is in boundary conditions and in the number of degrees of
freedom. For example, if we consider the interior element K, then dim Vh(K) = 10
and dim Wh(K) = 1. Thus, the combined method performs faster in the solution of
local problems. Anyway, the computation of boundary fluxes gK have to be done for
both methods and it takes considerable amount of time.

The global problem (19) in classical method of hypercircle is solved by the
quadratic finite elements. Note that the spaces Vh and Wh differ due to different
boundary conditions for problems (3) and (19). The function w, see (15), is con-
structed in the similar way as function wK in Section 5.

Example 6.1. Consider problem (1) with the following data: Ω = [−1, 1]2, ΓD =
∂Ω, ΓN = ∅, A is the identity matrix, f(x1, x2) = 2(2 − x2

1 − x2
2), gD = 0. The

exact solution corresponding to this problem is u(x1, x2) = (x2
1− 1)(x2

2− 1). Table 1
shows the effectivity indices Ieff = E/ ‖e‖, where the estimator E is obtained by the
equilibrated residual method, by the method of hypercircle and by the combined
method, respectively. The results are for the regular meshes. First five of these
meshes is illustrated in Figure 4.

Fig. 4: Regular triangulations of the domain Ω = [−1, 1]2 with 2, 4, 8, 16, and 32 triangles.

Example 6.2. Let us consider the following data: Ω = [0, 1]2, ΓD = {(x1, x2) ∈
∂Ω : x1 = 0 or x2 = 0}, ΓN = ∂Ω\ΓD, A equals to the identity matrix, gD = 0, c = 0,
α = 0, gN and f are such that the exact solution is u(x1, x2) = sin(17x1x2)e

x1+x2 .
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equilibrated method of combined
Ntri residua hypercircle method

2 1.43 1.11 1.06
4 1.23 1.25 1.01
8 1.34 1.20 1.00

16 1.30 1.30 1.16
32 1.39 1.23 1.29
64 1.32 1.32 1.27

128 1.41 1.25 1.52
256 1.33 1.34 1.33
512 1.41 1.25 1.64

1024 1.33 1.34 1.36
2048 1.41 1.26 1.71
4096 1.33 1.34 1.38
8192 1.41 1.26 1.74

16384 1.33 1.34 1.38
32768 1.41 1.26 1.75

Tab. 1: Effectivity indices for Example 6.1 computed by the equilibrated residual method,
by the method of hypercircle and by the combined method on regular triangulations of the
domain with Ntri triangles.

Table 2 shows the comparison of the effectivity indices of the discussed error estima-
tors on the same regular meshes, see Figure 4. Notice that the equilibrated residual
method really underestimates the error for first four meshes.

7. Conclusions

The equilibrated residual method and the classical method of hypercircle have
been discussed in this paper. It was shown how to obtain a posteriori upper bounds
of energy norm of error by both of these methods. However, the equilibrated residual
method gives the upper bound which is not computable, since it involves solutions
of infinitely dimensional local problems. In practice, approximations of these local
problems are used and, therefore, the computable version is not guaranteed to be an
upper bound.

On the other hand, the method of hypercircle produces the guaranteed and com-
putable upper bound, but its evaluation needs the solution of a global problem.
Thus, computation of the upper bound by the method of hypercircle is not fast.

The combination of the equilibrated residual method and the method of hyper-
circle has been suggested in this paper. This combined method provides the guaran-
teed and locally computable upper bound. Numerical experiments indicate that the
combined method performs very well. It is efficient and fast, in the sence that the
computational time is linearly proportional to the size of the problem. Of course, the
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equilibrated hypercircle combined
Ntri residua method method

2 0.37 1.93 1.86
4 0.29 1.70 1.71
8 0.49 1.65 1.69

16 0.94 1.51 1.19
32 1.11 1.56 1.37
64 1.06 1.51 1.29

128 1.14 1.68 1.37
256 1.17 1.48 1.28
512 1.30 1.52 1.58

1024 1.22 1.49 1.35
2048 1.34 1.50 1.67
4096 1.24 1.50 1.38
8192 1.35 1.49 1.70

16384 1.25 1.51 1.39
32768 1.35 1.49 1.71

Tab. 2: Effectivity indices for Example 6.2 computed by the equilibrated residual method,
by the method of hypercircle and by the combined method on regular triangulations of the
domain with Ntri triangles.

combined method is slower than the equilibrated residual method, since it requires
additional work with function wK , see Figures 1 and 2, but it gives guaranteed upper
bound. The efficiency of the combined method, measured by the effectivity index,
is comparable with the equilibrated residual method as well as with the method of
hypercircle, which both provide tight bounds of the error.
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