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University, Budapest, 1117 Budapest, Pázmány P. s. 1/C, Hungary
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Abstract

Runge–Kutta methods are widely used in the solution of systems of ordinary differ-
ential equations. Richardson extrapolation is an efficient tool to enhance the accuracy
of time integration schemes. In this paper we investigate the convergence of the combi-
nation of any explicit Runge–Kutta method with active Richardson extrapolation and
show that the obtained numerical solution converges under rather natural conditions.

1. Introduction

This paper is concerned with the numerical solution of initial value problems of
the form

y′ = f(x, y), y(a) = η, (1.1)

where y : IR → IRm is the unknown vector function, f : IR× IRm → IRm and η ∈ IRm

is a given initial vector. A solution is sought on the interval [a, b] of x, where a and b
are finite. It is assumed that f satisfies a Lipschitz condition, so that there existst
a unique solution y(x) of (1.1).

Explicit Runge–Kutta methods have the general form

yn+1 = yn + h
m
∑

i=1

biki (1.2)

with

k1 = f(xn, yn), ki = f

(

xn + cih, yn + h
i−1
∑

j=1

aijkj

)

, i = 2, . . . , m, (1.3)
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where bi, ci and aij ∈ IR are given constants. Here, as usual, yn denotes an approxi-
mation to the solution y(xn) of (1.1) at xn.

Richardson extrapolation is a powerful tool to increase the accuracy of some
numerical method. It consists in applying the given numerical scheme with different
discretization parameters (usually, h and h/2) and combining the obtained numerical
solutions by properly chosen weights. Namely, if p denotes the order of the selected
numerical method, wn the numerical solution obtained by h/2 and zn that obtained
by h, then the combined solution

yn =
2pwn − zn
2p − 1

has order p + 1. This method was first extensively used by L. F. Richardson, who
called it “the deferred approach to the limit” [7]. The Richardson extrapolation
is especially widely used for time integration schemes, when, as a rule, the results
obtained by two different time-step sizes are combined.

The Richardson extrapolation can be implemented in two different ways when
one attempts to increase the accuracy of a time integration method. When the active
Richardson extrapolation is used, the improved approximation for a given time layer
is not used in the further computations, while it is used in the computation of the
next approximation when the active Richardson extrapolation is utilized, see [9] in
more detail. These two version of the Richardson extrapolation are also described
in [2], where they are called global and local Richardson extrapolations.

It is not difficult to see that if the passive device is applied and the underlying
method has some qualitative properties (e.g., it is stable / convergent), then the
combined method also possesses property.

However, if the active device is used, then this is not valid anymore: any property
of the underlying method does not imply the same property of the combined method.
Therefore, the active Richardson extrapolation requires further investigation when
a given numerical method is applied. (That is why in the sequel we will focus on
the active version, and so Richardson extrapolation should always understood as
active Richardson extrapolation.) So far the studies have been concerned with the
order of the combined method, see e.g., [5], and its applications, such as air pollution
modelling [4], the Maxwell equations [2] and diffusion-convection equations with large
gradients [1].

During the applications, the investigation of A-stability of the combined method
is of great importance, therefore this issue has been widely investigated in the pre-
vious works. In [4], the stability of the Richardson extrapolation combined with the
backward Euler method and the trapezoidal rule was studied and applied efficiently
in an atmospheric chemistry model. In [9] the stability of the Richardson extrap-
olation combined with the general θ-method was studied in detail. It is important
to emphasize that these papers are concerned with the study of A-stability, which
characterizes the behavior of the numerical method on Dahlquist’s test problem [3],
and on a fixed mesh.
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In this paper we concentrate on the question of convergence, which, according
to our knowledge, has not been investigated, and it was always hiddenly assumed
in the works. Here the question is whether the numerical solution converges to the
exact solution by reducing the step size. As we will see, this requires the property of
the well-known zero-stability. (We remind the reader of the basic difference between
A-stability and zero-stability: the first one gives the characterization of the numerical
method on some fixed mesh, while the second one examines the method on the
sequence of meshes with mesh sizes tending to zero.)

For the proof of the convergence we refer to a fundamental theorem of this subject,
see [6], p. 36, which we cite here. Consider the numerical method written in the
general form

k
∑

j=0

αjyn+j = hΦf (yn+k, yn+k−1, . . . , yn, xn; h), (1.4)

where the subscript f on the right-hand side indicates that the dependence of Φ on
yn+k, yn+k−1, . . . , yn, xn is through the function f(x, y). We impose the following two
conditions on (1.4):

Φf≡0(yn+k, yn+k−1, . . . , yn, xn; h) ≡ 0,

‖Φf (yn+k, yn+k−1, . . . , yn, xn; h)− Φf (y
∗

n+k, y
∗

n+k−1, . . . , y
∗

n, xn; h)‖

≤ M

k
∑

j=1

‖yn+j − y∗n+j‖,



























(1.5)

whereM is a constant. (These conditions are not very restrictive, e.g., the second one
is automatically satisfied if the initial value problem to be solved satisfies a Lipschitz
condition.)

Theorem 1.1. The necessary and sufficient conditions for the method (1.4) to be
convergent are that it be both consistent and zero-stable.

The necessary and sufficient conditions for consistency can be expressed by the first
characteristic polynomial ρ(ζ) =

∑k

j=0 αjζ
j of the method, namely, the method (1.4)

is consistent iff

ρ(1) = 0 (1.6)

and

Φf (y(xn), y(xn), . . . , y(xn), xn; 0)/ρ
′(1) = f(xn, y(xn)), (1.7)

see [6], p. 30.

For the condition of zero-stability we refer to the theorem on p. 35 of the same
book:
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Theorem 1.2. The necessary and sufficient condition for the method (1.4) to be
zero-stable is that it satisfies the root condition, i.e., the roots of ρ have modulus less
than or equal to unity, and those of modulus unity are simple.

Now our task is to write the combination of the explicit Runge–Kutta method and
Richardson extrapolation in the form of (1.4), and show that it possesses (1.5),
(1.6), (1.7) and the root condition of zero-stability.

2. The combined method as a one-step numerical method

The combination of the general explicit Runge–Kutta method with the Richard-
son extrapolation can be constructed in the following steps:

1) Make one step by time step h:

y
(1)
n+1 = yn + h

m
∑

i=1

biki,

k1 = f(xn, yn)

ki = f

(

xn + cih, yn + h
i−1
∑

j=1

aijkj

)

2) Make a step by time step h/2:

yn+ 1

2

= yn +
h

2

m
∑

i=1

bik̃i,

where

k̃1 = f(xn, yn)

k̃i = f

(

xn + ci
h

2
, yn +

h

2

i−1
∑

j=1

aij k̃j

)

.

From the obtained solution make a further step by h/2:

y
(2)
n+1 = yn+ 1

2

+
h

2

m
∑

i=1

bi
˜̃ki,

where

˜̃k1 = f

(

xn +
h

2
, yn+ 1

2

)

˜̃
ki = f

(

xn +
h

2
+ ci

h

2
, yn+ 1

2

+
h

2

i−1
∑

j=1

aij
˜̃
kj

)

.
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By computing a weighed average of the results by using the weights d1 for the solution
obtained by h and d2 for that obtained by h/2 (d1+d2 = 1), the combined numerical
solution reads

yn+1 = d1y
(1)
n+1 + d2y

(2)
n+1 = d1

[

yn + h
m
∑

i=1

biki

]

+ d2

[

yn +
h

2

m
∑

i=1

bi(k̃i +
˜̃ki)

]

.

From this, making use of the equality d1yn + d2yn = yn, we obtain

yn+1 − yn = d1h
m
∑

i=1

biki + d2
h

2

m
∑

i=1

bi(k̃i +
˜̃ki).

So, the function Φf =: ΦRE
f corresponding to the combined method has the form

ΦRE
f (yn, xn; h) = d1

m
∑

i=1

biki +
d2
2

m
∑

i=1

bi(k̃i +
˜̃ki). (2.8)

3. Checking the conditions for consistency and zero-stability

We have seen that the combined method has the form (1.4), where k = 1 (one-
step method), α0 = −1, α1 = 1 and Φf is as under (2.8). As one can easily check,
the first characteristic polynomial of the method is ρ(ζ) = −1 + ζ .

First we show that (1.5) holds under the usual conditions for the IVP. The first

condition follows from the fact that if f ≡ 0, then all the functions ki, k̃i and
˜̃
ki are

identically zero. It remains to check the Lipschitz condition.

It is sufficient to show that ki, k̃i and
˜̃
ki satisfy a Lipschitz condition, provided

that so does f , i.e.,
|f(xn, yn)− f(xn, y

∗

n)| ≤ L|yn − y∗n|.

From the Lipschitz property of f it follows that k1 and k̃1 also satisfy this property
with Lipschitz constant L.
Denote amax = maxi,j |aij|. Then

|ki − k∗

i | =

∣

∣

∣

∣

∣

f

(

xn + cih, yn + h

i−1
∑

j=1

aijkj

)

− f

(

xn + cih, y
∗

n + h

i−1
∑

j=1

aijk
∗

j

)
∣

∣

∣

∣

∣

≤ L

∣

∣

∣

∣

∣

yn + h

i−1
∑

j=1

aijkj − y∗n − h

i−1
∑

j=1

aijk
∗

j

∣

∣

∣

∣

∣

≤ L|yn − y∗n|+ Lh

i−1
∑

j=1

aij|kj − k∗

j |

≤ L

[

|yn − y∗n|+ hamax

i−1
∑

j=1

|kj − k∗

j |

]

.

Assume that k1, k2, k3, . . . , ki−1 all satisfy a Lipschitz condition, i.e.,

|kl − k∗

l | ≤ Ll|yn − y∗n|, l = 1, 2, . . . , i− 1.
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Then

|ki − k∗

i | ≤ L

[

|yn − y∗n|+ hamax

i−1
∑

j=1

|kj − k∗

j |

]

≤ L

[

|yn − y∗n|+ hamax

(

i−1
∑

j=1

Lj

)

|yn − y∗n|

]

≤ L

[

1 + (b− a)amax

i−1
∑

j=1

Lj

]

|yn − y∗n|,

where we used the length of the interval [a, b] as an upper bound for h. So, ki satisfies
a Lipschitz condition with Lipschitz constant Li = L[1+ (b − a)amax

∑i−1
j=1Lj ]. The

constant Li can be expressed by Li−1 as

Li = L

[

1 + (b− a)amax

(

i−2
∑

j=1

Lj + Li−1

)]

= Li−1 + L(b− a)amaxLi−1 = (1 + L(b− a)amax)Li−1.

Consequently, Li = (1 + L(b− a)amax)
i−1L1 = (1 + L(b− a)amax)

i−1L.

Since k̃1 = k1, therefore the same holds for k̃i.

Finally, the Lipschitz property of ˜̃ki follows from that of k̃i, since

|˜̃k1 −
˜̃k∗

1| =

∣

∣

∣

∣

∣

f

(

xn +
h

2
, yn +

h

2

m
∑

i=1

bik̃i

)

− f

(

xn +
h

2
, y∗n +

b− a

2

m
∑

i=1

bik̃
∗

i

)
∣

∣

∣

∣

∣

≤ L|yn − y∗n|+ L
h

2

m
∑

i=1

bi|k̃i − k̃∗

i |

|˜̃ki −
˜̃k∗

i | =|f

(

xn +
h

2
+ θi

h

2
, yn +

h

2

(

m
∑

i=1

bik̃i +
i−1
∑

j=1

aij
˜̃kj

))

−

− f

(

xn +
h

2
+ ci

h

2
, y∗n +

h

2

(

m
∑

i=1

bik̃
∗

i +
i−1
∑

j=1

aij
˜̃k∗

j

))

≤L|yn − y∗n|+ L
b− a

2

(

m
∑

i=1

bi|k̃i − k̃∗

i |+

i−1
∑

j=1

aij |
˜̃kj −

˜̃k∗

j |

)

.

Now we check the conditions of consistency, i.e., (1.6) and (1.7). The first one
is easy to see by substituting ζ = 1 into the first characteristic polynomial ρ(ζ) =
−1 + ζ . Since ρ′(1) = 1, therefore the second condition reduces to the equality

ΦRE
f (y(xn), xn; 0) = f(xn, y(xn)). (3.9)
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For the combined method we have

ΦRE
f (yn, xn; 0) = d1

m
∑

i=1

bif(xn, yn) +
d2
2

(

m
∑

i=1

bi

)

2f(xn, yn)

= (d1 + d2)

(

m
∑

i=1

bi

)

f(xn, yn) = f(xn, yn),

which holds if and only if
∑m

i=1 bi = 1, which is always assumed, because it is required
for the consistency of the underlying Runge–Kutta method.

It remains to show that zero-stability holds for the combined method. According
to Theorem 1.2., the root condition is to be checked. Now the only root of the first
characteristic polynomial ρ(ζ) = −1 + ζ is equal to unity, therefore the combined
method trivially satisfies the root condition, and so the method is zero-stable.

Hence, we have proven the main result of the paper.

Theorem 3.1. Assume that some explicit Runge–Kutta method combined with the
active Richardson extrapolation is applied to problem (1.1), satisfying a Lipschitz
condition. Then the combined method is convergent.

4. Conclusion

In this paper we have shown that the combination of any explicit Runge–Kutta
method with the (active) Richardson extrapolation results in a convergent numerical
method under some rather natural conditions. In the proof we have used the concepts
of consistency and zero-stability.

In the future we plan to investigate the combination of a wider group of methods,
the so-called diagonally implicit Runge–Kutta methods [8] in combination with the
Richardson extrapolation.
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