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Technická 5, 166 28 Prague 6, Czech Republic

janovskd@vscht.cz

Abstract

Our aim is to classify and compute zeros of the quadratic two sided matrix polyno-
mials, i.e. quadratic polynomials whose matrix coefficients are located at both sides
of the powers of the matrix variable. We suppose that there are no multiple terms of
the same degree in the polynomial p, i.e., the terms have the form AjX

jBj , where
all quantities X,Aj ,Bj , j = 0, 1, . . . , N, are square matrices of the same size. Both
for classification and computation, the essential tool is the description of the polyno-
mial p by a matrix equation P(X) := A(X)X+B(X), where A(X) is determined by
the coefficients of the given polynomial p and P, X, B are real column vectors. This
representation allows us to classify five types of zero points of the polynomial p in
dependence on the rank of the matrix A. This information can be for example used
for finding all zeros in the same class of equivalence if only one zero in that class is
known. For computation of zeros, we apply Newtons method to P(X) = 0.

1. Introduction

In papers [4, 5] we have investigated quaternionic polynomials of the one-sided
and the two-sided type. The one-sided type is described by terms of the form ajx

j

or xjaj, whereas the two-sided type is described by terms of the form ajx
jbj , j ≥ 0.

In this paper we will consider matrix polynomials which have matrix coefficients
and a matrix variable as well, i.e. the terms have the form AjX

jBj. All quanti-
ties X, Aj, Bj, j = 0, 1, . . . , N, are square matrices of the same size.

We will use the notation R,C for the field of real and complex numbers, respec-
tively; K will stand for R or C. The set of square matrices over K will be denoted
by Kn×n, where n is the order of the matrix. By I ∈ Kn×n we will denote the identity
matrix, the matrix 0 ∈ Kn×n is the zero matrix.

Since the general task is very complicated, in this paper we will restrict ourselves
to quadratic matrix polynomials without multiple terms of the same degree: for
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given A0, A1, A2, B0, B1, B2 ∈ Kn×n, we consider quadratic polynomial p in the
form

p(X) = A0B0 +A1XB1 +A2X
2B2, where A0B0, A2, B2 6= 0 . (1)

The condition A0B0 6= 0 implies that p(0) 6= 0. The conditions A2, B2 6= 0 imply
that the term with the degree 2 is nonvanishing.

If the matrix X has the property p(X) = 0, we will call X a zero of p.
As an example, let us consider matrices of the order n = 2. In this case the

quadratic matrix polynomial can be formally transformed into a linear system of
four equations (for n = 2, it is true for polynomials of any degree N) and we will
classify the zeros of the polynomial in terms of the rank of the corresponding system.

In general, we transform the quadratic matrix polynomial p into a matrix equa-
tion P(X) := A(X)X+B(X), where A(X) is determined by the coefficients of the
given polynomial p and P, X, B are real column vectors. Then we classify zeros by
the rank of the matrix A. We showed that in general there are five different types
of zeros.

For computation of zeros, we apply Newton’s method to the matrix equation
P(X) = 0.

2. Preliminaries

This section contains basic facts from the theory of matrices. It can be found
e. g. in Horn and Johnson, [2].

Let A ∈ Kn×n. Then χA(z) := det(zI − A) = zn + a
(n)
n−1z

n−1 + · · · + a
(n)
0 is

called the characteristic polynomial of A. Cayley–Hamilton theorem says that the
matrix A annihilates its characteristic polynomial,

χA(A) = An + · · ·+ a
(n)
0 I = 0 . (2)

In particular, for n = 2 we have

A2 − tr(A)A+ det(A)I = 0 .

Let us recall that two matrices A, B of the same order over K are similar if there
is a nonsingular matrix H of the same order such that A = HBH−1.

For fixed A ∈ K
n×n the set of matrices

[A] = {B,B = HAH−1 for all nonsingular H} (3)

is called similarity class of A . The similarity class is finite only for multiples of the
identity matrix: if A = cI, c ∈ K, then [A] = {A} consists only of one element.

There are two special cases of (1) worth mentioning. If we put X := zI ∈ Kn×n,
where z ∈ K, we obtain

p(X) = p(zI) = C0 +C1 z +C2 z
2, Cj = AjBj , j = 0, 1, 2 . (4)

169



If all coefficients have the special form Aj = αjI ∈ Kn×n, Bj = βjI ∈ Kn×n,
γj := αjβj, j = 0, 1, 2, we obtain

p(X) = γ0I+ γ1X+ γ2X
2 . (5)

Both forms have their ranges in Kn×n, see also [7, 3].

Definition The set of matrices

C := {M : M = aI ∈ K
n×n} (6)

is called the center of Kn×n.

Remark In general terms the center of a noncommutative (semi)group G is the set
of all elements, which commute with all elements of G.

If we want to find out whether an element of the center C is a zero of a given
quadratic matrix polynomial p, then, we have to use the form (4), namely

p(zI) = C0 +C1z +C2z
2 = 0 ∈ K

n×n, Cj = AjBj , j = 0, 1, 2 . (7)

This matrix equation separates into n2 standard polynomial equations: Let Cj :=

(c
(j)
kl ), k, l = 1, 2, . . . , n, j = 0, 1, 2. Then (7) is equivalent to a system of n2 equations

c
(0)
kl + c

(1)
kl z + c

(2)
kl z

2 = 0, k, l = 1, 2, . . . , n . (8)

This allows us to assume, that in the sequel we are looking only for solutions X /∈ C.

Lemma Let p be a quadratic polynomial defined by the coefficients Ai,Bi∈Kn×n,
i = 0, 1, 2, and let q be a quadratic polynomial defined by the coefficients H−1AiH,
H−1BiH, i = 0, 1, 2, for a fixed nonsingular matrix H ∈ Kn×n. Then,

p(X) = 0 ⇐⇒ q(H−1XH) = 0. (9)

Proof For the quadratic polynomial q, we have

q(X) =(H−1A0H)X0(H−1B0H)+

+ (H−1A1H)X1(H−1B1H) + (H−1A2H)X2(H−1B2H) =

=H−1
(

A0(HX0H−1)B0 +A1(HX1H−1)B1 +A2(HXH−1)2B2

)

H =

=H−1p(HXH−1)H,

which implies that q(H−1XH) = H−1p(X)H. Or in other words p(X) is similar to
q(H−1XH) and (9) follows.
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3. Quadratic matrix polynomial of order two

Let us assume that all occurring matrices have the order n = 2.
The following recursion was for the first time used by Horn and Johnson, see [2].

Theorem Let X ∈ K2×2 and let χX(z) := z2−tr(X)z+det(X) be its characteristic
polynomial. Then, there are numbers αj, βj, j ≥ 0, such that

Xj = αjX+ βjI for all j = 0, 1, . . . , (10)

where
α0 := 0, β0 := 1,

αj+1 := tr(X)αj + βj,

βj+1 := −αj det(X), j ≥ 0.

In particular,
α1 := 1, β1 := 0,

α2 := tr(X), β2 := − det(X).

If the coefficients of the characteristic polynomial are real, then also all αj, βj are
real for all j.

Proof From the Cayley–Hamilton theorem we have

X2 = tr(X)X− det(X)I . (11)

If we multiply (10) byX and replaceX2 with the right-hand side of the equation (11),
we obtain

Xj+1 = αj(tr(X)X− det(X)I) + βjX = (αjtr(X) + βj)X− αjdet(X)I =

= αj+1X+ βj+1I ,

from which the desired recursion in (10) follows. �

The theorem says that a power Xj, j = 0, 1, . . . , of a matrix X of order 2,
regardless of the power j, can always be expressed as a linear combination of the
matrix X and the identity matrix I.

Remark In general, for a matrix X of order n a power Xj can always be expressed
as an element of the linear hull of matrices Xν−1, Xν−2, . . . , I , where ν is the degree
of the minimal polynomial of X, see [2].

Remark The corresponding iteration given by Pogurui and Shapiro in [9] is three
term recursion, whereas (10) is a two term recursion. Formally, they differ. In
some cases, two term recursions are more stable than the corresponding three term
recursions. For an example, see [8].

We apply formula (11). Then our quadratic polynomial p(X) in (1) has the form

p(X) = A1XB1 + tr(A)A2XB2 +A0B0 − det(X)A2B2 . (12)
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Now, let n ≥ 2 and let X ∈ Kn×n , X := (xj,k), j, k = 1, 2, . . . , n. We define the
operator

col : Kn×n → K
n2

×1 ,

col(X) :=
(

x11, x21, · · · , xn1, x12, x22, · · · , xn2, · · · , x1n, x2n, · · · , xnn

)T
.

In particular for X ∈ K2×2,

X =

(

x11 x12

x21 x22

)

, we have col(X) :=
(

x11, x21, x12, x22

)T
.

Let us note that col is an invertible linear mapping, col : Kn×n −→ Kn2

.
Let A,B,X ∈ Kn×n. Let f be a linear mapping, f : Kn×n −→ Kn×n, defined as

f(X) = AXB , (13)

represented by the Kronecker product in the form

col(f(X)) = (BT ⊗A)col(X). (14)

Applying col to (12) and using (14), we obtain, see also [1],

P(X) := col(p(X)) = M(X)col(X) +N(X), (15)

where

M(X) = (BT
1 ⊗A1) + tr(X)(BT

2 ⊗A2) , (16)

N(X) = col(A0B0 − det(X)A2B2). (17)

Let us remark that both M(X) and N(X) depend on X or more precisely on tr(X)
and det(X). This means, that the matrices M(X) and N(X) are constant on the
equivalence class [X].

Corollary Let P(X) := M(X)col(X)+N(X) = 0. Then all (further) zeros Y of P
in [X] can be determined by solving the linear 4× 4 system

M(X)col(Y) +N(X) = 0. (18)

If the matrix M is nonsingular (we delete the arguments), then there is only one
zero of P in [X]. If the matrix M is the zero matrix, then N = 0 and all matrices
in [X] are zeros of P. If N = 0, then M is singular.

Since the zeros of P are eventually all solutions of the linear system (18), we can
classify them according to the rank of M(X).

Definition Let P(X) := M(X)col(X) +N(X) = 0 and let X 6= aI, a ∈ R. We
say that X is a zero of rank k if rank(M(X)) = k, 0 ≤ k ≤ 4. A zero of rank 0 will be
called spherical zero, a zero of rank 4 will be called isolated zero. If X = aI, a ∈ R ,
the zero will also be called isolated.
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Remark In [5], we have shown that for quaternionic polynomials zeros of all ranks,
zero to four, exist. For the geometrical meaning of the term “spherical zeros” see [10].

As an example, let us have a special quadratic polynomial

p(X) := X2 + α1X+ α0I, α1, α0 ∈ K, α0 6= 0, X ∈ K
2×2, (19)

which according to (12) can also be written as

P(X) = (α1 + tr(X))col(X) + (α0 − det(X))









1
0
0
1









or equivalently p(X) = (α1 + tr(X))X+ (α0 − det(X))I.

Then, there are two cases for all zeros X of p:

1. α1 + tr(X) = α0 − det(X) = 0,

2. α1 + tr(X) 6= 0, α0 − det(X) 6= 0.

All matrices which are not a real multiple of the identity matrix I and obey the
equations of the first case are spherical zeros of the given polynomial, they form an
equivalence class of spherical zeros. And there are no other spherical zeros. Put

X :=

(

x1 x3

x2 x4

)

. (20)

Then all spherical solutions have the form

X :=

(

−α1 − x4 x3

x2 x4

)

,

where x2, x3 are arbitrary and

x4 := −1

2

(

α1 ±
√

α2
1 − 4(α0 + x2x3)

)

.

Let the second case be valid. In this case, there may exist other zeros than spherical
ones, which are of rank four and which must have the form

X = −α0 − det(X)

α1 + tr(X)
I =: aI.

Since det(X) = a2, tr(X) = 2a, we obtain

a :=
1

2

(

−α1 ±
√

α2
1 − 4α0

)

.
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To summarize: Matrix polynomials (19) have always one spherical zero and in addi-
tion two isolated zeros (if α2

1 − 4α0 6= 0) or one isolated zero (if α2
1 − 4α0 = 0). All

in all, p has two or three zeros.

Example Consider the following quadratic polynomial with matrices of order n = 2:

p(X) := X2 −X− I, (21)

i.e.
α1 = −1, α0 = −1, α2

1 − 4α0 = 5 6= 0 . (22)

The matrix polynomial (21) has two isolated zeros

X1 =
1

2

(

1 +
√
5 0

0 1 +
√
5

)

, X2 =
1

2

(

1−
√
5 0

0 1−
√
5

)

and there is also one spherical zero

X3 =

(

1− x4 x3

x2 x4

)

,

where x4 =
1

2
(1±

√
5− 4x2x3) , x2, x3 arbitrary . Let us put, e. g., x2 = x3 = 0. We

obtain

x+
4 =

1

2
(1 +

√
5), x−

4 =
1

2
(1−

√
5) .

Accordingly, for the spherical root X3 we have

X+
3 =

1

2

(

1−
√
5 0

0 1 +
√
5

)

, X−

3 =
1

2

(

1 +
√
5 0

0 1−
√
5

)

.

It is an easy exercise to show that X+
3 and X−

3 belong to the same equivalence class:

PX+
3 P

−1 =
1

2

(

0 1
1 0

)(

1−
√
5 0

0 1 +
√
5

)(

0 1
1 0

)

= X−

3 .

Thus the polynomial p of (21) has altogether three zeros, one spherical and two
isolated ones.

Lemma In order that the quadratic polynomial p, defined in (12), has a spherical
zero, it is necessary that

(BT
1 ⊗A1) = −tr(X)(BT

2 ⊗A2) and A0B0 = −det(X)A2B2 .

Proof It follows directly from the definition of spherical zeros. �

Corollary Let A,B be arbitrary nonvanishing matrices in K2×2. A necessary
condition for spherical zeros to exist is that p has the form

p(X) := AX2B+ α1AXB+ α0AB, AB 6= 0, (23)

for certain α0, α1.
On the other hand, not for each choice of α0, α1 does this lead to spherical zeros.

Remark Polynomials with order two matrices of any degree could be treated in
a similar way as we did it here.
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4. Numerical considerations for finding the zeros

Let us restrict ourselves to quadratic matrix polynomials with n = 2.
We apply Newton’s method to

P(X) := col(p(X)) = 0 , X = (xjk), j, k = 1, 2 ,

i.e. we solve
P(X) +P′(X)S = 0 , col(X) := col(X) + S , (24)

where the matrix P′ is the corresponding Jacobi matrix. The Jacobi matrix P’ can
be found explicitly in a very simple way by using a technique described in [6], without
employing partial derivatives.

In the following example, the computations were carried out with MATLAB.

Example We will treat a parameter dependent problem defined by

p(X(λ)) := A2X
2B2 +A1XB1 +C(λ), (25)

where

A2 :=

(

1 3
2 4

)

, B2 :=

(

5 10
4 8

)

, (26)

A1 :=

(

9 11
10 12

)

, B1 :=

(

13 15
14 16

)

, (27)

C(λ) := −
(

288 345
324 394 + λ

)

, λ ∈ [−1, 1]. (28)

Note, that A2B2+A1B1 +C(λ) =

(

0 0
0 −λ

)

. If we denote the zeros by X(λ),

we see thatX(0) = I is one of the zeros. The corresponding matricesM, N from (16)
and (17) for the zero I are

M =









127 173 134 178
150 196 156 200
155 225 160 224
190 260 192 256









, N =









−305
−350
−379
−446









; Mcol(I) +N = 0 holds .

In this case rank(M) = 4, i.e. in this case for λ = 0 the matrix I is the isolated zero.
However, there is another zero for λ = 0. For this zero the two matrices are

M =
1

8









931 1129 1004 1220
1030 1228 1112 1328
1070 1290 1144 1384
1180 1400 1264 1504









, N =
1

8









−2151
−2358
−2454
−2684









,
Mcol(I) +N = 0

holds, too.

Here, rank(M) = 3, i.e. I is the zero of rank 3.
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The general solution of Mcol(X)+N = 0 has the form col(X) = αx0+x1 for all
α ∈ R, where

x1 =
1

11









−1
12
11
0









and x0 =









0.52124669131568
−0.52124669131568
−0.47780946703938
0.47780946703938









.
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