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A FICTITIOUS DOMAIN APPROACH TO THE NUMERICAL
SOLUTION OF ELLIPTIC BOUNDARY VALUE PROBLEMS

DEFINED IN STOCHASTIC DOMAINS∗

Claudio Canuto, Tomáš Kozubek

1. Introduction

In [2], we present an efficient method for the numerical solution of elliptic PDEs
in domains depending on random variables. The key feature is the combination of
a fictitious domain approach and a polynomial chaos expansion. The PDE is solved
in a larger, fixed domain (the fictitious domain), with the original boundary condi-
tion enforced via a Lagrange multiplier acting on a random manifold inside the new
domain. A (generalized) Wiener expansion is invoked to convert such a stochastic
problem into a deterministic one, depending on an extra set of real variables (the
stochastic variables). Discretization is accomplished by standard mixed finite ele-
ments in the physical variables and a Galerkin projection method with numerical
integration (which coincides with a collocation scheme) in the stochastic variables.
A stability and convergence analysis of the method, as well as numerical results, are
provided in [2]. The convergence is “spectral” in the polynomial chaos order, in any
subdomain which does not contain the random boundaries.

2. Setting of the problem

Let (Ω, F, P ) be a complete probability space, where Ω is the set of outcomes,
F is the σ-algebra of events and P is the probability measure. For any ω ∈ Ω, let
D(ω) ⊂ R2 be a bounded domain depending on ω; its boundary Γ (ω) := ∂D(ω) is
assumed to be polygonal or of class C1,1, i.e., the boundary is locally represented
by functions, whose first derivatives are Lipschitz continuous. We suppose that all
domains are contained with their boundaries in a domain D̂ ⊂ R2, which will serve
as the fictitious domain in the fictitious domain formulation (see Figure 1).

For the sake of simplicity, we will be concerned with the following model boundary
value problem in D(ω): Find u : D(ω)× Ω → R such that almost surely (a.s.) in Ω
we have { −4u( · , ω) = f in D(ω),

u( · , ω) = 0 on Γ (ω),

(P(ω)
)
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where f is a given function in L2(D̂). The case of Neumann or mixed boundary
conditions or of random coefficients and data (independent of the random variables
describing the domain) could be handled at no extra difficulty.

Solving the discrete problem
(P(ω)

)
for any ω ∈ Ω using, e.g., the finite element

method, means that by varying ω we have to: (i) remesh the new domain D(ω);
(ii) assemble the new stiffness matrix and the right hand side vector; (iii) solve the
new system of linear equations. Thus the efficiency of solving the discrete problems is
crucial. Hereafter, we will explore a fictitious domain method with nonfitted meshes
as a possible way to increase efficiency: indeed, this approach avoids completely
step (i) and partially step (ii), since the stiffness matrix remains the same for any
admissible domain.

3. The fictitious domain (FD) formulation

In this section, we will consider problem
(P(ω∗)

)
for a given event ω∗ ∈ Ω; we

will simplify our notation by setting D := D(ω∗), Γ := Γ (ω∗) and u = u( · , ω∗).
Let D̂ be the fictitious domain containing D. The corresponding fictitious domain

formulation reads as follows:



Find (û, λ) ∈ V ×M such that
∫

D̂
∇û · ∇v dx + 〈λ, τv〉Γ =

∫
D̂

fv dx, ∀v ∈ V,

〈µ, τ û〉Γ = 0, ∀µ ∈ M,

(P̂)

where the symbol 〈., .〉 denotes the duality pairing between M := H−1/2(Γ ) and
H1/2(Γ ), τ : H1

0 (D̂) → H1/2(Γ ) stands for the trace mapping and V is a closed sub-
space of H1(D̂). Typical choices for V are: H1(D̂), H1

0 (D̂), or H1
P (D̂) = {v | v ∈

H1(D̂), v is periodic on ∂D̂} if D̂ is a cartesian product of intervals.
The reason for introducing the space of the Lagrange multipliers M is to fulfil

the requirement that û|D solves
(P(ω∗)

)
.

The well-posedness of this problem for any f ∈ L2(D̂) follows from classical
results on abstract saddle-point problems (see [1]). Hence the saddle-point prob-
lem

(P̂)
has a unique solution (û, λ) ∈ V ×M . In addition, û|D = u and λ =

[
∂u
∂n

]
,

the jump of the normal derivative of u across Γ.

3.1. Discretization of the FD formulation

Problem
(P̂)

will be approximated by using the mixed finite element method
(see [1]). For this purpose the spaces V and M are replaced by suitable finite dimen-
sional subspaces Vh and MH . More specifically, Vh contains all continuous piecewise
bilinear functions v̂h constructed over a uniform rectangulation of D̂ and satisfying
boundary condition on ∂D̂ dependent on the choice of V . Further, MH contains all
piecewise constant functions µH constructed over a partition of ∂D. For more details
we refer to [3].

The resulting algebraic formulation is
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(
A BT

B O

) (
u
λ

)
=

(
f
0

)
,

(
P

)

where A is the stiffness matrix, B is the matrix coupling the primal variable u and the
Lagrange multiplier λ, which are the vectors of the nodal values of ûh (approximation
of û from Vh) and of the constant values of λH (approximation of λ from MH),
respectively, and f is the load vector.

To solve
(
P

)
, we use the first equation to eliminate the vector u = A−1(−BT λ+f)

from the second one, and we solve the resulting system for λ, BA−1BT λ = BA−1f ,
by a conjugate gradient method. The size of BA−1BT is much smaller than the size
of A. Generally, we do not need any preconditioning but we are able to construct
preconditioners to the Schur complement based on the pseudoinverse and multigrid
techniques. The multiplication by A−1 can be realized efficiently, e.g., by Choleski
factorization with symmetric approximate minimum degree reordering, multigrid
approach, domain decomposition method or by using fast solvers based on the Fourier
Analysis and the cyclic reduction.

4. The stochastic FD formulation

We go back to the stochastic setting. The FD formulation
(P̂)

suggests the

following stochastic FD formulation: Find û( · , ω) ∈ H1
0 (D̂) and λ( · , ω) ∈ M(ω) :=

H−1/2(Γ (ω)) such that, a.s. in Ω,{ ∫
D̂∇û( · , ω) · ∇v dx + 〈λ( · , ω), τv〉Γ (ω) =

∫
D̂ fv dx, ∀v ∈ H1

0 (D̂),

〈µ, τ û( · , ω)〉Γ (ω) = 0, ∀µ ∈ M(ω).

(P̂(ω)
)

We assume that, a.s., Γ (ω) is obtained from a reference C1,1 or polygonal bound-
ary Γ0 as the image of a piecewise smooth invertible mapping γ0(ω). More precisely,
we assume that Γ (ω) = γ0(ω)(Γ0), where γ0(ω) belongs to C1,p(Γ0) (the space of all
continuous and piecewise continuously differentiable mappings γ : Γ0 → R2) and its
inverse γ0(ω)−1 exists and belongs to C1,p(Γ (ω)). The function γ0 : Ω → C1,p(Γ0) is
assumed to be a random variable belonging to L∞(Ω, dP ; C1,p(Γ0)), i.e., γ0 is a jointly
measurable function on the Borel sets of Γ0 × Ω for which there exists a constant
g0 > 0 such that ‖γ0(ω)‖C1,p(Γ0) ≤ g0 a.s. in Ω; the same occurs for the inverse
mapping, i.e., ‖γ0(ω)−1‖C1,p(Γ (ω)) ≤ g0 a.s. in Ω.

Let E [X] =
∫

Ω
X(ω) dP (ω) be the expected value of a real-valued random vari-

able X. Let L2(Ω, dP ) = {X : Ω → R |X is a random variable such that E [X2] <
+∞} be the space of second order random variables over the probability space
(Ω, F, P ). We denote by L2(Ω, dP ; H1

0 (D̂)) the space of the random variables
v : Ω → H1

0 (D̂) (i.e., v : D̂ × Ω → R is jointly measurable and v( · , ω) ∈ H1
0 (D̂)

a.s. in Ω) with finite second order moment E
[
‖v‖2

H1
0 (D̂)

]
=

∫
D̂
E [|∇v|2] dx <

+∞. The definition of the space L2(Ω, dP ; H−1/2(Γ0)) is similar. Finally, the space
L2(Ω, dP ; H−1/2(Γ )) is defined as follows: µ ∈ L2(Ω, dP ; H−1/2(Γ )) means that
µ0 ∈ L2(Ω, dP ; H−1/2(Γ0)), where µ0(ω) ∈ H−1/2(Γ0) is defined a.s. in Ω by the
conditions 〈µ0, v0〉Γ0 = 〈µ, v0 ◦ γ−1

0 〉Γ (ω) for all v0 ∈ H1/2(Γ0).
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With such notation at hand, the stochastic FD formulation given at the beginning
of the section can be made precise as follows: Find û ∈ L2(Ω, dP ; H1

0 (D̂)) and
λ ∈ L2(Ω, dP ; H−1/2(Γ )) such that{

E
[∫

D̂∇û · ∇v dx
]
+ E [〈λ, τv〉Γ ] = E

[∫
D̂ fv dx

]
, ∀v ∈ L2(Ω, dP ; H1

0 (D̂)),

E [〈µ, τ û〉Γ ] = 0, ∀µ ∈ L2(Ω, dP ;H−1/2(Γ )).

(P̂S
)

Our next step will be to transform this stochastic problem into a purely deter-
ministic one. This will be accomplished by expanding the random variables into
polynomial chaos.

5. (Wiener) polynomial chaos

This section is devoted to recalling some basic facts about polynomial chaos (see,
e.g., [4]), as well as to setting the notation.

Let Y1(ω), . . . , Yk(ω), . . . be a sequence of independent standard Gaussian random
variables with zero mean and unit variance, i.e., E [Yk] = 0, E [YkY`] = δk` for all
k, ` ≥ 1. On the other hand, given a real variable y, let {Hn(y)}n≥0 be the sequence
of Hermite polynomials on the real line, satisfying

1√
2π

∫

R
Hn(y)Hm(y) e−y2/2dy = δnm, n, m ≥ 0,

where δnm is the Kronecker symbol. Next, denote by y = (yk)k≥1 ∈ RN0 any infinite
sequence of real variables, and by ν = (νk)k≥1 ∈ NN0 any infinite sequence of integers
which is “finite”, i.e., such that νk > 0 only for a finite number of indices; let
|ν| =

∑
k≥1 νk. Define the multidimensional Hermite polynomials of order |ν| as

Hν(y) =
∏∞

k=1 Hνk
(yk); note that the definition is meaningful since H0(y) ≡ 1,

hence, Hν(y) actually depends only on a finite number of components of y. These
polynomials are mutually orthonormal, in the following sense:

(Hν , Hµ) :=
∞∏

k=1

1√
2π

∫

R
Hνk

(yk)Hµk
(yk) e−y2

k/2dyk = δνµ, ∀ν, µ.

Setting Y(ω) := (Yk(ω))k≥1 for all ω ∈ Ω, the random variables Hν : ω 7→
Hν(Y(ω)) are independent and with unit variance, since E [HνHµ] = (Hν , Hµ) =
δνµ, ∀ν,µ. They form the so-called Wiener chaos (sometimes termed homogeneous
chaos or Hermite chaos). The Cameron-Martin theorem states that the family {Hν}
so defined forms an orthonormal basis of the space L2(Ω, dP ) of the second order
random variables over a Gaussian space. The precise result is as follows.

Theorem 5.1 Let Φ ∈ L2(Ω, dP ) and let Φν = E [ΦHν ] for any finite ν. Then,
Φ =

∑
ν finite ΦνHν in L2(Ω, dP ).

This means, for instance, that we have E
[(

Φ−∑
|ν|≤N ΦνHν

)2
]
→ 0 as N →∞.
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The Cameron-Martin theorem states that Φ(ω) = ϕ(Y(ω)), where ϕ : RN0 → R
is formally defined as ϕ(y) =

∑
ν finite ΦνHν(y). In many situations of interest, Φ

will be possible to express using a finite number of random variables Yk(ω), say using
YK(ω) := (Y1(ω), . . . , YK(ω)); then, Φ(ω) = ϕ(YK(ω)) with ϕ : RK → R defined as
ϕ(y) =

∑
ν∈NK ΦνHν(y) for y ∈ RK and satisfying

1

(
√

2π)K

∫

RK

ϕ2(y) e−yT y/2dy < +∞.

Thus, for our variable Φ, the condition Φ ∈ L2(Ω, dP ) is equivalent to ϕ ∈ L2
%(RK),

where the weight function % is defined as %(y) = 1
(
√

2π)K e−yT y/2. The variable y

will be termed the stochastic variable, whereas the spatial variables x and s will be
referred to as the deterministic variables.

So far, we have focussed on Gaussian random variables. Similar representations
can be given for second order random variables over other probabilistic spaces ad-
mitting a density function. The system of orthonormal polynomials which gives rise
to a generalized polynomial chaos, similar to the Wiener chaos, is determined by the
density function; for instance, the uniform density obviously leads to the Legendre
polynomials. We refer to [4] for more details.

In general terms, a second order random variable Φ depending on a finite num-
ber K of mutually independent real random variables Y1(ω), . . . , YK(ω) with zero
mean and unit variance with respect to a density function ρ, can be represented as

Φ(ω) = ϕ(YK(ω)), YK(ω) := (Y1(ω), . . . , YK(ω)), (1)

where ϕ = ϕ(y) satisfies ϕ ∈ L2
%(I): here, I = IK , where I is the interval of the

real line on which ρ is defined, and %(y) =
∏K

k=1 ρ(yk). Since L2
%(I) =

⊗K
k=1 L2

ρ(I),
a natural orthonormal basis {ψν}ν∈NK in this space is provided by the tensor product
of a one-dimensional family of orthonormal functions {ψn}n∈N in L2

ρ(I); we assume
that these functions are algebraic polynomials, as it occurs in the most relevant
situations.

6. The deterministic formulation of
(P̂S

)

We go back to the stochastic formulation
(P̂S

)
. We assume that the boundary

Γ (ω) of D(ω) depends on ω via K mutually independent real random variables
Y1(ω), . . . , YK(ω) with zero mean and unit variance with respect to a density function
ρ defined on some interval I ⊆ R. Let YK(ω) and % be defined as above. Since we
assumed in Section 4 that Γ (ω) = γ0(ω)(Γ0), equation (1) easily yields γ0(ω) =
γ∗0(YK(ω)), where γ∗0 = γ∗0(y) is a family of C1,p(Γ0)-mappings defined in I = IK ,
with inverses γ∗0(y)−1 in C1,p(Γ ∗(y)). Thus, Γ ∗(y) = γ∗0(y)(Γ0) is a parametrization
of the set of the admissible boundaries of the stochastic domains D(ω).

Since û and λ depend on ω only through Γ (ω), the Doob-Dynkin lemma assures
that this dependence takes place via YK(ω), i.e., we have û( · , ω) = û∗( · ,YK(ω))
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and λ( · , ω) = λ∗( · ,YK(ω)), where û∗( · ,y) ∈ H1
0 (D̂) and λ∗( · ,y) ∈ H−1/2(Γ ∗(y)),

a.e. in I. Condition û ∈ L2(Ω, dP ; H1
0 (D̂)) is then equivalent to û∗ ∈ L2

%(I; H
1
0 (D̂));

similarly, λ ∈ L2(Ω, dP ; H−1/2(Γ )) is equivalent to λ∗ ∈ L2
%(I; H

−1/2(Γ ∗)) (with
obvious meaning of the notation).

We now recall the formula E [Φ] =
∫
I
ϕ(y)%(y) dy which holds for all random

variables Φ(ω) = ϕ(YK(ω)) with ϕ ∈ L1
%(I). By applying this formula several times,

we transform the stochastic problem
(P̂S

)
into the following deterministic problem:

Find û∗ ∈ L2
%(I; H

1
0 (D̂)) and λ∗ ∈ L2

%(I; H
−1/2(Γ ∗)) such that





∫
I

∫
D̂∇û∗ · ∇v∗ dx %(y) dy+

∫
I〈λ∗, τv∗〉Γ ∗(y)%(y) dy =

∫
I

∫
D̂ fv∗ dx %(y) dy,

∀v∗ ∈ L2
%(I;H

1
0 (D̂)),

∫
I〈µ∗, τ û∗〉Γ ∗(y)%(y) dy = 0, ∀µ∗ ∈ L2

%(I; H
−1/2(Γ ∗)).

(P̂D
)

7. Discretization of the deterministic formulation

Discretization is accomplished by standard mixed finite elements in the physical
variables as in Section 3 and a Galerkin projection method with numerical integration
(which coincides with a collocation scheme) in the stochastic variables. Thus instead
of solving very large algebraic saddle-point system resulting from the discretization
of

(P̂D
)
, we will solve n deterministic problems

(P̂)
for n different configurations of

the stochastic domain D(y), where n is the number of Gauss (collocation) points yq.
We can simply parallelize all computations. For more details see [2], where a stability
and convergence analysis of the method have been presented. We showed that, in
any subdomain that does not contain the random boundaries, the convergence is
“spectral” in the polynomial chaos order.

8. Numerical examples

In this section, we illustrate the efficiency of our approach on a model example
with nonhomogeneous Dirichlet boundary condition for which we do not know an
analytic solution. Therefore basic Monte Carlo (MC) simulation without using any
special optimization technique is used to validate the result.

Example 1. Let D̂ := (0, 1) × (0, 1) be the fictitious domain. Let y = (y1, y2) be
a stochastic vector variable, associated with two independent normal distributions
Yk ∼ N [y, σ], k = 1, 2, with y = (a + b)/2, σ = (b− a)/8; the density function ρ(yk)
is truncated from R to the interval I = [a, b], a = 0.25 and b = 0.35. In a polar
coordinate system centered at x0 = (0.5, 0.5), consider the control points Ck, k =
0, . . . , 15, whose angles are ϕk = kπ/8 and whose radii are constant, rk = 0.3, except
for k = 5 and k = 6: for these control points, the radii are given by the variables y1

and y2, respectively (see Figure 1). The boundary Γ (y) is obtained by connecting
the control points via a piecewise Bèzier curve of the second order, identified by the
Bèzier triples (Mk, Ck+1,Mk+1), with Mk = (Ck + Ck+1)/2 for k = 0, . . . , 15 and
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C16 = C0, M16 = M0. All possible configurations of the stochastic domain D(y) are
obtained by moving the control nodes C5 and C6 along the depicted lines.

We consider the problem{ −4u(x,y) = 60 in D(y), u(x,y) = g on Γ (y),
(P(y)

)

where g(ϕ) = 0, ϕ ∈ [−π, 0] and g(ϕ) = 1− cos(2ϕ), ϕ ∈ (0, π).
Figures 2 and 3 provide comparisons between the results produced by basic Monte

Carlo (MC) simulation, for different numbers of trials N , and second order Polyno-
mial Chaos (PC) results, obtained by solving 9 independent deterministic problems.
The results are depicted along the line L = {(x1,

1
2
)| x1 ∈ [0, 1]}. The two vertical

dot and dash lines bound the domain D(y) which is fixed in this cross-section for all
y ∈ I2. While the Monte Carlo approximation of the mean value is good already for
moderate numbers of trials, an acceptable approximation of the variance is obtained
only with a number of trials in the order of several hundreds.

For more examples and deeper understanding we refer to [2].

Fig. 1: Geometry of
D(y).
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