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Abstract: We study systems of two nonlinear reaction-diffusion partial
differential equations undergoing diffusion driven instability. Such systems
may have spatially inhomogeneous stationary solutions called Turing patterns.
These solutions are typically non-unique and it is not clear how many of them
exists. Since there are no analytical results available, we look for the number of
distinct stationary solutions numerically. As a typical example, we investigate
the reaction-diffusion system designed to model coat patterns in leopard and
jaguar.
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1. Introduction

Nonlinear systems of reaction-diffusion equations are universally recognized in-
struments for modelling various phenomena in chemistry, biology, and ecology. Their
popular applications include, but are not limited to, symmetry breaking, biochemical
reactions, tumour vascularization, predator-prey models or skin and coat patterns in
animals.

Research of the diffusion driven instability initiated Alan Turing in 1952 by his
seminal paper [13], where he presented a counter-intuitive property of systems of two
reaction-diffusion equations of the form

∂u

∂t
=D1∆u+ f(u, v) in (0,∞)× Ω, (1)

∂v

∂t
=D2∆v + g(u, v) in (0,∞)× Ω, (2)

where u = u(t, x), v = v(t, x) correspond to concentrations of two chemical species,
the domain Ω ⊂ R2 models a chemical reactor, D1, D2 are diffusion coefficients
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and f(u, v), g(u, v) are nonlinear reaction terms representing chemical reactions.
We assume existence of constants us, vs ∈ R such that f(us, vs) = g(us, vs) = 0.
Clearly, these constants form a stationary solution of system (1)–(2) known as the
ground state. In addition, these constants can be seen as a solution to the system of
ordinary differential equations (ODE) coming from (1)–(2) for D1 = D2 = 0. Turing
demonstrated that if us, vs is a linearly stable uniform stationary solution of this
ODE system then us, vs seen as a solution to system (1)–(2) can become unstable
for D1 6= 0, D2 6= 0 and its small spatially inhomogeneous perturbations may evolve
to an inhomogeneous steady state. Such steady state is known as Turing pattern.
However, the diffusion driven instability can occur only for a limited set of values of
D1 and D2 and possible other parameters of (1)–(2). These values can be identified
by means of the well known linear analysis, see e.g. [7].

There is a number of models exhibiting the diffusion driven instability and Turing
patterns. For example, Thomas model [11] of substrate inhibition, Schnakenberg
model [10] describing a hypothetical trimolecular reaction, Gray and Scott model [3]
for an autocatalytic reaction in a tank reactor, BMA model [1] for symmetry breaking
in morphogenesis and LLM model [5] for pigment pattern generation on coats of
leopards and jaguars.

The mentioned linear analysis describes well the initial evolution of small pertur-
bations of the ground state, but it yields no information about their development if
they grow sufficiently large. Existing analytical results about solutions farther away
from the ground state are limited. Therefore, we study them numerically. We are
then limited to an empirical study of a particular case only, but we aim to collect
a large amount of data, process them by statistical methods and draw more general
conclusions.

In this contribution we present results of a particular numerical study focused on
the number of distinct Turing patters in the LLM model [5]. In this experiment we
initiated the evolution with several thousand distinct initial conditions, solve them by
a fast numerical scheme, and postprocess the obtained results by nontrivial methods
to identify patterns that are identical up to natural symmetries of the problem. The
following section introduces periodic boundary conditions and the corresponding
symmetries of the problem. Section 3 briefly describes the spectral Fourier method.
Section 4 introduces the LLM model, its particular setting, and explains how the
computed results are postprocessed and analysed. Section 5 presents the obtained
results, especially the numbers of distinct equivalence classes of stationary solutions.
Finally, Section 6 draws conclusions and offers prospects for further research.

2. Boundary conditions and problem symmetries

Within this paper, we consider the domain Ω to be a square Ω = (0, L)2. The
reaction-diffusion system (1)–(2) is usually equipped with no flux boundary condi-
tions. However, we will consider periodic boundary conditions, because they are

207



natural for the spectral Fourier method, which we will use below. In particular, we
consider these periodic boundary conditions:

u(0, y) = u(L, y) ∀y ∈ (0, L) and u(x, 0) = u(x, L) ∀x ∈ (0, L), (3)

v(0, y) = v(L, y) ∀y ∈ (0, L) and v(x, 0) = v(x, L) ∀x ∈ (0, L), (4)

∂xu(0, y) = ∂xu(L, y) ∀y ∈ (0, L) and ∂yu(x, 0) = ∂yu(x, L) ∀x ∈ (0, L), (5)

∂xv(0, y) = ∂xv(L, y) ∀y ∈ (0, L) and ∂yv(x, 0) = ∂yv(x, L) ∀x ∈ (0, L). (6)

Since the square domain and these periodic boundary conditions are invariant
with respect to mirroring and rotations by π/2, we show that the stationary solutions
of problem (1)–(2) with boundary conditions (3)–(6) possess the same symmetries.
To be rigorous, we define the mirror image of a function u defined in Ω by

ū(x, y) = u(L− x, y). (7)

Similarly, we define a function rotated by π/2 (counter-clockwise) as

û(x, y) = u(L− y, x). (8)

Further, the periodic boundary conditions enable to shift a stationary solution peri-
odically in such a way that it remains a stationary solution. To be precise, we define
a periodic shift of a function u by a vector (r, s) ∈ (0, L)2 as

ũ(x, y) =


u(x+ r, y + s) for x ∈ (0, L− r), y ∈ (0, L− s),
u(x+ r, y + s− L) for x ∈ (0, L− r), y ∈ (L− s, L),

u(x+ r − L, y + s) for x ∈ (L− r, L), y ∈ (0, L− s),
u(x+ r − L, y + s− L) for x ∈ (L− r, L), y ∈ (L− s, L).

(9)

Lemma 1. Let u, v ∈ C2(Ω) ∩C0(Ω) form a stationary solution to problem (1)–(2)
with boundary conditions (3)–(6). Then both pairs of functions ū, v̄ and û, v̂ defined
by (7) and (8), respectively, are stationary solutions to (1)–(2) with (3)–(6) as well.
Moreover, if the shifted functions ũ, ṽ given by (9) with arbitrary (r, s) ∈ (0, L)2 are
both in C2(Ω) then they again form a stationary solution to (1)–(2) with (3)–(6).

Proof. It is easy to verify that all ū, v̄ and û, v̂ are in C2(Ω) ∩ C0(Ω) and that they
satisfy the periodic boundary conditions (3)–(6). Further, let (x, y) ∈ Ω. Then it is
easy to see that ∆ū(x, y) = ∆u(L − x, y), ∆û(x, y) = ∆u(L − y, x), and similarly
for v̄ and v̂. Since u, v satisfy equations (1)–(2) at both points (L − x, y) ∈ Ω and
(L− y, x) ∈ Ω, we conclude that both pairs ū, v̄ and û, v̂ satisfy the same equations
at (x, y).

Concerning the shifted functions ũ, ṽ we may proceed in the same way. The only
difficulty is the fact that the periodic shift ũ, ṽ need not automatically be in C2(Ω)
and therefore the additional assumption is needed.
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3. Spectral Fourier collocation method

To solve problem (1)–(2) with periodic boundary conditions (3)–(6) efficiently, we
employ the spectral Fourier collocation method [4, 12]. In order to briefly introduce
the main idea of the method, we consider a 2π-periodic function z(x) sampled on
the spatial discretization grid xj = 2πj/N with zj = z(xj), j = 0, 1, 2, . . . , N .
Note that we consider N to be even for simplicity. By periodicity of z(x) we have
z0 = zN . Using the discrete Fourier transform (DFT) and the inverse discrete Fourier
transform (IDFT), both properly defined and discussed in [12], we can compute the
derivatives wj = z′(xj), j = 1, . . . , N , by the following procedure:

1. Compute the DFT ẑk = (2π/N)
∑N

j=1 exp(−ikxj)zj, k = −N/2 + 1, . . . , N/2.

2. Set ŵk = ikẑk, k = −N/2 + 1, . . . , N/2.

3. Compute the IDFT wj = (1/(2π))
∑N/2

k=−N/2+1 exp(ikxj)ŵk, j = 1, . . . , N .

Similarly, the second derivative wj = z′′(xj) can be computed by the same procedure,
but item 2 has to be replaced by ŵk = −k2ẑk, k = −N/2 + 1, . . . , N/2.

This idea can be easily applied in two dimensions as well. Let us consider par-
titions xm = 2πm/N and yn = 2πn/N , m,n = 1, 2, . . . , N , of [0, 2π] corresponding
to x and y directions. Set um,n = u(xm, yn), vm,n = v(xm, yn), fm,n = f(um,n, vm,n),
and gm,n = g(um,n, vm,n). The two-dimensional DFT of um,n is defined as

ûk,` =
4π2

N2

N∑
m=1

N∑
n=1

exp(−i(kxm + `yn))um,n, k, ` = −N/2 + 1, . . . , N/2, (10)

and similarly for v̂k,`, f̂k,`, and ĝk,`. Correspondingly, the two-dimensional IDFT
of ûk,` is

um,n =
1

4π2

N/2∑
k=−N/2+1

N/2∑
`=−N/2+1

exp(i(kxm + `yn))ûk,`, m, n = 1, 2, . . . , N. (11)

In order to use the DFT (10) for equations (1) and (2), we first transform vari-
ables to map [0, L] into [0, 2π] and then we obtain the following system of ordinary
differential equations for the Fourier images ûk,` and v̂k,`:

dûk,`
dt

= −D1
4π2

L2
(k2 + `2)ûk,` + f̂k,` k, ` = −N/2 + 1, . . . , N/2, (12)

dv̂k,`
dt

= −D2
4π2

L2
(k2 + `2)v̂k,` + ĝk,` k, ` = −N/2 + 1, . . . , N/2. (13)

Here, f̂k,` and ĝk,` are computed by the DFT (10) from fm,n = f(um,n, vm,n) and
gm,n = g(um,n, vm,n), where the values of um,n and vm,n have to be computed from
the Fourier images ûk,` and v̂k,` by the IDFT (11).

In order to solve the system of ordinary differential equations (12) efficiently, we
utilize the fourth order Runge-Kutta method as in [4] and the fast Fourier transform.
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Figure 1: The left panel shows the component v of the stationary solution of prob-
lem (14)–(15) with periodic boundary conditions (3)–(6) as it evolved from a small
random initial condition illustrated in the right panel.

4. Problem setting and postprocessing of results

For the numerical study presented below, we will consider the LLM model [5]. It
consists of the following reaction-diffusion system:

∂u

∂t
= Dδ∆u+ αu+ v − r2uv − αr3uv

2, (14)

∂v

∂t
= δ∆v − αu+ βv + r2uv + αr3uv

2 (15)

with D = 0.45, δ = 6, α = 0.899, β = −0.91, r2 = 2, and r3 = 3.5. These
parameter values yield stationary solutions that correspond to spotted patterns, see
Figure 1 (left) for a typical pattern and Figure 1 (right) for the corresponding initial
condition. Our main interest is to find how many different patterns can evolve
from small random initial conditions. Note that the two components u and v are
complementary to each other in the sense that local maxima of u correspond to local
minima of v. Therefore, we concentrate on the component v only in what follows.

All patterns in this paper including Figure 1 are computed by the spectral Fourier
collocation method with the following setting. The domain is a square Ω = (0, L)2

with L = 200. The discretization grid contains N = 144 points in every direction.
Initial conditions are generated as a uniformly distributed random number within
(−0.05, 0.05) for every node of the grid. These initial conditions mimic small am-
plitude random fluctuations around the spatially homogeneous steady state. The
time step of the fourth order Runge-Kutta method is chosen as ∆t = 1 and the
computation of the time evolution is terminated as soon as the relative difference
of approximate solutions at two consecutive time steps is smaller than a prescribed
tolerance. In particular, if ‖ · ‖l2 stands for the l2-norm over the grid nodes and v(k)
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and v(k+1) denote the solution at times tk = k∆t and tk+1 = (k + 1)∆t, then the
computation is stopped if

‖v(k) − v(k+1)‖l2
‖v(k)‖l2

< 10−4. (16)

Using this setting, we generated a number of random initial conditions and com-
puted the corresponding stationary solutions. However, based on the symmetries of
the stationary solutions described in Lemma 1, each stationary solution represents
a whole class of solutions equivalent up to one of the transformations (7)–(9). There-
fore, finding the number of distinct stationary solutions, i.e. solutions that are not
equivalent in the sense of transformations (7)–(9), is a nontrivial task. Especially
challenging is the fact that any shift (r, s) ∈ (0, L)2 yields a stationary solution and,
hence, each class of solutions is uncountable.

5. Results

In total we computed stationary solutions for 5297 different random initial con-
ditions. At first, we calculate the number of spots in each of these patterns. To
compute this number we plot the v component of the given pattern as a bitmap im-
age and utilize the Matlab Image Processing Toolbox [6]. In particular, we use the
function imfindcircles which seeks circles in a given image and returns coordinates
of their centres and radii. The number of spots is then simply equal to the number
of returned centres. Having computed this number for all patterns, we then simply
calculate how many patterns have a given number of spots. Figure 2 presents these
data in the form of a histogram.

In this histogram we identify 15 possible numbers of spots. Number of spots
varies between 50 and 65 with the intermediate numbers being naturally the most
frequent. Surprising is the relatively wide range of these numbers. Researchers
have usually a chance to observe a relatively small amount of patterns and then
they tend to conclude that the number of spots is (almost) constant for the given
parameter values and the size of the domain. However, our results show that it may
vary considerably just due to the random variations in the initial condition. In this
particular case, the variation in the number of spots is up to ±15 %.

Nevertheless, the main goal is to find the number of classes of solutions that are
identical up to a combination of transformations (7)–(9). The computed number of
spots serves as a first filter, because, clearly, if two patterns have a different number of
spots, they cannot be equivalent. Thus, we split all patterns into 15 sets according
to the number of spots and for each set we find classes of equivalent patterns as
follows.

We keep a database of classes. Each class in this database is determined by one
representative pattern. Initially the database is empty and the first pattern from
the investigated set is chosen as the representative of the first class. Then for each
pattern in the set, we find if it is equivalent to one of the stored representatives in the
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Figure 2: Distribution of the number of spots in stabilized patterns

database. If it is the case, we simply increase the counter of the number of patterns
in the corresponding class. If not, then this pattern becomes a representative of
a new class. As soon as we exhaust the entire investigated set of patterns, all classes
of equivalent patterns are identified.

The important step in this algorithm is to decide whether a pattern is equivalent
to a representative or not. In order to decide, we have to test all eight independent
combinations of mirroring (7) and rotation (8) as well as all possible shifts (9). For-
tunately, only the shifts that map a spot of the pattern to a spot of the representative
are relevant and thus the total number of relevant shifts is finite and equals to the
number of possible pairs of spots. If the number of spots in both the pattern and in
the representative is n then the number of possible shifts is n2.

The crucial operation here is the comparison of two patterns – the transformed
pattern and the representative – and the decision whether they match or not. The
point is that exact equality of two patterns cannot work here, because the patterns
are polluted by various numerical errors. Therefore, we actually look for patterns
matching up to a certain precision. We experimented with several measures and we
obtained the best results by using the modified Hausdorff distance on the torus for
the computed centres of spots. Note that the torus topology comes from the periodic
boundary conditions (3)–(6).
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The modified Hausdorff distance H̃(A,B) in the torus is defined as

H̃(A,B) = min
{
h̃(A,B), h̃(B,A)

}
,

where h̃(A,B) is the Hausdorff distance expressing the maximal distance between
points from the set A to the set B, i.e.

h̃(A,B) = max
a∈A

{
min
b∈B

d̃(a, b)

}
,

where d̃(a, b) is the torus distance of points a = (a1, a2) and b = (b1, b2):

d̃(a, b) =
(
min{|a1 − b1|, L− |a1 − b1|}2 + min{|a2 − b2|, L− |a2 − b2|}2

)1/2
.

We use the modified Hausdorff distance rather then the Hausdorff distance itself, be-
cause it is symmetric and performs better [2]. In order to gain the required efficiency
we use the Matlab mex-file implementation of the modified Hausdorff distance [9].

Using the modified Hausdorff distance on the torus, we compare two patterns
based on the lists C1 and C2 of coordinates of centres of their spots. We simply
compute H̃(C1, C2) and test if it is below a chosen threshold. To be precise, we
have to consider also the transformations (7)–(9). The two patterns to compare
are determined by the lists C1 and C2 of their centres of spots. For the list C1,
we consider all its shifts (9) with (r, s) = (b1 − a1, b2 − a2) for all (a1, a2) ∈ C1

and all (b1, b2) ∈ C2 together with eight possible combinations of mirroring (7) and
rotations (8). Denoting the set of all these transformations by R, we compute

H̃(C1, C2) = min
ρ∈R

H̃(ρ(C1), C2), (17)

where ρ(C1) stands for the transformation of the set C1.
Practically, we have chosen the above mentioned threshold to be 0.75 and consider

two patterns to match if H̃(C1, C2) < 0.75. However, we have to admit that the
choice of this threshold is delicate, because it is difficult to distinguish whether two
patterns differ due to numerical errors or whether they really correspond to different
stationary solutions. For illustration, we present Figure 3 showing two sets of centres
of spots with the distance H̃(C1, C2) ≈ 0.74941.

The final results are summarized in Table 1, where we identified the number of
distinct classes of stationary solutions. We observe that the number of these classes
varies roughly between 10 and 20 % of the total number of patterns in each set with
a higher number of spots. This ratio is naturally higher in the rare cases where the
number of identified patterns is low.

An interesting observation is that there are considerably different numbers of
distinct classes for pairs of sets with comparable total numbers patterns. See for
example the cases of 56 and 60 spots, which both have slightly above 600 patterns,
but the first case has only 67 distinct classes of solutions in contrast to 96 classes in
the second case.
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Figure 3: Centres of spots of two patterns with H̃(C1, C2) ≈ 0.74941

Spots 50 52 53 54 55 56 57 58 59 60 61 62 63 64 65
Patterns 1 3 35 132 321 616 970 1096 962 646 328 138 44 3 2

Classes 1 3 6 22 34 67 70 123 115 96 34 27 20 3 2

Table 1: Number of classes for different number of spots in patterns

6. Conclusions

The results presented in Table 1 are especially interesting if they are compared
with our previous results [8], where we performed a similar study, but for much
smaller domain, namely, Ω = (0, 50)2. In that case, we obtained only two different
numbers of spots and in total four distinct classes of solutions out of 6 000 computed
patterns. In view of these results, the variety in both the number of spots and the
number of classes of patterns we observe in Table 1 is rather surprising, even if we
take into account the larger size of the domain Ω. These results strongly indicate
that the number of distinct classes of patterns as well as the possible number of spots
grow progressively with the size of the domain Ω.

Another observation is that the influence of boundary conditions on the final
shape of the pattern is smaller if the domain is larger. Therefore, in the older
study [8] we observe mainly the effects of boundary conditions, while in the current
study we see mostly the natural variability of Turing patterns with the influence of
boundary conditions being inferior.

Clearly, the presented results are burdened by uncertainties. For example, it is
difficult to verify whether the numerical process of computing the stationary solution
really converged. Even if the stopping criterion (16) is fulfilled, the pattern still might
not be completely stationary. As a result, we can identify two patterns as distinct,
but they both can eventually converge to the same stationary solution. This effect
could hypothetically contribute to the observed high number of distinct classes of
solutions.
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Moreover, we obviously did not find all the possible classes of patterns. Partic-
ularly odd is the fact that we found classes with 50 and 52 spots, but none with
51 spots. Due to the nature of the problem, we believe that such patterns exist
and that we just did not capture the rare stationary solutions. An experiment with
a larger sample of computed patterns could help to estimate how many of these rare
solutions we missed.

In the current numerical study we focused on the particular LLM model [5], but
as a future project we plan to perform a similar study for other models. For example
for the Thomas model [11]. Based on our experience, we expect that if we chose the
problem parameters in such a way that the number of spots is similar to the current
study, we obtain similar results.

Further, the obtained results can help us to understand additional subtle fea-
tures of Turing patterns. For example, we can try to identify the natural period
of the Turing patterns as a natural distance between two spots. This task can be
accomplished by numerical methods and the results can help to find an analytical
expression or estimate of the period and prove a corresponding theoretical result.
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