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THE BOX METHOD AND SOME ERROR ESTIMATION∗

Jaroslav Mlýnek

Abstract
This article focuses its attention on practical use of the box method for solving

certain type of partial differential equations. The heat conduction problem of the oil
transformer under stationary load is described by this equation. The knowledge of
the transformer operating temperature is important for ensuring correct functionality
and lifespan of transformer. We consider an elliptic partial differential equation of
second order with the Newton boundary condition on a rectangular domain. The
paper contains description of a numerical solution procedure of the heat problem and
an estimation of local discretization error. The box method is often called the finite
volume method, too. The solution of practical examples are presented as well.

1. Introduction

This paper deals with the stationary heat conduction problem. Our objective is
to solve the problem of the relative transformer screening warming with respect to
cooling oil of the transformer. The classical formulation of the problem is
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in a rectangular domain Ω ⊂ R2 with the Newton boundary condition
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The derivative with respect to conormal in (2) is defined by the relation
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and n = (n1, n2) denotes the unit outward normal to ∂Ω. The unknown function
u denotes the relative warming of the transformer screening with respect to cooling
oil of the transformer, i.e. the difference of temperatures of these two media. We
suppose u ∈ C2

(
Ω̄

)
, functions a11, a22, c, f ∈ C1

(
Ω̄

)
and α, g ∈ C (∂Ω, ), α (s) ≥ 0

on ∂Ω. The coefficients a11 and a22 describe the heat conduction character of the
screening in the x1-axis and x2-axis directions, respectively.

We will describe a numerical solution procedure of the heat conduction problem
model by the box method, local error estimation of the error of this method and
practical examples in the following paragraphs.

∗This work was supported by Project 1M4674788502 of Ministry of Education, Youth and Sports
of the Czech Republic.
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2. Use of the box method

We construct the triangulation τ on the closure of rectangle Ω (X1 ≤ x1 ≤
X2, Y1 ≤ x2 ≤ Y2) in a similar way as if we used the finite element method. We
construct a regular rectangular mesh with increments h1 = (X2 − X1)/p and h2 =
(Y2 − Y1)/q in the x1-axis and x2-axis direction, respectively, where p and q denote
the number of segments, to which the region is divided in the x1-axis and x2-axis
direction, respectively. A general node has coordinates Vrs = [X1 + rh1, Y1 + sh2],
where r ∈ {0, 1, . . . , p}, s ∈ {0, 1, . . . , q}. The rectangles with vertices defined at
points of mesh create elements of the triangulation τ . We construct a special case
of mesh dual to the mesh τ published in [4, p. 215]. Points Ti, 1 ≤ i ≤ 4, are
midpoints of abscissas defined by the mesh point Vrs and adjacent mesh points.
Then points Si, 1 ≤ i ≤ 4, are intersection points of axes of the abscissas mentioned.
The rectangle corresponds to node Vrs and is given by vertices S1, S2, S3 and S4 thus
creating element brs of the mesh dual to τ (see Fig. 1). If the node Vrs lies on the

Fig. 1: Element brs of the dual mesh corresponding to node Vrs.

boundary of Ω, the element brs is modified in the corresponding way. In particular,
the case when the node Vrs lies at “corner” of Ω is in Fig. 2. The elements brs are
characterized by two conditions: Ω̄ =

⋃
brs, where 0 ≤ r ≤ p, 0 ≤ s ≤ q, and int

brs∩ int bkl = ∅ for Vrs 6= Vkl.
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Fig. 2: Element bpq of the dual mesh corresponding to “corner” node Vpq.

We can transfer the term cu to the right hand side of the equation (1) and
integrate the left and right hand sides over the element brs. Then we get
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Using now Green’s formula on the left hand side of the relation (4), we find that
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Then the relation (4) can be modified to read
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The left hand side of the equation (5) describes the quantity of heat supplied from or
delivered to the boundary of the element brs, the right hand side expresses the waste
heat arising in the element brs. In case of the boundary mesh point Vrs, the equation
of type (5) is modified. Using equations of type (5) at all mesh points Vrs and
applying suitable approximations of derivatives and integrals, we obtain a system of
linear algebraic equations with a band matrix. The solution of this system gives us
the approximation of warming at nodes Vrs of the mesh. Now we will concentrate
on the approximation of equations of type (5) and the local approximation error at
node Vrs.
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Because the element brs is a rectangle, in case of internal element we can use the
approximation (see Fig. 1)

a11 (T1)
∂u (T1)

∂x1

n1 ≈ a11 (T1)
u(Vr+1s)− u(Vrs)

h1

. (6)

With respect to the supposed smoothness of function u, we reach the O(h2
1)-order

error in the approximation (6). Similar approximations can be carried out for
points T2, T3 and T4 in Fig. 1.

We focus now on the boundary element, for example element brq, where 1 ≤ r ≤
p− 1. Using relations (2) and (3), we obtain the expression

a22(Vrq)
∂u

∂x2

(Vrq)n2 = g(Vrq)− α(Vrq)u(Vrq). (7)

In case of the boundary “corner” element (see Fig. 2), we can form an approximation
of the value u(P3) (where the auxiliary point P3 is midpoint of abscissa T3Vpq) from
the values u(Vp−1q) and u(Vpq) using Lagrange’s interpolation polynomial of the first
degree. As we suppose u ∈ C2(Ω̄), the error order of approximation is O(h2

1)
(see [3, p. 64]) and the value

a22(P3)
∂u

∂x2

(P3)n2

can be approximated through the use of the relation (2).
Now we target at the approximation of integrals in equations of type (5). We ap-

ply the midpoint rule to the approximation. If function v ∈ C2
[a, b] then the midpoint

rule gives ∣∣∣∣∣∣

b∫
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)
(b− a)

∣∣∣∣∣∣
≤ M (b− a)3 ,

where M ∈ R (see, for example, [1, p. 178]). In case of the internal element brs, we
use points Ti, 1 ≤ i ≤ 4, as midpoints for the integration over the boundary of the
element brs on the left hand side of the equation (5) . The right hand side of the
equation (5) is approximated in the form

∫

brs

(f − cu) dx ≈ (f(Vrs)− c (Vrs)u(Vrs))h1h2.

In case of the boundary element we use the expressions of type (7) for the approx-
imation of integrals, too. At the boundary “corner” element it is possible to use
auxiliary points of type P3.

Let us set h =max(h1, h2). Applying the above mentioned procedure, we find
that the local approximation error of the equation of type (5) for every element brs

is O(h2), where r ∈ {0, 1, . . . , p}, s ∈ {0, 1, . . . , q}. General questions of the box
method error estimation are solved in [2].
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3. Practical numerical examples

Now we will solve a real-life technical problem of finding the screening warming
with respect to cooling oil of the screening (cooling oil flows around the screening)
by using the above mentioned box method. Transformer screening is warmed in
consequence of existing eddy currents and it is considered in the form of a thin-
walled cylinder. The temperature field is supposed to be rotationally symmetric (see
Fig. 3). Hence, the warming problem can be solved in the screening cross section on
two dimensional untypical closed rectangular domain Ω. Then the equation (1) with
the boundary condition (2) can be written in the form
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with the Newton boundary condition

a11
∂u

∂x1

n1 + a22
∂u

∂x2

n2 + αu = αk(x2 − Y1)

(9)
on the rectangle Ω. As mentioned above,
the solution u represents the warming of
the screening with respect to cooling oil,
a11 and a22 are real values in this case;
q(x1,x2) is the volume density of losses. In
the boundary condition (9), the function α
means the heat transfer coefficient on the
boundary of the domain, a real constant k
allows to express the variable temperature
of oil in the vicinity of the screening in
the x2-axis direction. The equation (8)
with the boundary condition (9) is suit-
able to solve as a 2D problem. The solu-
tion u depends on the functions q(x1, x2)
and α(x1, x2), too. If q depends only on
the variable x2 and α is constant function
on ∂Ω, then this problem can be solved as
a 1D problem. Fig. 3: Crosscut – the position of the

screening in the transformer container.
Example 1
The function q is given by the relation q(x1,x2) = ρ δ2(x1, x2), where ρ is the specific
resistance of the screening material, δ denotes the density of eddy currents. Input
parameters: X1 = 1.273m, X2 = 1.280m, Y1 = 0.000m, Y2 = 1.200m, a11 = 3W/mK,
a22 = 20W/mK, ρ = 0.143× 10−6Ωm, α(x1, x2) = 50W/m2K for x2 6= Y1 = 0m and
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α(x1, x2) = 0W/m2K for x2 = Y1 = 0m, k = 0K/m, the current density δ(x1, x2) is
given by means of 45 values between 0.1158× 106Am−2 and 0.1993× 107Am−2, the
current density at the nodes is computed by means of linear interpolation.

Table 1 lists approximate values of warming at chosen nodes computed by using
the box method. The values of warming u first of all depend on the input values
of function δ. The given values δ(x1, x2) are decreasing in the x1-direction for
the constant value of variable x2. Hence, the computed values of warming u are
decreasing in the x1-axis direction (computed warming u at the nodes with x1 =
1.27416m is slightly higher than at the nodes with x1 = X1 = 1.273m in consequence
of cooling oil).

x2[m] X1 = 1.273m x1 = 1.27416m x1 = 1.27533m X2 = 1.280m
Y2 = 1.200 3.993 4.021 3.965 3.731

1.104 6.333 6.399 6.267 5.807
1.008 7.940 8.014 7.866 7.299
0.912 10.100 10.197 10.003 9.278
0.816 12.311 12.429 12.193 11.311
0.720 12.394 12.483 12.305 11.455
0.624 13.413 13.516 13.310 12.187
0.528 13.445 13.545 13.345 12.418
0.432 13.466 13.570 13.362 12.430
0.336 13.211 13.313 13.109 12.195
0.240 12.957 13.054 12.860 11.967
0.144 12.640 12.725 12.555 11.692
0.048 12.491 12.581 12.401 11.541

Y1 = 0.000 12.289 12.356 12.213 11.378

Tab. 1: The values of the screening warming in K for selected nodes, h1 = 0.0011667m
and h2 = 0.04800m.

Example 2
The volume density of losses q depends on x2 only. Input parameters: X1 = 0.860m,
X2 = 0.868m, Y1 = 0.033m, Y2 = 1.900m, a11 = 3W/mK, a22 = 20W/mK, the vol-
ume density of losses q(x2) is given by means of 36 values between 0.4904×102W/m3

and 0.9348 × 106W/m3, values of the function q at the nodes are computed by
means of linear interpolation, α(x1, x2) = 50W/m2K for x1 6= X2 = 0.868m and
α(x1, x2) = 15W/m2K for x1 = X2 = 0.868m, k = 0K/m.
The volume density of losses q depends only on x2-axis in this example. The com-
puted values of warming u first of all depend on the impute values of function q. The
value of the heat transfer coefficient α(x1, x2) is lower for x1 = X2 than for the other
parts of ∂Ω. Hence, the screening is more cooled on the part of ∂Ω with x1 = X1

than on the part of ∂Ω with x1 = X2. Therefore, computed values of warming u
are a little lower near the part of ∂Ω with x1 = X1 than near the part of ∂Ω with
x1 = X2 in the x1-axis direction. Table 2 lists approximate values of the warming at
chosen nodes computed by using the box method.
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x2[m] X1 = 0.860m x1 = 0.864m x1 = 0.866m X2 = 0.868m
Y2 = 1.900 71.369 74.530 74.640 74.585

1.783 26.997 28.214 28.270 28.242
1.666 6.753 7.056 7.068 7.062
1.550 2.247 2.348 2.352 2.350
1.433 1.736 1.814 1.818 1.816
1.316 3.105 3.244 3.250 3.247
1.200 3.601 3.762 3.768 3.765
1.083 3.144 3.285 3.289 3.287
0.966 2.855 2.983 2.989 2.986
0.850 2.962 3.095 3.101 3.098
0.733 3.457 3.612 3.618 3.615
0.616 3.449 3.602 3.608 3.605
0.500 1.503 1.571 1.575 1.573
0.383 2.319 2.422 2.426 2.424
0.266 2.449 3.604 3.612 3.608
0.150 17.614 18.413 18.451 18.432

Y1 = 0.033 60.035 62.690 62.782 62.736

Tab. 2: The values of the screening warming in K for selected nodes, h1 = 0.002m and
h2 = 0.029167m.
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