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Abstract

In this note, we introduce a new approach to study overlapping domain decompo-
sition methods for optimal control systems governed by partial differential equations.
The model considered in our paper is systems governed by wave equations. Our
technique could be used for several other equations as well.

1. Introduction

The research about using domain decomposition methods to resolve optimal
control problems started with the pioneering work of A. Bensoussan, R. Glowin-
ski and P. L. Lions [8] in the 70’s and B. Depres and J.D. Benamou in the early
90’s [2, 1, 7, 6, 5, 4, 4, 3]. Since then, this research line has become very active with
several works of J. E. Lagnese and G. Leugering [13, 11, 10, 9, 12]. However, most of
the works on domain decomposition methods for optimal control of systems governed
by partial differential equations are devoted to nonoverlapping algorithms, though
overlapping algorithms are proved to be more stable and much faster [14]. One of
the reasons is that there was no convergence proof of the overlapping algorithms. In
the series of papers [17, 16, 18, 15], we develop a new technique to study the con-
vergence of overlapping algorithms. The technique is proved to be applicable for the
convergence study of domain decomposition algorithms for several kinds of partial
differential equations. Within the frame of developing our new technique for differ-
ent convergence problems, this note is devoted to the application of the technique
to study an overlapping domain decomposition for optimal control systems governed
by wave equations, which was studied in [1] but only for the nonoverlapping case.
Our technique has the potential of being a new tool to extend many of the previous
studies from nonoverlapping to overlapping algorithms. For the sake of simplicity, we
only consider a decomposition with two subdomains, however, our technique could
be extended to the multisubdomains case without any difficulty.
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2. Model description and definition of the domain decomposition algo-

rithm

Let Ω be a smooth bounded domain in R
N . Similarly as in [1], we consider the

following wave equation defined on (0, T )× Ω















∂tty(t, x)−∆y(t, x) = f(t, x) + v(t, x) on (0, T )× Ω,

y(0, x) = y0(x); ∂ty(0, x) = y1(x) on Ω,

y(t, x) = g(t, x) on (0, T )× ∂Ω,

(1)

where y0, y1 ∈ L2(Ω), g ∈ L2((0, T )× ∂Ω).

Let U be a convex subset of L2((0, T )× Ω) and define the function

J(v, y) =
1

2

∫

(0,T )×Ω

(γ|y(x)|2 + α|v(t, x)|2)dxdt, (2)

where α and γ are positive constants.

We consider the following optimization problem

min
v∈U

J(v, y(v)). (3)

Following [1], we need to solve



























∂ttp (t, x)−∆p(t, x) = y(t, x) on (0, T )× Ω,

p (T, x) = 0; ∂tp(T, x) = 0 on Ω,

p (t, x) = 0 on (0, T )× ∂Ω,
∫

(0,T )×Ω
(p+ αv)(w − v)dxdt ≥ 0 ∀w ∈ U.

(4)

We now design an overlapping domain decomposition method to resolve the sys-
tem (1) and (4). Divide the domain Ω into two overlapping subdomains Ω1 and Ω2

in the following sense

Ω = Ω1 ∪ Ω2,

(∂Ω1\∂Ω) ∩ (∂Ω2\∂Ω) = ∅.
The overlapping domain decomposition algorithm with Robin transmission condition
now reads for i ∈ {1, 2}















∂tty
n+1
i −∆yn+1

i = f(t, x) + vn+1
i (t, x) on (0, T )× Ωi,

yn+1
i (0, x) = y0(x), ∂ty

n+1
i (0, x) = y1(x) on Ωi,

yn+1
i (t, x) = g(t, x) on (0, T )× ∂Ωi,
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













∂ttp
n+1
i −∆pn+1

i = γyni (t, x) on (0, T )× Ωi,

pn+1
i (T, x) = 0, ∂tp

n+1
i (T, x) = 0 on Ωi,

pn+1
i (t, x) = 0 on (0, T )× ∂Ωi,

∫

(0,T )×Ωi

(pn+1
i + αvn+1

i )(wi − vn+1
i )dxdt ≥ 0,

with the transmission condition on ∂Ωi\∂Ω

∂νiy
n+1
i + rip

n+1
i = ∂νiy

n
3−i + rip

n
3−i,

∂νip
n+1
i + riy

n+1
i = ∂νip

n
3−i + riy

n
3−i,

where νi is the outward normal outward unit normal vector of Ωi on the boundary
∂Ωi\∂Ω and ri is a positive constant. At step 0, we choose an initial guess (y0i , p

0
i )

in C2([0, T ] × Ω). We can see that the algorithm is well-posed and (yni , p
n
i , v

n
i ) ∈

L2(0, T,H2(Ωi))× L2(0, T,H2(Ωi))× L2(0, T,H2(Ωi)).

3. Convergence of the algorithm

For i ∈ {1, 2} we define

ỹn+1
i = yn+1

i − y,

p̃n+1
i = pn+1

i − p,

ṽn+1
i = vn+1

i − v,

and get the following systems















∂ttỹ
n+1
i −∆ỹn+1

i = ṽn+1
i (t, x) on (0, T )× Ωi,

ỹn+1
i (0, x) = 0, ∂tỹ

n+1
i (0, x) = 0 on Ωi,

ỹn+1
i (t, x) = 0 on (0, T )× ∂Ωi,















∂ttp̃
n+1
i −∆p̃n+1

i = γỹni (t, x) on (0, T )× Ωi,

p̃n+1
i (T, x) = 0, ∂tp̃

n+1
i (T, x) = 0 on Ωi,

p̃n+1
i (t, x) = 0 on (0, T )× ∂Ωi,

with the transmission condition on ∂Ωi\∂Ω

∂νi ỹ
n+1
i + rip̃

n+1
i = ∂νi ỹ

n
3−i + rip̃

n
3−i,

∂νi p̃
n+1
i + riỹ

n+1
i = ∂νi p̃

n
3−i + riỹ

n
3−i.
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We suppose that for any n ∈ N, ṽni is extended by 0 in (T,∞) and still denote by
ỹn+1
i the solution of















∂ttỹ
n+1
i −∆ỹn+1

i = ṽn+1
i (t, x) on (0,∞)× Ωi,

ỹn+1
i (0, x) = 0, ∂tỹ

n+1
i (0, x) = 0 on Ωi,

ỹn+1
i (t, x) = 0 on (0,∞)× ∂Ωi.

Using the change of variable t → T − t, we still denote by p̃n+1
i the solution of















∂ttp̃
n+1
i −∆p̃n+1

i = γỹni (T − t, x) on (0,∞)× Ωi,

p̃ni (0, x) = 0, ∂tp̃
n+1
i (0, x) = 0 on Ωi,

p̃n+1
i (t, x) = 0 on (0,∞)× ∂Ωi,

with the assumption that ỹni (T − t, x) = 0 for t > T . Let H be a positive constant
to be chosen later. Define

ȳni =

(
∫ ∞

0

|ỹni | exp
(

−
√
Ht
)

dt

)

gni ; p̄ni =

(
∫ ∞

0

|p̃ni | exp
(

−
√
Ht
)

dt

)

gni ,

with gni ∈ C2(RN ,R), gni > 0 to be chosen later. For F : Ω → R, we define the
following norm

|‖F‖| =
[

∫

supp(F )

∣

∣

∣

∣

∫ ∞

0

|F | exp
(

−
√
Ht
)

dt

∣

∣

∣

∣

2

dx

]1/2

.

Similarly as in [15], a simple calculation leads to

−∆ȳn+1
i +Hȳn+1

i +

(

−
N
∑

α=1

∂αg
n+1
i

gn+1
i

+
∇gn+1

i

gn+1
i

)

ȳn+1
i +

N
∑

α=1

2∂xα
gn+1
i

gi
∂xα

ȳn+1
i (5)

=

∫ T

0

vn+1
i sign (ỹn+1

i ) exp
(

−
√
Ht
)

dt on Ωi,

−∆p̄n+1
i +Hp̄n+1

i +

(

−2
N
∑

α=1

∂xα
gn+1
i

gn+1
i

+
∇gn+1

i

gn+1
i

)

p̄n+1
i +

N
∑

α=1

2
∂xα

gn+1
i

gni
∂xα

p̄ni (6)

= γ

∫ T

0

yni (T − t) sign (p̃n+1
i ) exp

(

−
√
Ht
)

dt on Ωi.
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Choosing gni such that ∇gni −rig
n
i = 0 on ∂Ωi\Ω , the transmission condition become

∂νi ȳ
n+1
i = ∂νi

(
∫ ∞

0

|ỹni | exp
(

−
√
Ht
)

dtgni

)

=

[
∫ ∞

0

(∂νi |ỹni |+ ri|ỹni |) exp
(

−
√
Ht
)

dt

]

gni

+

∫ ∞

0

|ỹni | exp
(

−
√
Ht
)

dt(∂νi − ri)g
n
i

=
1

βi
∂νi ȳ

n+1
i on ∂Ωi\∂Ω,

by choosing gni and gn3−i, we can make βi to be a very large positive constant. Simi-
larly, we also have

βi∂νi p̄
n+1
i = ∂νi p̄

n
3−i.

Let ϕn
3−i be a function in H1(Ω\Ωi) and ϕn+1

i be a function in H1(Ωi) such that
ϕn+1
i = ϕn

3−i on ∂Ωi\∂Ω and use them as test functions for (5) and (6)

∫

Ω\Ωi

∇ȳn3−i∇ϕn
3−idx+

∫

Ω\Ωi

N
∑

α=1

2
∂xα

g3−i

g3−i
∂xα

ȳn3−iϕ3−idx

+

∫

Ω\Ωi

(

∆g3−i

g3−i

− 2
N
∑

α=1

∂xα
g3−i

g3−i

)

ȳn3−iϕ
n
3−idx+

∫

Ω\Ωi

Hȳn3−iϕ
n
3−idx

−
∫

Ω\Ωi

∫ T

0

vn3−isign (ỹ
n
3−i) exp

(

−
√
Ht
)

dtϕn
3−idx

= − βi

{

∫

Ωi

∇ȳn+1
i ∇ϕn+1

i dx+

∫

Ωi

N
∑

α=1

2
∂xα

gn+1
i

gn+1
i

∂xα
ȳn+1
i ϕn+1

i dx (7)

+

∫

Ωi

(

∆gn+1
i

gn+1
i

− 2

N
∑

α=1

∂xα
gn+1
i

gn+1
i

)

ȳn+1
i ϕn+1

i dx+

∫

Ω̄i

Hȳn+1
i ϕn+1

i dx

−
∫

Ωi

∫ T

0

vn+1
i sign (ỹn+1

i ) exp
(

−
√
Ht
)

dtϕn+1
i dx

}

.

In the above equation choose ϕn+1
i to be ȳn+1

i . Then there exists a function ρ such
that ρ is defined on Ω\Ωi and

‖ρ‖H1(Ω\Ωi) ≤ C1‖ȳn+1
i ‖H1(Ωi),

‖ρ‖L2(Ω\Ωi) ≤ C1‖ȳn+1
i ‖L2(Ωi),
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where C1 is a positive constant depending on Ω, Ω1, and Ω2. Choose ϕn
3−i to be ρ,

then for H large enough, (7) implies

2
∑

i=1

C2

{

1

2

∫

Ω\Ωi

|∇ȳn3−i|2dx+
H

2

∫

Ω\Ωi

|ȳn3−i|2dx

−
∫

Ω\Ωi

∫ T

0

vn3−isign (ỹ
n
3−i) exp

(

−
√
Ht
)

dtȳn3−idx

}

≥
2
∑

i=1

βi

{

1

2

∫

Ωi

|∇ȳn+1
i |2dx+

H

2

∫

Ωi

|ȳn+1
i |2dx (8)

−
∫

Ωi

∫ T

0

vn+1
i sign (ỹn+1

i ) exp
(

−
√
Ht
)

dtȳn+1
i dx

}

,

where C2 is some constants depending only on the structure of the equation. In
a similar way, we have

2
∑

i=1

C3

{

1

2

∫

Ω\Ωi

|∇p̄n3−i|2dx+
H

2

∫

Ω\Ωi

|p̄n3−i|2dx

− γ

∫

Ω\Ωi

∫ T

0

yn−1
3−i sign (p̃

n
3−i) exp

(

−
√
Ht
)

dtp̄n3−idx

}

≥
2
∑

i=1

βi

{

1

2

∫

Ωi

|∇p̄n+1
i |2dx+

H

2

∫

Ωi

|p̄n+1
i |2dx

− γ

∫

Ωi

∫ T

0

yni sign (p̃
n+1
i ) exp

(

−
√
Ht
)

dtφn+1
i dx

}

,

where φn+1
i plays a similar role as the role of φn+1

i in the estimate of ȳn+1
i

‖φn+1
i ‖H1(Ω\Ωi) ≤ C1‖p̄n+1

i ‖H1(Ωi),

‖φn+1
i ‖L2(Ω\Ωi) ≤ C1‖p̄n+1

i ‖L2(Ωi).

Similarly as [15], taking βi and H to be very large, and using the equation (as in [1])
∫

(0,T )×Ωi

(pn+1
i + αvn+1

i )(wi − vn+1
i ) dxdt ≥ 0,

we get
lim
n→∞

(|‖∇yni ‖|+ |‖yni ‖|+ |‖∇pni ‖|+ |‖pni ‖|) = 0.

Notice that the fact |‖∇yni ‖|, |‖yni ‖|, |‖∇pni ‖|, |‖pni ‖|, |‖vni ‖| are well-defined is
also included in the convergence result.
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Theorem 3.1 The algorithm converges in the following sense:

lim
n→∞

(|‖∇yni ‖|+ |‖yni ‖|+ |‖∇pni ‖|+ |‖pni ‖|+ |‖vni ‖|) = 0.

Acknowledgement

The author would like to thank the editors for a kind invitation to write this paper
for the proceedings of the Appl. Math. Conference 2013. The author has been sup-
ported by Grant MTM2011-29306-C02-00, MICINN, Spain, ERC Advanced Grant
FP7-246775 NUMERIWAVES, and Grant PI2010-04 of the Basque Government.

References

[1] Benamou, J. -D.: Domain decomposition, optimal control of systems governed
by partial differential equations, and synthesis of feedback laws. J. Optim.
Theory Appl. 102(1) (1999), 15–36.

[2] Benamou, J. -D. and Desprès, B.: A domain decomposition method for the
Helmholtz equation and related optimal control problems. J. Comput. Phys.
136(1) (1997), 68–82.
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