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LINEAR STABILITY OF EULER EQUATIONS
IN CYLINDRICAL DOMAIN∗

Libor Čermák

Abstract
The linear stability problem of inviscid incompressible steady flow between two

concentric cylinders is investigated. Linearizing the transient behavior around a steady
state solution leads to an eigenvalue problem for linearized Euler equations. The dis-
crete eigenvalue problem is obtained by the spectral element method. The algorithm is
implemented in MATLAB. The developed program serves as a simple tool for numeri-
cal experimenting. It enables to state rough dependency of the stability on various
input velocity profiles.

1. Flow equations in the rotating cylindrical coordinate system

The inviscid incompressible flow in the cylindrical coordinate system (r, ϕ, z) ro-
tating about the z-axis with the angular velocity Ω0 is described by Euler equations
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Here, wr, wϕ, and wz are radial, circumferential and axial velocities, p is the pressure,
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is the material derivative and % is the density. The continuity equation
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must be fulfilled as well. Equations (1)–(3) are presented, for example, in [1]. The
problem is solved in the domain Q between two coaxial cylinders,

Q = {(r, ϕ, z) | 0 < R1 ≤ r ≤ R2, 0 ≤ ϕ < 2π, 0 ≤ z ≤ L} , (4)

where S1 = Q ∩ {z = 0} and S2 = Q ∩ {z = L} are the pipe inlet and outlet,
respectively, Γ1 = Q∩ {r = R1} is the liquid-gas interface and Γ2 = Q∩ {r = R2} is
the pipe wall.
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2. Linear stability

Let us suppose that the steady base flow is axially symmetric, described by
functions w0r(r, z), w0ϕ(r, z), w0z(r, z), and p0(r, z) and by corresponding boundary
conditions. To investigate the stability of the base flow to disturbances, equations
that govern the evolution of these perturbations are required. To this end, the base
flow is perturbed by disturbance velocities and pressure, i.e.

(wr, wϕ, wz, p) = (w0r, w0ϕ, w0z, p0) + ε(vr, vϕ, vz, σ) , (5)

and we examine, whether (wr, wϕ, wz, p) → (w0r, w0ϕ, w0z, p0) for t → ∞. If we
substitute from (5) into (1), (3), use the fact that the stationary flow functions w0r,
w0ϕ, w0z, p0 satisfy those equations, and if we neglect terms containing ε2, we obtain
linearized Euler equations
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and the continuity equation
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Boundary conditions are

vr = vϕ = vz = 0 on S1, σ = 0 on S2, vr = 0 on Γ2. (8)

We consider two types of boundary conditions on Γ1:

(a) if the surface tension effect is not taken into account, zero pressure is described,

σ = 0 on Γ1 ; (9)

(b) if the surface tension effect is taken into account, we proceed in accordance with
the ideas derived in [7] and [8]: we introduce the radial displacement ∆(ϕ, z, t)
of the boundary Γ1 and demand fulfillment of the impermeability equation
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the Young-Laplace equation
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where σp is the surface tension coefficient, and the initial condition

∆ = 0 on Γ1 ∩ S1 . (12)

The stability problem consists in verifying whether

(vr, vϕ, vz, σ, ∆) → (0, 0, 0, 0, 0) for t →∞. (13)

If the condition (9) is prescribed on the boundary Γ1, we set ∆ = 0 in (13).

3. The eigenvalue problem

Let I =
√−1 be the imaginary unit and n be a positive whole number (so-called

azimuthal wave number). Using the transformation

(vr, vϕ, vz, σ, ∆) = eλt+Inϕ(ur, uϕ, uz, h, δ), (14)

we exclude the time t as well as the coordinate ϕ and obtain the eigenvalue problem
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Here, λ is an eigenvalue and ur, uϕ, uz, and h are eigenfunctions (so-called normal
modes) in variables r and z defined on the rectangle

D = {(r, z) | 0 < R1 ≤ r ≤ R2, 0 ≤ z ≤ L} . (19)

The case n = 0 corresponds to the rotationally symmetric flow. If we take into
consideration the influence of the surface tension, we add moreover equations

λδ(z) + w0z(R1, z)δ′(z)− ur(R1, z) = 0 , (20)
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where δ(z), z ∈ 〈0, L〉, is a function defined on the edge r = R1 of the domain D.
Boundary conditions are

ur = uϕ = uz = 0

ur = 0

h = 0

on

S1 ∩D ,

Γ2 ∩D ,

S2 ∩D .

(22)

If we do not consider surface tension influences, then the additional boundary con-
dition is

h = 0 on Γ1 ∩D , (23)

whereas in case, when the surface tension is considered, we have, besides equa-
tions (20), (21), the additional condition

δ = 0 for z = 0 . (24)

The stability, expressed by the relation (5), occurs if and only if all eigenvalues
of the problem (15)–(24) have negative real parts.

4. The discretization by the spectral element method

The approximate finite-dimensional eigenvalue problem is obtained by the spec-
tral element method, see e.g. [2], [6], [4]. Let us explain in brief how the approximate
eigenvalue problem can be obtained.

The rectangle D is divided into nr × nz concurrent rectangular elements Dij,
i = 1, 2, . . . , nr, j = 1, 2, . . . , nz, with side lengths dr = (R2 −R1)/nr and dz = L/nz

in the discretization of the r-axis and z-axis, respectively. All quantities ur, uϕ, uz,
h, w0r, w0ϕ and w0z are approximated by continuous piecewise polynomial functions,
which are on every element Dij polynomials of degree N uniquely determined by
their values at nodes of the Gauss-Legendre-Lobatto (GLL) product quadrature for-
mula of order 2N − 1, see e.g. [6]. If the surface tension is considered, δ is similarly
approximated by a continuous piecewise polynomial function, which is on every ele-
ment D1j polynomial of degree N uniquely determined by its values at nodes of the
GLL quadrature formula.

Further, the variational formulation is derived. Let ψr, ψϕ, ψz and ψh be test
functions of the same type as corresponding piecewise polynomial approximations of
ur, uϕ, uz, and h. Equations (15), (16), (17), and (18) are multiplied by ψr, ψϕ, ψz

and ψh and integrated over the domain D. The integral over the whole domain is
expressed as a sum of integrals over individual elements Dij and every from those
integrals is computed by the GLL product quadrature formula. Variational forms
connected with equations (20) and (21) are obtained similarly.

If we sum all equations and arrange unknown and free parameters in column
vectors u and ψ, respectively, we obtain

ψT (λB−A)u = 0 ,
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and as the vector ψ is arbitrary, we arrive at the generalized eigenvalue problem

Au = λBu . (25)

The matrix A is regular, nonhermitian, real for n = 0 and complex for n > 0.
The matrix B is diagonal and singular: diagonal coefficients corresponding to equa-
tions (18) and (21) are equal to zero, remaining diagonal coefficients are real and
positive. Infinite eigenvalues have no influence on the stability examination and
therefore we ignore them.

5. Numerical experiments

Example 1. Let us consider a hypothetical flow of water as if it was a solid body
movement, set

R1 = 0.015 [m] R2 = 0.15 [m]

L = 0.5 [m] % = 103 [kg ·m−3]

σp = 0.073 [N ·m] n = 0, 1, 2, 3

(26)

w0r = 0, w0ϕ = 0, w0z = C0 = const. and experiment with values of C0 ≥ 0, Ω0, nr,
nz, and N . The flow of this type is stable and numerical results have confirmed this.

Remark. Through numerous numerical tests based on the data (26) we have found
that the effects of surface tension are negligible. It is a good message saying that
a steady state solution can be computed using any CFD software (whereas consi-
dering surface tension influences do not belong to standard equipment of commercial
CFD software, setting the pressure on the boundary is a quite common instrument).

Example 2. We consider the case when the stationary velocity in the radial and
axial direction are constant, w0r = 0, w0z = C0 ≥ 0, and the circumferential velocity
is a function of the radial variable r,

w0ϕ = r(ae−r/b − Ω0) . (27)

Constants a > 0, b > 0 are optional parameters: c0ϕ = w0ϕ + Ω0r = are−r/b

approaches its maximal value for r = b, a influences max |c0ϕ(r)|. We use again the
data (26).

If we set C0 = 0, n = 0 (which means that only axisymmetric perturbations
were permitted) and instead of the boundary condition (23) we demanded ur = 0 for
r = R1, we obtained the stability just when R2 < 2b, which is in coincidence with
the well known Rayleigh’s criterion, see e.g. [5]. Further, an increase of C0 caused
an increase of the stability (i.e. max Re(λ) of all finite λ was decreased).

For C0 = 0, n > 0 we did not obtain the stability for neither a nor b. If C0 was
increased, the stability turned up (for appropriate values of a and b).

Another velocity profiles for c0ϕ = w0ϕ + Ω0r were created interactively. A given
set of discrete points was interpolated by means of a cubic spline and then the
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dependence of the stability on the velocity w0ϕ and parameters C0, Ω0, n, N , nr, nz

was examined. The obtained results fulfilled our expectancy.

Example 3. The steady state flow velocities w0r, w0ϕ, and w0z were computed by
the CFD package FLUENT with the data R1 = 0.015, R2 = 0.15, L = 1, % = 103

and with the boundary conditions

on the inlet z = 0 : w0r = 0, w0ϕ = r(7.5e−r/0.05 − 5), w0z = 1,

on the outlet z = L : p0 = poutlet,

on the interface r = R1 : p0 = pinterface,

on the wall r = R2 : w0r = 0.

Here, poutlet and pinterface are the constant pressure invoking cavitating vortex rope
and the saturated vapour pressure, respectively. The surface tension influences were
not taken into account. The stability examination was performed for the following
parameter values: Ω0 = 5, nr = 4, nz = 1, N = 8, and n = 0, 1, 2. The stability of
the flow, resulting from the transient FLUENT modeling, was confirmed: all finite
eigenvalues had negative real parts.
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