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HIERARCHICAL FEM: STRENGTHENED CBS INEQUALITIES,
ERROR ESTIMATES AND ITERATIVE SOLVERS∗

Radim Blaheta

Abstract

This paper describes natural decomposition of hierarchical finite element spaces,
discusses a characterization of this decomposition via strengthened CBS inequality and
uses this decomposition for development of hierarchical error estimates and iterative
solution methods.

1. Introduction

A subsequent refinement of a finite element grid provides a sequence of nested
grids and hierarchy of nested finite element spaces as well as a natural hierarchi-
cal decomposition of these spaces. This decomposition can be characterized by the
constant from the corresponding Cauchy–Bunyakowski–Schwarz (CBS) inequality.
In Section 2, we summarize some older and recent results concerning this constant.
The CBS analysis is exploited in Section 3 for investigation of the so called hierar-
chical error estimates. We shall show that such estimates are robust with respect
to coefficient jumps and anisotropy as well as to the element shape. Hierarchical
error estimates can be used for both global and local error assessment. Local esti-
mates can be used for local refinement and construction of hierarchy of locally refined
spaces. In Section 4, we outline the hierarchical decomposition in this case. Note
that this decomposition can be used for defining various iterative solution methods
and preconditioners.

2. FE hierarchy and natural decomposition

Let us consider a model boundary value problem in Ω ⊂ Rd (d = 2, 3),

find u ∈ V : a(u, v) = b(v) ∀v ∈ V, (1)

where V = H1
0 (Ω), b(v) =

∫
Ω

fvdx for f ∈ L2(Ω) and

a(u, v) =

∫

Ω

d∑
ij

kij
∂u

∂xi

∂v

∂xj

dx .

Above K = (kij) is a symmetric and positive definite matrix of coefficients.

∗This work was supported by grant No. 1ET400300415 of the Academy of Sciences of the Czech
Republic.
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We also consider a coarse triangular or tetrahedral finite element grid TH of Ω and
a fine grid Th, which arises by a refinement of the coarse elements. By NH and Nh,
we denote the set of nodes corresponding to TH and Th, respectively. Naturally,
Nh = NH ∪N+

H , where N+
H is the complement of NH in Nh .

Now, we can introduce the finite element spaces UH and Uh (UH ⊂ Uh) of func-
tions which are continuous and linear on the elements of the triangulation TH , and Th,
respectively. We shall also speak about a hierarchy of triangulations and finite ele-
ment spaces.

Let {φH
i } and {φh

i } be the standard nodal finite element bases of UH and Uh ,
i.e. φH

i (xj) = δij for all xj ∈ NH , φh
i (xj) = δij for all xj ∈ Nh . Then we can also

introduce a hierarchical basis {φ̄h
i } in Uh ,

φ̄h
i =

{
φh

i if xi ∈ N+
H ,

φH
i if xi ∈ NH .

It gives a natural hierarchical decomposition of the space Uh,

Uh = UH ⊕ U+
H , (2)

where U+
H = span {φh

i , xi ∈ N+
H } .

The decomposition (2) is characterized by the angle between the subspaces or the
strengthened CBS inequality with the constant γ = cos(UH , U+

H ), which is defined
as follows:

γ = cos(UH , U+
H )

= sup

{
| a(u, v) |√

a(u, u)
√

a(v, v)
: u ∈ UH , a(u, u) 6= 0, v ∈ U+

H , a(v, v) 6= 0

}
. (3)

If Th arises from TH by a regular division of the coarse grid triangles into m2

congruent triangles in 2D or a regular division (given by the affine mapping to a ref-
erence rectangular tetrahedra) of the coarse grid tetrahedra into m3 tetrahedra (see
Fig. 1) and if the coefficients K = (kij) are constant on the coarse grid elements then
for general anisotropic coefficients and arbitrary shape of the coarse grid elements,
we get

γ ≤
√

m2 − 1

m2
and γ ≤

√
(m2 − 1)(m2 + 2)

m2(m2 + 1)

for 2D and 3D case, respectively. See [1], [4] and the references given there for more
details.

Note that in special cases we get smaller values of γ. For example, γ ≤
√

3/8

for isotropic coefficients and equilateral triangles [8], γ ≤
√

1/2 for isotropy and

rectangular finite elements [8], [1] or γ ≤
√

3/4 for orthotropy kij = kiδij and
rectangular tetrahedra [4] .
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Fig. 1: Decompositions in 2D and 3D with multiplicity m = 2.

3. Hierarchical error estimates

Hierarchical error estimates were introduced in papers by R.E. Bank, see [3]. The
aim is to estimate the error eH = u−uH , where uH ∈ VH is the finite element approx-
imation of the exact solution u ∈ V of the considered boundary value problem (1),
VH = UH ∩ V .

Let us also introduce the spaces Vh = Uh ∩ V and V +
H = U+

H ∩ V, Vh = VH ⊕ V +
H

and let uh be the finite element approximation of u in Vh, i.e.

uh ∈ Vh : a(u− uh, z) = 0 ∀z ∈ Vh . (4)

Lemma 1 Let there is a positive constant β < 1 such that

‖ u− uh ‖a≤ β ‖ u− uH ‖a, (5)

where ‖ v ‖a=
√

a(v, v). Then

1

1 + β
‖ uH − uh ‖a≤‖ u− uH ‖a≤ 1

1− β
‖ uH − uh ‖a . (6)

Proof see e.g. [3].
The assumption (5) is crucial and need not be fulfilled in any case, see e.g. [6]

for a counterexample. If this assumption holds, then

η =‖ uH − uh ‖a (7)

is the two-level a posteriori error estimate.
For practical use, the computation of η is too expensive. The hierarchical decom-

position Vh = VH ⊕ V +
H then suggest to use an approximation wh to uh,

wh ∈ V +
H : a(u− uH − wh, z) = 0 ∀z ∈ V +

H . (8)
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Lemma 2 Let the saturation assumption (5) holds and ηH =‖ wh ‖a. Then

1

(1 + β)(1 + γ)
ηH ≤‖ u− uH ‖a≤ 1

(1− β)(1− γ)
ηH , (9)

where γ = cos(VH , V +
H ).

Proof see e.g. [3].
Note that ηH is called the hierarchical error estimate.
Let us now consider algebraic formulation of the fine grid finite element approx-

imation in the hierarchical basis. We get

[
A11 A12

A21 A22

] [
u1

u2

]
=

[
b1

b2

]

where u1 and u2 correspond to N+
H \ ∂Ω and NH \ ∂Ω, respectively, and

A11 = [a(φh
j , φ

h
i ) : xi, xj ∈ N+

H \ ∂Ω] ,

A12 = [a(φH
j , φh

i ) : xi ∈ N+
H \ ∂Ω, xj ∈ NH \ ∂Ω] , etc .

Then

uH is represented by w2 : A22w2 = b2

wh is represented by w1 : A11w1 = b1 − A12u2

and η1 =‖ wh ‖a=
√
〈A11w1, w1〉 =‖ w1 ‖A .

The computation of w1 can be still too expensive and we can be interested in
a possible simplification, e.g. by approximation Ā11 ∼ A11 such that

w̄1 : Ā11w̄1 = b1 − A12u2

can be computed in a number of operations proportional to the number of elements
in N+

H (i.e. O(#N+
H ) operations) and provide a good approximation to w1.

The simplest case is to replace A11 by its diagonal, but then the relation between
‖ w̄1 ‖A and ‖ w1 ‖A depends on anisotropy and/or shape of the elements.

For 2D case, another approximation can be constructed as in the paper [2]. It
gives nice bounds independent on the discretization size and both anisotropy and
element shape,

(1−
√

7

15
) ‖ w̄1 ‖A≤‖ w1 ‖A≤ (1 +

√
7

15
) ‖ w̄1 ‖A .

Moreover, w̄1 can be computed in O(#N+
H ) operations.
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4. Locally refined hierarchy

The hierarchical error estimators discussed in the previous section are global, but
their value can be computed from contributions of macroelements corresponding to
coarse grid elements to ‖ wh ‖a. These local contributions or another local estimators
can be used for determination of these coarse grid elements, which should be refined.
After their refining, we can either work with special hanging nodes or make another
refinement of the surrounding elements by their bisection, see Fig. 2.

Fig. 2: Local refinement with hanging nodes (left) and bisection (right).

Again we get spaces UH and Uh and the natural decomposition Uh = UH ⊕ U+
H .

The constant γ = cos(UH , U+
H ) , is then important for special iterative solution meth-

ods like FAC or BEPS, see [7], [5] and the references therein.

Theorem 1

• In the case of local refinement with hanging nodes, γ remains the same as in
the case of global refinement.

• In the case of local refinement with bisection, we obtain the same constant γ
only in special cases (e.g. orthotropic problems kij = kiδij and refinement like
on Fig.2 right). Generally, γ is not further robust with respect to anisotropy
or the element shape.

The proof of the first statement can be found in [7], the second statement will be
discussed in a forthcoming paper.

5. Conclusions

The paper shows the hierarchical finite element method with hierarchical error
estimates, which are robust with respect to coefficients jumps between coarse ele-
ments and both physical and numerical anisotropy. The finite element problems on
locally refined grids can be solved by iterative methods, see [7] and [5]. The con-
vergence of these methods can be again estimated with the aid of the strengthened
CBS constant.
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