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THREE-DIMENSIONAL NUMERICAL MODEL OF NEUTRON
FLUX IN HEX-Z GEOMETRY∗

Milan Hanuš, Tomáš Berka, Marek Brandner, Roman Kužel, Aleš Matas

Abstract

We present a method for solving the equations of neutron transport with dis-
cretized energetic dependence and angular dependence approximated by the diffusion
theory. We are interested in the stationary solution that characterizes neutron fluxes
within the nuclear reactor core in an equilibrium state. We work with the VVER-1000
type core with hexagonal fuel assembly lattice and use a nodal method for numerical
solution. The method effectively combines a whole-core coarse mesh calculation with
a more detailed computation of fluxes based on the transverse integrated diffusion
equations. By this approach, it achieves a good balance between accuracy and speed.

1. Multigroup diffusion theory

The set of steady-state neutron diffusion equations for G energy groups (the
discrete ranges of neutron energies) can be written as follows:

∇ · jg(r) + Σg
r(r)φ

g(r) =
G∑

g′=1
g′ 6=g

Σg′→g
s (r)φg′(r) +

χg

keff

G∑

g′=1

νΣg′
f (r)φg′(r). (1)

According to the usual notation,

r = (x, y, z) is the spatial variable,
g = 1, 2, . . . , G denotes the energy group,

φg is the neutron flux in group g (density of neutrons),
jg is the neutron current in group g (flow of neutrons in specific

direction),
Σg

r is the macroscopic removal cross section (characterizing
losses of neutrons in given region and from group g),

Σg′→g
s is the macroscopic cross section characterizing scattering of

neutrons from group g′ into group g,

χgνΣg′
f characterizes the average number of neutrons that appear

in group g due to fission induced by group g′ neutrons,
keff is the reactor critical number.

Each of the G equations in (1) describes local conservation of flux of neutrons having
energy within the respective group. We specifically consider a two group model in
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which the energy threshold separating the groups is chosen such that χ1 = 1, χ2 = 0,
and Σ2→1

s ≡ 0 (for a physical explanation, see [3]).
Diffusion theory specifies the constitutive relation between neutron flux and neu-

tron current by the Fick’s law:

jg(r) = −Dg(r)∇φg(r), (2)

where Dg is the diffusion coefficient. Robin conditions apply on core boundary:

γgφg(r)− jg(r) · n = 0, γg =
1− αg

2(1 + αg)
, r ∈ ∂Ω, (3)

where n denotes the unit outward normal to the boundary ∂Ω at point r and physical
properties of core surroundings are captured by the albedo coefficient αg.

There is only one value of parameter keff for which the boundary value prob-
lem (1)–(3) admits a physically realistic solution ([4]). Physicists refer to this value
as to the reactor critical number since it shows the deviation of the steady state of
the core from its critical state (i.e. one in which there is a perfect balance between
production and losses of neutrons). Mathematically, it is the largest eigenvalue of the
problem and the corresponding eigenfunction, uniquely determined up to a multiple,
represents the physical flux solution.

2. Nodal method

A proven numerical method for solving problems arising from conservation laws
is the finite volume method (FVM). In order to obtain a computationally efficient
number of discrete equations, each finite volume (here called node) is identified with
a section of a real fuel assembly loaded into the core lattice. Extents of the node
equal to full assembly width and height hz such that Hz = Mhz, where Hz is the total
height of the core, and M a chosen number of its horizontal cuts. Nodal geometry
is displayed in Fig. 1 and has the following metric properties:

` =
h√
3
, F = `hz, B =

h2
√

3

2
, V = Bhz,

where B is the area of the nodal base, F the area of the other faces and V the nodal
volume. Denoting by N the number of assemblies and by Vi individual nodes, the
core domain is thus discretized as Ω =

⋃NM
i=1 Vi. To each node we further associate

a local coordinate system by unit vectors ex, eu, ev, ez as shown in Fig. 1. Finally,
we refer by symbols Vi+ξ and Vi−ξ to nodes adjacent to the reference node Vi to
the right and left, respectively, with respect to coordinate direction ξ ∈ {x, u, v, z}.
Their common face is denoted by Fi,ξ±, i.e. Fi,ξ± = Vi ∩ Vi±ξ.

The equation expressing the local balance of group g of neutrons in node Vi can
be formally obtained by integrating eq. (1) over Vi, dividing by its volume and using
the divergence theorem (for a rigorous derivation, see e.g. [3]):
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Fig. 1: Geometry of node Vi.

F

V

∑

ξ∈{x,u,v}

(
¯̄g
i,ξ+− ¯̄g

i,ξ−
)
+

B

V

(
¯̄g
i,z+− ¯̄g

i,z−
)
+Σg

i,r
¯̄̄
φg

i =
2∑

g′=1
g′ 6=g

Σg′→g
i,s

¯̄̄
φg′

i +
χg

keff

2∑

g′=1

νΣg′
i,f

¯̄̄
φg′

i . (4)

The discrete unknowns in this equation are the node-averaged neutron fluxes :

¯̄̄
φg

i :=
1

V

∫∫∫

Vi

φg(r) dr ,

and the 6 face-averaged radial and 2 base-averaged axial neutron currents, respec-
tively:

¯̄g
i,ξ± :=

1

F

∫∫

Fi,ξ±
jg(r) ·eξ dF , for ξ ∈ {x, u, v}, and ¯̄g

i,z± :=
1

B

∫∫

Fi,z±
jg(r) ·ez dF .

We assume that physical properties of each fuel assembly are homogeneous, thus
justifying the spatially constant Σ terms.

2.1. Coarse mesh, finite difference (CMFD) approximation

The standard FVM relation between discrete flux and current is obtained by
replacing the flux derivative in eq. (2) by finite difference (FD) expressions and is
thus usable only for small nodal sizes. The modification appropriate for relatively
large nodal sizes characteristic for efficient reactor core models is called nodal method.
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It is based on the following approximation of discrete average currents at interfaces
Fi,ξ+ and Fi,ξ−, respectively:

¯̄Jg
i,ξ+ := −Dg

i,ξ+(
¯̄̄
Φg

i+ξ − ¯̄̄
Φg

i

)
+ CDg

i,ξ+

( ¯̄̄
Φg

i +
¯̄̄
Φg

i+ξ

)
, Dg

i,ξ+ :=
2Dg

i D
g
i+ξ

hξ

(
Dg

i + Dg
i+ξ

) ,

¯̄Jg
i,ξ− := −Dg

i,ξ−
( ¯̄̄
Φg

i − ¯̄̄
Φg

i−ξ

)
+ CDg

i,ξ−
( ¯̄̄
Φg

i−ξ +
¯̄̄
Φg

i

)
, Dg

i,ξ− :=
2Dg

i−ξD
g
i

hξ

(
Dg

i−ξ + Dg
i

)
(5)

(as a convention, capital letters will denote approximations of corresponding lower-
case quantities, e.g. ¯̄Jg

i,ξ+ ≈ ¯̄i,ξ+). At core boundary, i.e. if Fi,ξ± ⊂ ∂Ω, expressions
obtained by analogous discretization of the boundary condition (3) are used instead:

¯̄Jg
i,ξ± := Dg

i,ξ±
¯̄̄
Φg

i + CDg
i,ξ±

¯̄̄
Φg

i , Dg
i,ξ± := ± 2Dg

i γξ

hξγξ + 2Dg
i

, γg
ξ :=

1− αg
ξ

2(1 + αg
ξ)

. (6)

Different albedoes are defined for radial and axial boundaries which results in γξ = γrad

for ξ ∈ {x, u, v} and γz = γax. Also note that hx = hu = hv ≡ h.
This so called CMFD approximation alters the standard FD expressions by adding

a term containing the coupling correction factor CDg. This factor accounts for the
coarse mesh spacing by forcing the rough estimate of current to match a more ac-
curate value obtained by some appropriate refining calculation. We describe one
possible method for getting such higher-quality solution in Section 2.2.

By inserting the CMFD expressions (5) or (6) into eq. (4), we obtain the following
numerical approximation of the discrete balance relation for node Vi and group g:

2

3

∑

ξ∈{x,u,v}

¯̄Lg
i,ξ + ¯̄Lg

i,z + Σg
i,r

¯̄̄
Φg

i =
2∑

g′=1
g′ 6=g

Σg′→g
i,s

¯̄̄
Φg′

i +
χg

Keff

2∑

g′=1

νΣg′
i,f

¯̄̄
Φg′

i , (7)

where ¯̄Lg
i,ξ :=

¯̄Jg
i,ξ+− ¯̄Jg

i,ξ−
hξ

is the neutron leakage term expressing the average net neu-

tron current through faces orthogonal to direction ξ. Using the lexicographic ordering
of nodes inside the core, a matrix formulation follows:

[
L1 + CD1 + ΣΣΣ1

r 0
−ΣΣΣ1→2

s L2 + CD2 + ΣΣΣ2
r

]

︸ ︷︷ ︸
M

·
[

¯̄̄
ΦΦΦ1

¯̄̄
ΦΦΦ2

]

︸ ︷︷ ︸
¯̄̄
ΦΦΦ

=
1

Keff

[
νΣΣΣ1

f νΣΣΣ2
f

0 0

]

︸ ︷︷ ︸
F

·
[

¯̄̄
ΦΦΦ1

¯̄̄
ΦΦΦ2

]

︸ ︷︷ ︸
¯̄̄
ΦΦΦ

, (8)

where
¯̄̄
ΦΦΦg is a vector of NM average fluxes in group g, Lg and CDg are matrices

of finite-difference and correction factors, and ΣΣΣg
r , ΣΣΣg

f , ΣΣΣ1→2
s are diagonal matrices of

reaction cross sections. All matrices are sparse of order NM .
Being a discrete analogue of the eigenvalue problem (1)–(3) for the neutron dif-

fusion operator, eq. (8) expectedly constitutes a matrix eigenvalue problem. We also
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expect the same behaviour of its eigensolutions which allows us to use the standard

power method for calculating the largest eigenvalue Keff and the eigenvector
¯̄̄
ΦΦΦg of

average nodal fluxes. The actual implementation of this so called CMFD iteration
consists of two levels – the outer source iteration advancing the eigenvalue approxi-
mation as in the classical power method and the inner calculation of the fluxes vector
according to eq. (8) with a fixed right-hand side.

2.2. Refinement of the CMFD approximation

After a few eigenvalue updates, the CMFD iteration is interrupted to refine
the iteration matrix by determining new correction factors. For this purpose, one-
dimensional diffusion equations are formed for each direction eξ by performing the
transverse integration procedure. For a chosen node Vi and any of the radial di-
rections, this amounts to integrating eq. (1) over a section slicing through the node
orthogonally to the given direction. To illustrate the procedure for the x-direction,
we integrate the ‘flux version’ of the equation (obtained by inserting (2) into eq. (1))
along the y and z axes and make an average over the cross-section area. This yields
the following 1D diffusion equation (group index will be omitted in this section):

−Di
d2 ¯̄φi(x)

dx2
+ Σi,r

¯̄φi(x) = ¯̄si(x)− ¯̄li(x) (9)

for the unknown transverse-averaged flux :

¯̄φi(x) :=
1

hz

∫ hz/2

−hz/2

1

2yt
i(x)

∫ yt
i(x)

−yt
i(x)

φ(x, y, z) dy dz , (10)

where yt
i(x) = 1/

√
3(h − |x|) represents the radial transverse boundary of the node

(the bold line in Fig. 1). The source term ¯̄si(x) abbreviates the transverse-averaged

right-hand side of eq. (1), whereas the transverse leakage term ¯̄li(x) basically contains
the normal components of neutron currents through transverse boundary faces Fi,u±,
Fi,v± and Fi,z±. Since the CMFD solution provides only the average surface currents
and their spatial dependence is not known until the transverse integrated equations in
the remaining directions are solved, we need to approximate the transverse currents
shapes to establish ¯̄li(x). By inserting (10) into eq. (9) and denoting the cusp of the
boundary function yt

i(x), it becomes clear, however, that we also need to cope with

the singularities that arise in ¯̄li(x) due to the differentiation of yt
i(x) and which form

the other part of the transverse leakage term.
There are currently two approaches to the problem of hexagonal transverse leak-

age approximation investigated at our department. In the first, originally described
in [1], the hexagonal problem is conformally mapped to a rectangular one, effectively
eliminating the source of the singularities. In the other, invented by M.R. Wag-
ner ([5]) and followed in this paper, singular terms in ¯̄li(x) are neglected. This

gives the approximation ¯̄Li(x) ≈ ¯̄li(x) which transforms eq. (9) into an approximate
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equation. We then seek its solution ¯̄Φi(x) ≈ ¯̄φi(x) so that the 1D problem remains
consistent with the original 3D one in the sense of preserving the nodal averages of
approximated quantities:

1

V

∫ h/2

−h/2

2yt
i(x)hz

¯̄Φi(x) dx =
¯̄̄
Φi,

1

V

∫ h/2

−h/2

2yt
i(x)hz

¯̄Li(x) dx =
¯̄̄
Lyz

i . (11)

Average nodal leakage
¯̄̄
Lyz

i through faces intersecting the y and z axes is obtained
by integrating the 1D diffusion equation from −h/2 to h/2 and comparing the result
with the original 3D eq. (7). This leads to:

¯̄̄
Lyz

i :=
2

3
( ¯̄Li,u + ¯̄Li,v)−

1

3
¯̄Li,x + ¯̄Li,z. (12)

It is reasonable to assume that spatial variation of the transverse leakage function
¯̄Li(x) is determined by the leakages through the transverse boundaries, i.e.

¯̄Li(x) = f t,rad
i (x)− 1

3
¯̄Li,x, (13)

where the shape function f t,rad
i (x) involves only ¯̄Li,u,

¯̄Li,v,
¯̄Li,z and the second term

ensures the consistency, whatever singularities the exact function ¯̄li(x) may contain.
Transverse integration in the axial direction leads to a z-direction diffusion equa-

tion formally identical to eq. (9). The transverse-averaged flux is now defined as

¯̄φi(z) :=
1

B

∫ h/2

−h/2

∫ yt
i(x)

−yt
i(x)

φ(x, y, z) dy dx

and hence the transverse leakage term comprises only currents through faces orthog-
onal to the horizontal cross-section of the node. The approximate neutron balance
relation may then be formally obtained by replacing ¯̄φi(z) and ¯̄li(z) in the axial ver-
sion of eq. (9) with their approximations ¯̄Φi(z) and ¯̄Li(z), respectively. They are
again constructed so as to make the 1D and 3D equations consistent:

1

hz

∫ hz/2

−hz/2

¯̄Φi(z) dz =
¯̄̄
Φi,

1

hz

∫ hz/2

−hz/2

¯̄Li(z) dz =
¯̄̄
Lxy

i :=
2

3

∑

ξ∈{x,u,v}

¯̄Li,ξ (14)

Introducing the axial transverse profile function f t,ax
i (z) correspondingly to the radial

case, we have ¯̄Li(z) = f t,ax
i (z) since there are no singularities in ¯̄li(z).

The simplest transverse profile function can be obtained by assuming a non-
varying (flat) transverse leakage throughout the node, i.e. f t,rad

i (x) := 2
3
( ¯̄Li,u + ¯̄Li,v)

+ ¯̄Li,z and f t,ax
i (z) :=

¯̄̄
Lxy

i . This approximation can be improved by taking into
account the transverse leakages of two adjacent nodes Vi−x, Vi+x and considering
the consistency conditions for ¯̄Li(x) also in their respective intervals. Assuming
a parabolic transverse leakage profile, these three conditions form a system of three
algebraic equations for the parabola’s coefficients. Restriction of the resulting poly-
nomial to [−h/2, h/2] then defines f t,rad

i (x). An analogous approach is used in the
axial direction.
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2.3. Solution procedure

Equations (9) are cast into a group-matrix form and solved for both groups
simultaneously by a semi-analytic method, first in the radial directions. Right-hand
sides of the equations are defined using the results of the latest finished CMFD
iteration. The algorithm sweeps through all pairs of nodes in given radial plane and
direction, using the interface flux and current continuity conditions and the weighted
residual method to solve the approximate 1D diffusion equations. The solution is
expressed in terms of the face-averaged radial currents. Once these currents are
known for all nodes in all planes, they are used to specify the transverse leakage term
on the right-hand sides of the z-direction equations. Base-averaged axial currents
can then be determined in the same manner (see [3] or [2] for further details). CMFD
correction factors are finally obtained from eq. (5), (6) by equating their right-hand
sides to the high-accuracy currents from the radial and axial sweeps. This completes
the two-node subdomains solution and specifies new elements of the CDg matrices,
which in turn update the CMFD iteration matrix M (cf. eq. (8)). Another few
CMFD iterations advancing the eigensolution are then performed and again followed
by refinement sweeps. This procedure is repeated as long as the CMFD matrix
changes considerably after each refining step.

The converged vector of node average fluxes may be analysed in various ways.
Specifically for the benchmark problem presented in Section 3, we need the average
nodal powers normalized to the average power of the whole core:

¯̄̄
Pi :=

1

P

(
νΣ1

i,f
¯̄̄
Φ1

i + νΣ2
i,f

¯̄̄
Φ2

i

)
, i = 1, 2, . . . , NM ; P :=

1

NM

NM∑
j=1

(
νΣ1

j,f
¯̄̄
Φ1

j + νΣ2
j,f

¯̄̄
Φ2

j

)
,

and the axial offset, defined as the percentage difference between the average power
generated in the upper and the lower halves of the core.

3. Numerical tests and conclusions

We tested the developed method by “Benchmark problem no. 6” from [1]. The
investigated VVER-1000 type core is 200 cm high and has 163 fuel assemblies with
radial pitch of 23.6 cm. As in [1], we divided the core into 10 axial layers, i.e. the
height of each node was hz = 20 cm. The calculation was finished by convergence of
correction factors, indicated in step s by

∥∥CD(s) − CD(s−1)
∥∥
∞ < ε = 10−6.

Table 1 shows deviations of the results from those of a fine-mesh finite-difference
method DIF3D (reference is given in [1]), measured as the maximum and root mean

square errors in average nodal powers (∆
¯̄̄
Pmax and ∆

¯̄̄
Prms, resp.), error in axial offset

(∆AO), and error in critical number (∆Keff). The table compares four versions of
the method based on four combinations of transverse leakage approximation with
two versions of the ANC code presented in [1]. ANC-HW uses Wagner’s approach
to hexagonal transverse leakage (as do we in this paper) while ANC-HM uses the
conformal mapping technique. Neither of the ANC methods uses CMFD to advance
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Method † ∆
¯̄̄
Pmax [%] ∆

¯̄̄
Prms [%] ∆AO [%] ∆Keff [pcm=10−5]

rFaF 10.3 4.5 −1.10 156.9
rFaQ 10.1 4.4 −1.15 138.1
rQaF 4.9 1.7 −0.41 7.6
rQaQ 4.7 1.7 −0.48 −12.3

ANC-HW 12.0 N/A‡ 1.17 113.0
ANC-HM 0.9 N/A‡ 0.07 13.0
†) r . . . approx. of f t,rad

i , a . . . approx. of f t,ax
i ; F . . . flat, Q . . . quadratic

‡) result was not available

Tab. 1: Benchmark results.

the global solution, however, and both assume different transverse leakage shapes
than do we in our four schemes.

The results indicate that it is the transverse leakage approximation used in radial
direction that mostly determines the accuracy of results. Quadratic approximation
proves to be superior to the flat one, although when the latter is used in the axial di-
rection (in which the nodes are rectangular), it may give somewhat better core-wise
average results. This results in a slightly better axial offset characterization and,
in the case of sufficiently low maximum flux errors, also in a better critical number
estimate. Either version of our method performs better than the ANC-HW method,
which was developed under the same assumptions based on original Wagner’s ideas,
except for the transverse leakage profile. However, the superior accuracy of the con-
formal mapping technique for flux prediction still remains unmatched. This suggests
that further research into integration of the CMFD and conformal mapping methods
could yield fruitful results.
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