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Abstract: This work presents the numerical solution of laminar incompress-
ible viscous flow in a three dimensional branching channel with circular cross
section for generalized Newtonian fluids. This model can be generalized by
cross model in shear thinning meaning. The governing system of equations
is based on the system of balance laws for mass and momentum. Numerical
tests are performed on a three dimensional geometry, the branching channel
with one entrance and two outlet parts. Numerical solution of the described
model is based on central finite volume method using explicit Runge–Kutta
time integration. The steady state solution is achieved for t → ∞. In this case
the artificial compressibility method will be applied. In the case of unsteady
computation artificial compressibility method is considered.
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1. Introduction

Branching of pipes occurs in many technical or biological applications. In [13]
the effects of viscoelasticity on the pitchfork bifurcation using a numerical finite vol-
ume method was investigated. Results from both the upper-convected Maxwell and
Oldroyd-B models show that the instability occurs at lower Reynolds numbers for vis-
coelastic fluids in comparison to the Newtonian base case. In [12] computational fluid
dynamics simulations of steady viscoelastic flows through a planar two dimensional
T-junction is considered and the influence of constitutive model and fluid elasticity
upon the main recirculating flow characteristics formed at the junction and the shear
stress fields is studied. In [4] a comparative numerical study of non-Newtonian fluid
models capturing shear-thinning and viscoelastic effects of blood flow in idealized
and realistic stenosed vessels was presented. Reference [2] proposes to analyze the
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pulsatile flow of blood through catheterized stenosed artery considering the Carreau-
-Yasuda model. The effects of tapering angle, body acceleration and magnetic field
are also taken into account. In [1] the unsteady pulsatile magneto-hydrodynamic
blood flows through porous arteries concerning the influence of externally imposed
periodic body acceleration and a periodic pressure gradient are numerically simu-
lated. Paper [7] shows the mathematical models that represent non-Newtonian flow
of blood through a stenosed artery in the presence of a transverse magnetic field.
Here, the rheology of the flowing blood is characterised by a generalised Power law
model.

In previous works [9] and [10] we studied the numerical simulation of generalized
Newtonian and Oldroyd-B fluids flow in 2D branching channel. In this article the
problem of the unsteady numerical simulation for the generalized Newtonian fluids
flow is presented. The modelled domain is the three dimensional branching channel
with T-junction.

2. Mathematical model

The governing system of equations is the system of generalized Navier-Stokes
equations, see [3]. This system consists of the continuity equation

div u = 0 (1)

and the momentum equation

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇P + div T, (2)

where P is the pressure, ρ is the constant density, u is the velocity vector. The
symbol T represents the stress tensor.

For the viscous fluids Newtonian mathematical model for the definition of the
stress tensor T is considered (see e.g. [4])

T = 2µD, (3)

where µ is the dynamic viscosity and tensor D is the symmetric part of the velocity
gradient, D = 1

2
(∇u+∇u

T ).
For the numerical modelling of the generalized Newtonian fluids flow it is neces-

sary to generalize the mathematical models. In this case the viscosity function µγ̇ is
defined by cross model (for more details see [8, 14, 15])

µ(γ̇) = µ
∞
+

µ0 − µ
∞

(1 + (λγ̇)b)a
, γ̇ = 2

√

1

2
tr D2, (4)

with dynamical viscosities µ0 = 1.6 · 10−1 Pa · s, µ
∞

= 3.6 · 10−3 Pa · s, constants
a = 1.23, b = 0.64 and time parameter λ = 8.2 s. For Newtonian flow modelling,
the viscosity is kept constant and equal to µ

∞
. The relationships between dynamic

viscosity µ and shear rate γ̇ is shown in Fig. 1.
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Figure 1: Viscosity µ - shear rate γ̇ relationships for the two selected viscosity models.

3. Numerical solution

The mathematical models described above are solved numericaly by the artificial
compressibility approach combined with the finite-volume discretization. The arti-
ficial compressibility method [5, 6, 8, 9] is used to obtain an equation for pressure.
It means that the continuity equation is completed by a pressure time derivative
term ∂p

β2∂t
, where β is a positive parameter, making the inviscid part of the system

of equations hyperbolic
1

β2

∂p

∂t
+ div u = 0. (5)

The parameter β for steady simulation is chosen equal to the maximum inlet velocity.
This value ensures good convergence to steady state but is not large enough to make
the transient solution accurate in time. Therefore it is suitable for steady flows only.
The system including the modified continuity equation and the momentum equations
can be written

R̃βWt + F c
x +Gc

y +Hc
z = F v

x +Gv
y +Hv

z , R̃β = diag(
1

β2
, 1, · · · , 1), (6)

where W is the vector of unknowns. By superscripts c and v we denote the inviscid
and the viscous fluxes, respectively.

The space discretization is done by a cell-centered finite-volume method with
hexahedral finite volumes [6, 8, 11]. The arising system of ODEs is integrated in
time by the explicit multistage Runge–Kutta scheme [9].

The flow is modelled in a bounded computational domain where a boundary is
divided into three mutually disjoint parts: a solid wall, an outlet and an inlet. At
the inlet Dirichlet boundary condition for velocity vector and for the stress tensor is
used. For the pressure, homogeneous Neumann boundary condition is used. At the
outlet parts the pressure value is prescribed and for the velocity vector and the stress
tensor homogeneous Neumann boundary condition is used. The no-slip boundary
condition for the velocity vector is used on the wall. For the pressure and stress
tensor homogeneous Neumann boundary condition is considered.
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3.1. Unsteady computation

For numerical solution of unsteady flows the artificial compressibility method
with unsteady boundary conditions is applied [6]. This method consists in modi-
fying continuity equation in the same way as was described above. The question
arises, how big the artificial compressibility parameter β should be in numerical sim-
ulation. Numerical calculations show that β = 6 m ·s−1 (100x higher than for steady
simulation) is the proper choice.

Two different forms of unsteady boundary conditions are considered. First, pre-
scribing the pressure value at the outlet (branch). Second, prescribing the normal
velocity component u at the inlet as

up = upin (1 +K sin(ωt)) . (7)

Here ω is the angular velocity defined as ω = 2πf , where f is a frequency. The
symbol up denotes the pressure or the velocity according to used unsteady boundary
condition. Symbol upin is the constant value obtained from the steady simulation.
Constant K is for the pressure 0.5 and for the velocity it is equal to reference velocity
value. Other boundary condition are considered as in the steady case.

In this work three values of the frequency are tested: f = 2, 5, 10 Hz.

4. Numerical results

This section deals with the comparison of the numerical results of generalized
Newtonian fluids flow for steady case. Numerical tests are performed in an idealized
branching channel with the circular cross-section. Fig. 2 (left) shows the shape of the
tested domain. The computational domain is discretized using a block-structured,
wall fitted mesh with hexahedral cells. The domain is divided to 19 blocks with
125 000 cells.
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Figure 2: Structure of the tested domain (left) and axial velocity profile of tested
fluids (right). Reference radius R = 0.0031 m.
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Figure 3: Velocity isolines of steady flows for generalized Newtonian fluids.

As initial condition the following model parameters are used: reference radius
R = 0.0031 m, branch radius R1 = 0.0025 m, dynamic viscosity µ = 0.0036 Pa · s,

reference velocity U0 = 0.0615 m · s−1, constant density ρ = 1050 kg ·m−3. At the
inlet the Dirichlet boundary conditions for velocity are used, the parabolic profile
with reference velocity value U0. At the outlet the constant pressure values are
prescribed. In Fig. 2 the axial velocity profile close to the branching is shown. The
line for Newtonian fluids is similar to the parabolic line, as was assumed. It is clear
that the shear-thinning fluids attain lower maximum velocity in the central part of
the channel (close to the axis of symmetry) which is compensated by the increase of
local velocity in the boundary layer close to the wall.

In Fig. 3 the velocity isolines and the cuts through the channel are shown. The
axial velocity isolines in the center-plane area for tested fluids are shown in Fig. 4.
It can be observed from these that the size of separation region for generalized
Newtonian fluids is smaller than for Newtonian fluids.

These steady numerical results are used as initial condition for unsteady numer-
ical computation. The artificial compressibility method with high β parameter is
used for the unsteady numerical simulation.
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Figure 4: Axial velocity isolines in the center-plane area for generalized Newtonian
fluids.
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Figure 5: The graphs of the velocity as the function of time for three tested values
of frequency - oscillation of the pressure at the outlet.
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Figure 6: The graphs of the velocity as the function of time for three tested values
of frequency - pulsation of the velocity at the inlet.

Figs. 5 and 6 show the magnitude of the velocity during the time period. The
velocity is taken from the point inside the domain. In Fig. 5 the pressure at the
outlet (branch) and in Fig. 6 the velocity at the inlet are prescribed by (7).

The numerical results (the magnitude of the velocity) are affected by the choice
of the oscillation’s variable (pressure or velocity) as well as by the velocity field. In
the case where the boundary function (7) was used for pulsation of the velocity at
the inlet, the numerical results (Fig. 6) for Newtonian and generalized Newtonian
fluids are very similar independently of the position in the domain. On the other
hand if the oscillation of the pressure at the outlet is considered than the resulting
magnitudes of the velocity (taken in the same point as in the previous case) are
different for Newtonian and generalised Newtonian fluids (6). It is affected by the
type of fluid and by the behaviour of fluids in the branching (the size of separation
region).
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5. Conclusion

Classical Newtonian model as well as its generalized (shear-thinning) modifica-
tion have been considered to model flow in the branching channel with T-junction.
The goal of this study is to investigate shear-thinning effects in steady flow simula-
tions. From the presented velocity profile, it is clear that the shear thinning fluids
(generalized Newtonian fluids) attain lower maximum velocity in the central part of
the channel (close to the axis of symmetry) which is compensated by the increase of
local velocity in the boundary layer close to the wall.

The numerical method used to solve the governing equations seems to be suffi-
ciently robust and efficient for the appropriate resolution of the given class of prob-
lems.

For unsteady simulation Newtonian and generalized Newtonian fluids were con-
sidered. An artificial compressibility approach was considered for numerical solution
of unsteady governing equations. The artificial compressibility parameter β was set
to be 6 m ·s−1. Several values of frequency were tested. Pressure value in the branch
outlet and the velocity value in the inlet were prescribed by a periodic function. The
numerical results given by graphs of the velocity as the function of time in the point
in the domain were presented.

For the future work, extending this unsteady simulation for generalized Oldroyd-B
fluids flow will be considered. The dual-time stepping method will be used.
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chodský (Eds.), Proceedings of Programs and Algorithms of Numerical Mathe-

matics 16, pp. 112–117. IM ASCR, Prague, 2013.

[11] LeVeque, R.: Finite-volume methods for hyperbolic problems. Cambridge Uni-
versity Press, 2004.

[12] Matos, H.M. and Oliveira, P. J.: Steady flows of constant-viscosity viscoelastic
fluids in a planar T-junction. Journal of Non-Newtonian Fluid Mechanics 213

(2014), 15–26.

[13] Poole, R. J., Haward, S. J., and Alves, M.A.: Symmetry-breaking bifurcations in
T-channel flows: effects of fluid viscoelasticity. Procedia Engineering 79 (2014),
28–34.

[14] Rabby, M.G., Razzak, A., and Molla, M.M.: Pulsatile non-Newtonian blood
flow through a model of arterial stenosis. Procedia Engineering 56 (2013),
225–231.
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