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Abstract: We investigate a new phase-field model which describes marten-

sitic phase transitions, driven by material forces, in solid materials, e.g., shape

memory alloys. This model is a nonlinear degenerate parabolic equation of

second order, its principal part is not in divergence form in multi-dimensional

case. We prove the existence of viscosity solutions to an initial-boundary value

problem for this model.
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1. Introduction

The result presented in this talk is mainly from a recent work [8] by the author
and his coworker.

Martensitic transformations are displacive, diffusionless and are responsible for
the formation of some microstructures, like martensite which is a key microstructure
of some materials and thus determines properties of those materials, for example,
shape memory effect [16, 17] of shape memory alloys. Martensite can grow at tem-
peratures close to absolute zero and at speeds in excess of 1000ms−1. Thus it is
very difficult to obtain, by observing this process directly, useful information to
understand its mechanism, instead mathematical modeling is a powerful tool, for
instance, phase-field method has been proved extremely powerful to both theoretical
and numerical analysis of phenomena in materials science (see e.g., [9, 10, 20]).

To understand this type of rapidly changing processes, the author and his coworker
proposed in [2, 4] a new phase-field model, which consists of a linear elasticity system
and a nonlinear degenerate parabolic equation of second order. In this talk we ne-
glect the elasticity effect of solids and formulate a little simpler model. To formulate
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an initial-boundary value problem for this model, we first introduce some notations.
Let Ω be an open bounded domain in R

3 with smooth boundary ∂Ω. It represents
the points of a material body. Define Qt := (0, t)× Ω. Then the model reads

St = −c
(

ψ̂′(S)− ν∆xS
)

|∇xS| (1)

which is satisfied in QT with T > 0. Here, S is an order parameter taking the values
between 0 and 1, and S ≈ 0 and S ≈ 1 indicate that the material is in phases γ and
γ′, respectively. ∇x and ∆x are, respectively, the gradient and Laplace operators,
and St denotes the partial derivative of S with respect to t, and

|∇xS| =
(

3
∑

i=1

|∂xi
S|2

)
1

2

.

ψ̂′(S) is the derivative of the function ψ̂(S) which is taken as a double-well potential
so that ψ̂(S) has at least two local minima, say S = 0 and S = 1, and a maximum
in-between. It holds that ψ̂ ′(0) = ψ̂ ′(1) = 0. c, ν are positive constants.

To derive the model, we choose a free energy Ψ(t) =
∫

Ω
ψ(S,∇xS)dx with the

density

ψ(S,∇xS) = ψ̂(S) +
ν

2
|∇xS|2.

Straightforward computations show that if equation (1) is satisfied, then the validness
of the second law of thermodynamics is guaranteed (cf. Alber and Zhu [2, 3]).

We add, respectively, the following Dirichlet boundary and initial conditions

S|[0,T ]×∂Ω = 0, (2)

S|{t=0}×Ω̄ = S0. (3)

Thus we complete the formulation of the initial-boundary value problem.
Let us now compare this model with the Allen-Cahn model which has been widely

accepted as a model for phase separation driven by mean curvature, and comprises
of

St = −c (ψ̂′(S)− ν∆xS). (4)

This differs from (1) by the gradient term |∇xS|. We conclude that:

(i) Equation (1) is degenerate, non-uniformly parabolic with non-smooth coefficients;
while (4) is uniformly parabolic with smooth coefficients.

(ii) Our model implies that after a part of a material changes to, say, phase 1 over an
open sub-region, then we have ∇xS = 0 which together with Eq. (1) implies St = 0,
thus S keeps the same value which means the material is kept in phase 1 over that
sub-region. This is confirmed by observation. However in the Allen-Cahn model
there is no such property, namely, the material is still changing after it achieves its
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equilibrium over an open sub-domain because even if ∇xS = 0 over an open sub-
region one cannot obtain from (4) that St = 0 over that sub-domain. Thus, the
Allen-Cahn model is suitable for phase separation.

We shall prove the existence of viscosity solutions to problem (1)–(3). The prin-
ciple part, i.e. cν|∇xS|∆xS, of this model is not in divergence form, and the order
parameter equation is degenerate. Thus to investigate the validity of problem (1)–(3),
we employ the notion of viscosity solution. Introduce Hamiltonian H by

H(S, q, r) = −c (ψ̂′(S)− ν r)|q|, q ∈ R
3, r ∈ R. (5)

Definition 1.1 A function S which belongs to the space C(Q̄T ), is called a viscosity

solution to problem (1)–(3) if S satisfies both i) and ii) below:

i) S is a sub-viscosity solution to (1)–(3), i.e. for any function φ(t, x) in C2,1(Q̄T ),
if S − φ attains its local maximum at (τ, y), then

φt(τ, y) ≤ H(S(τ, y),∇xφ(τ, y),∆xφ(τ, y)), (6)

and there holds that S(t, x) ≤ 0 for all (t, x) ∈ [0, T ]× ∂Ω, and that S(0, x) ≤ S0(x)
for all x ∈ Ω;

ii) S is a super-viscosity solution to (1)–(3), i.e. for any function φ(t, x) in C2,1(Q̄T ),
if S − φ achieves its local minimum at (τ, y), then

φt(τ, y) ≥ H(S(τ, y),∇xφ(τ, y),∆xφ(τ, y)), (7)

and there holds that S(t, x) ≥ 0 for all (t, x) ∈ [0, T ]× ∂Ω, and that S(0, x) ≥ S0(x)
for all x ∈ Ω.

Now we may state the main result.

Theorem 1.1 Let T be a given positive constant. Suppose that ∂Ω ∈ C2+β for some

real positive number β ∈ (0, 1), and that S0 ∈ W
1,∞
0 (Ω) satisfies 0 ≤ S0(x) ≤ 1 for

almost every x ∈ Ω̄. Furthermore, we assume that the potential ψ̂ is C2-continuous.

Then there exists a viscosity solution S to problem (1) – (3) in the sense of

Definition 1.1, such that 0 ≤ S(t, x) ≤ 1 for almost every (t, x) ∈ Q̄T .

S ∈ C(Q̄T ) ∩ L∞(0, T ;W 1,∞
0 (Ω)), St ∈ L2(QT ). (8)

The main difficulties in the proof of Theorem 1.1 are as follows: First, the equa-
tion of S is nonlinear, and its principal part cannot be rewritten in the divergence
form, moreover, we shall find that a priori estimates of the highest derivative of
approximate solutions depend on a term which is a function of the gradient of the
order parameter, and plays a role of weight. This term is not uniformly bounded
from below with respect to a small parameter, thus it leads to that standard lemmas
of compactness do not apply to our problem. So we apply the concept of viscosity
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solutions. Second, equation (1) is non-uniform, degenerate and its coefficients are
not smooth.

Our strategies for overcoming these difficulties are in order. We make a suitable
smooth approximation of the non-smooth term, then the equation becomes a uni-
formly parabolic one with smooth coefficients. We first derive the energy estimates,
and also the uniform L∞-bound of the gradient of S with the help of a technique
from the book by Ladyzenskaya et al. [15]. The main idea behind the technique
is to show that the measure of the set AK(t) = {x ∈ Ω | z(t, x) > K} is zero
for sufficiently large K, where z is a nonlinear function in ∇xv and v is defined by
S = φ(v) with φ being a smooth nonlinear function. However we find it is not able
to do this in one step, instead we must divide AK(t) = {x ∈ Ω | z(t, x) > K} into
∪∞
i=1AK,i(t) = {x ∈ Ω | K + i− 1 < z(t, x) ≤ K + i} and prove the measure of each

subset is zero when K is sufficiently large. After modifying that technique in this
way, we can make use of the good term to each subset and establish the L∞-bound
of the gradient of S. Then we employ these estimates to obtain the compactness of
the approximate solutions.

We recall some literature related closely to our results. For the viscosity solu-
tions, we refer to Crandall and Lions [12], Crandall, Ishii and Lions [11]. For the
model investigated in this talk, the study from various aspects has been carried out,
see Alber and Zhu [2, 3, 4, 5, 6, 7], Kawashima and Zhu [14], Ou and Zhu [18],
Zhu [21, 22, 23]. Acharya et al. in [1], and Hildebrand et al. in [13] study a model
which is closely related to ours.

Notations. Let m,n be nonnegative integers, and p, q ≥ 1. α denotes a real
number in (0, 1). Let Lp(Ω), Wm,p(Ω) are standard Lebesgue and Sobolev spaces,
and Hm(Ω) = Wm,2(Ω). We denote by Cm+α(Ω) the space of m−times differen-
tiable functions on Ω, whose m−th derivative is Hölder continuous with exponent α.
The space Cα,α/2(QT ) consists of all functions on QT , which are Hölder continu-
ous in the parabolic distance d((t, x), (s, y)) :=

√

|t− s|+ |x− y|2. Cm,n(QT ) and
Cm+α,n+α/2(QT ) are the spaces of functions, whose x-derivatives up to order m and
t-derivatives up to order n belong to C(QT ) or to C

α,α/2(QT ), respectively.

2. Existence of solutions

2.1. Approximate solutions

To construct approximate solutions, we formulate an approximate problem to
the original problem (1)–(3). To this end, for κ > 0, we smooth the term |∇xS| as
follows

|∇xS|κ =
√

|∇xS|2 + κ2,

and choose a sequence Sκ
0 ∈ C∞

0 (Ω) such that

‖Sκ
0 − S0‖H1(Ω) → 0

as κ→ 0 since C∞
0 (Ω) is dense in H1

0 (Ω).
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Then we can approximate the initial-boundary value problem (1)–(3) by the
following problem

St = cν|∇xS|κ∆xS − cψ̂′(S)(|∇xS|κ − κ), (9)

and the boundary and initial conditions become

S|[0,T ]×∂Ω = 0, (10)

S|{0}×Ω̄ = Sκ
0 . (11)

For the sake of simplicity, we use the following notations. Define

aij = aij(∇xS) = cν|∇xS|κδij , and (12)

a = a(S,∇xS) = cψ̂′(S)(|∇xS|κ − κ) (13)

where δij is the Kronecker delta, i, j = 1, 2, 3. Straightforward computations show
that

c
√
2 ν

2
(κ + |p|)ξ2 ≤ aijξiξj ≤ cν(κ+ |p|)ξ2, (14)

∣

∣

∣

∣

∂aij

∂pk

∣

∣

∣

∣

≤ cν, (15)

|a(S, p)| ≤ µ1(|S|)P (|p|)(κ+ |p|)3, (16)

−∂a(S, p)
∂S

≤ µ2(|S|)P (|p|)(κ+ |p|)3, (17)
∣

∣

∣

∣

∂a(S, p)

∂pk

∣

∣

∣

∣

≤ µ3(|S|)P (|p|)(κ+ |p|)2. (18)

where P (|p|) = (κ + |p|)−2.
Recalling an existence theorem from [15, p. 558], we check that all conditions of

this theorem are satisfied for any given κ > 0, thus we can formulate the following
theorem.

Theorem 2.1 Let T > 0. Assume that ∂Ω ∈ C2+β with some β ∈ (0, 1). For any

given κ, the coefficient functions aij(p) and a(S, p) are continuously differentiable

with respect to their arguments S, p, and (14) – (18) are satisfied. Suppose that the

following compatibility conditions are satisfied

S0|∂Ω = 0, (19)

ν|∇xS0(x)|κ∆xS0(x)− ψ̂′(S0(x))(|∇xS0(x)|κ − κ) = 0 (20)

for all x ∈ ∂Ω.
Then there exists a solution S ∈ C2+α,1+α/2(Q̄T ) of problem (9) – (11). This

solution has derivatives Stxi
∈ L2(QT ), i = 1, 2, 3 .
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2.2. A priori estimates

We list in this subsection a priori estimates which are uniform in κ ∈ (0, 1], for
the approximate solutions. For simplicity we denote ‖f‖ = ‖f‖L2(Ω). C is a universal
constant which is independent of κ and may vary from line to line.

This subsection is devoted to uniform bound of S and to the energy estimates.

Lemma 2.1 There hold for almost every t ∈ [0, T ]

‖Sκ‖L2(0,T ;W 1,∞(Ω)) ≤ C, (21)
∫ t

0

∫

Ω

(|∇xS
κ|κ|∆xS

κ|2 + |Sκ
t |2)dτdx ≤ C. (22)

2.3. Weak solutions to the phase-field model

In this subsection we shall make use of the a priori estimates to investigate the
limits of the approximate solutions by using the following lemma of compactness.

Lemma 2.2 (Aubin-Lions) Let B0, B, B1 be Banach spaces satisfying that

B0, B1 are reflexive and

B0 ⊂⊂ B ⊂ B1.

Here, by ⊂⊂ we denote the compact imbedding. Define

W =

{

f | f ∈ Lp0(0, T ;B0), f
′ =

df

dt
∈ Lp1(0, T ;B1)

}

with T being a given positive number and 1 < p0, p1 < +∞.

Then the embedding of W into Lp0(0, T ;B) is compact.

Proof of Theorem 1.1. We choose

B0 =W 1,∞(Ω), B = C(Ω̄), B1 = L2(Ω),

and p0 = p, p1 = 2 (where p is an arbitrary positive number greater than 1), then we
infer from Lemma 2.2 that Sκ is a compact sequence in C(Q̄T ). Then by the standard
argument for passing to limits in the theory of viscosity solutions, we complete the
proof of Theorem 1.1.
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