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BOUNDEDNESS IN A FULLY PARABOLIC CHEMOTAXIS SYSTEM
WITH SIGNAL-DEPENDENT SENSITIVITY

AND LOGISTIC TERM∗

MASAAKI MIZUKAMI†

Abstract. This paper deals with the chemotaxis system with signal-dependent sensitivity and
logistic term

ut = ∆u−∇ · (uχ(v)∇v) + µu(1− u),

vt = ∆v + u− v

in Ω×(0,∞), where Ω is a bounded domain in Rn (n ≥ 2) with smooth boundary, µ > 0 is a constant
and χ is a function generalizing

χ(s) =
K

(1 + s)2
(K > 0, s > 0).

In the case that µ = 0 global existence and boundedness were established under some conditions
([14]); however, conditions for global existence and boundedness in the above system have not been
studied. The purpose of this paper is to construct conditions for global existence and boundedness
in the above system.
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1. Introduction. Chemotaxis is the property such that species move towards
higher concentration of a chemical substance when they plunge into hunger. The
following problem which describes the movement of species with chemotaxis

ut = ∆u−∇ · (uχ(v)∇v) + µu(1− u), vt = ∆v + u− v,

where χ is a function and µ ≥ 0 is a constant, is called a Keller–Segel system or a
chemotaxis system, and is studied intensively. The function χ appearing in the above
problem is called signal-dependent sensitivity, and examples of this function χ are as
follows: χ(s) = K (constant), χ(s) = K

s (singular), χ(s) = K
(1+s)2 (regular) for s > 0

with some constant K > 0. Previous works which deal with the constant sensitivity
can be found in [2, 7, 8, 15, 18, 19]; the singular sensitivity is treated in [3, 5, 6, 9, 10];
we can find works related to the regular sensitivity in [5, 6, 11, 13, 14, 16, 17, 20];
variation of chemotaxis systems are in [1]. Here we focus on the case that χ is a
function generalizing the regular sensitivity:

χ(s) ≤ K

(a+ s)k
(s > 0) (1.1)

with some constants a ≥ 0, k > 1 and K > 0. In a mathematical view, one of
difficulties caused by the sensitivity function χ is to deal with the additional term
uχ′(v)|∇v|2 which does not appear in the case that χ is a constant. In the case that
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µ = 0, by using an energy estimate to overcome the difficulties of the sensitivity
function, under the condition that χ fulfils (1.1) with some constants a ≥ 0, k > 1
and K > 0 satisfying

K < k(a+ η)k−1

√
2

n
, (1.2)

where η is a constant defined as

η := sup
τ>0

(
min

{
e−2τ min

x∈Ω
v0(x), c0‖u0‖L1(Ω)(1− e−τ )

})
≥ 0

(see [4, 14]), global existence and boundedness were established ([14]). Recently,
Fujie–Senba [5, 6] established conditions for global existence and boundedness in a
problem generalizing the chemotaxis system with µ = 0. More related works which
deal with a two-species chemotaxis system with competitive kinetics can be found in
[11, 12, 13, 16, 17, 20]; global existence and boundedness are in [11, 13, 16, 17, 20];
asymptotic behavior is shown in [11, 12].

In summary, the conditions (1.1)–(1.2) lead to global existence and boundedness
in the chemotaxis system with µ = 0. However, the case that µ > 0 has not been
studied. The purpose of this work is to derive conditions for global existence and
boundedness in the chemotaxis system.

In this paper we consider the chemotaxis system with signal-dependent sensitivity
and logistic term

ut = ∆u−∇ · (uχ(v)∇v) + µu(1− u), x ∈ Ω, t > 0,

vt = ∆v + u− v, x ∈ Ω, t > 0,

∇u · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.3)

where Ω is a bounded domain in Rn (n ≥ 2) with smooth boundary ∂Ω and ν is the
outward normal vector to ∂Ω; µ > 0 is a constant; the initial data u0 and v0 are
assumed to be nonnegative functions. The unknown function u(x, t) represents the
population density of species and v(x, t) shows the concentration of the substance at
place x and time t. As to the sensitivity function χ, we are interested in functions
generalizing

χ(s) =
K

(1 + s)2
(s > 0),

where K > 0 is a constant.
In order to achieve our purpose we shall suppose that χ satisfies that

χ ∈ C1+λ((0,∞)) and 0 ≤ χ(s) ≤ K

(a+ s)k
(s > 0) (1.4)

with some λ > 0, k > 1, a > 0 and K > 0 fulfiling

K < kak−1

√
2

n
. (1.5)

Now the main result reads as follows.
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Theorem 1.1. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with smooth boundary
and let µ > 0. Assume that χ satisfies (1.4) with some λ > 0, k > 1, a > 0, K > 0
fulfiling (1.5). Then for any u0, v0 satisfying

0 ≤ u0 ∈ C(Ω) \ {0} and 0 ≤ v0 ∈W 1.q(Ω) \ {0} (1.6)

with some q > n, there exists an exactly one pair (u, v) of positive functions

u, v ∈ C(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞))

which solves (1.3). Moreover, the solution (u, v) is uniformly bounded, i.e., there
exists a constant C > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q(Ω) ≤ C

for all t > 0.

Here we give one remark: The condition (1.5) is more restricted condition than
(1.2) except the case that η = 0 (which is the case that minx∈Ω v0(x) = 0). The
reason is that it is difficult to see the uniform-in-time lower estimate for v because of
lacking information about the lower estimate for u. Moreover, the condition (1.5) is
independent of µ > 0: The question “can the logistic term relax conditions for global
existence and boundedness?” is still open problem in (1.3).

The strategy for the proof of Theorem 1.1 is to construct the Lp-estimate for u
with some p > n

2 . One of keys for this strategy is to derive the inequality

d

dt

∫
Ω

upϕ(v) ≤ c
∫

Ω

upϕ(v)− µp
∫

Ω

up+1ϕ(v)

for some constant c > 0, where

ϕ(s) := exp

{
−r
∫ s

0

1

(a+ τ)k
dτ

}
(s ≥ 0)

with some r > 0. Thanks to this strategy, we obtain∫
Ω

upϕ(v) ≤ C

with some C > 0, which together with the lower estimate for ϕ implies the Lp-
estimate for u. Thus in light of the well-known semigroup estimates, we can attain
the L∞-estimate for u.

2. Proof of the main result. In this section we will prove Theorem 1.1. We
first recall the well-known result about local existence of solutions to (1.3) (see e.g.,
[1, Lemma 3.1]).
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Lemma 2.1. Assume that χ satisfies (1.4) with some λ > 0, k > 1, a > 0, K > 0
and the initial data u0, v0 fulfil (1.6) for some q > n. Then there exist Tmax ∈ (0,∞]
and exactly one pair (u, v) of positive functions

u ∈ C(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈ C(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ∩ L∞loc([0, Tmax);W 1,q(Ω))

which solves (1.3) in the classical sense. Moreover, if Tmax <∞, then

lim
t↗Tmax

(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q(Ω)) =∞.

In the following, we let (u, v) be the solution of (1.3) on [0, Tmax) as in Lemma
2.1. For the proof of Theorem 1.1 we will recall a useful fact to derive the L∞-estimate
for u.

Lemma 2.2. Assume that the solution (u, v) of (1.3) satisfies

‖u(·, t)‖Lp(Ω) ≤ C(p) (2.1)

for all t ∈ (0, Tmax) with some p > n
2 and C(p) > 0. Then there exists a constant

C ′ > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q(Ω) ≤ C ′

for all t ∈ (0, Tmax).

Proof. The same argument as in the proof of [1, Lemma 3.2] yields this result.

Thanks to Lemmas 2.1 and 2.2 we will only make sure that the Lp-estimate for
u holds with some p > n

2 to show global existence and boundedness of solutions to
(1.3). To establish (2.1) we introduce the functions g and ϕ by

g(s) := −r
∫ s

0

1

(a+ τ)k
dτ, ϕ(s) := exp{g(s)} (s ≥ 0), (2.2)

where r > 0 is a constant fixed later. Here we note from straightforward calculations
that

ϕ(s) = Cϕ exp

{
r

(k − 1)(a+ s)k−1

}
with Cϕ = exp{−r(k − 1)−1a−k+1} > 0. Now we shall prove the following inequality
by using the test function ϕ(v).

Lemma 2.3. Assume that χ satisfies (1.4) with some λ > 0, k > 1, a > 0, K > 0.
Then there exists c > 0 such that

d

dt

∫
Ω

upϕ(v) ≤
∫

Ω

upHr(v)ϕ(v)|∇v|2 + c

∫
Ω

upϕ(v)− µp
∫

Ω

up+1ϕ(v), (2.3)

where Hr is the function defined by

Hr(s) := − kr

(a+ s)k+1
+

(
p(p− 1)K2

4
+

r2

p− 1

)
1

(a+ s)2k
(2.4)
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for s ≥ 0.

Proof. Let p ≥ 1. From (1.3) we have

d

dt

∫
Ω

upϕ(v) = p

∫
Ω

up−1ϕ(v)∇ · (∇u− uχ(v)∇v) + µp

∫
Ω

upϕ(v)(1− u)

+

∫
Ω

upϕ′(v)(∆v − v + u). (2.5)

Then integration by parts derives

p

∫
Ω

up−1ϕ(v)∇ · (∇u− uχ(v)∇v) +

∫
Ω

upϕ′(v)∆v

= −p
∫

Ω

∇(up−1ϕ(v)) · (∇u− uχ(v)∇v)−
∫

Ω

∇(upϕ′(v)) · ∇v

= −p(p− 1)

∫
Ω

up−2ϕ(v)|∇u|2 +

∫
Ω

up−1 (p(p− 1)ϕ(v)χ(v)− 2pϕ′(v))∇u · ∇v

+

∫
Ω

up(−ϕ′′(v) + pϕ′(v)χ(v))|∇v|2. (2.6)

Due to the Young inequality, we infer that∫
Ω

up−1 (p(p− 1)ϕ(v)χ(v)− 2pϕ′(v))∇u · ∇v

≤ p(p− 1)

∫
Ω

up−2ϕ(v)|∇u|2 +

∫
Ω

up
(p(p− 1)ϕ(v)χ(v)− 2pϕ′(v))2

4p(p− 1)ϕ(v)
|∇v|2. (2.7)

Thus a combination of (2.5), (2.6) and (2.7) yields that

d

dt

∫
Ω

upϕ(v) ≤
∫

Ω

upFϕ(v)|∇v|2 + µp

∫
Ω

upϕ(v)(1− u) +

∫
Ω

upϕ′(v)(−v + u),

(2.8)

where

Fϕ(s) := −ϕ′′(s) +
p(p− 1)

4
χ(s)2ϕ(s) +

pϕ′(s)2

(p− 1)ϕ(s)
(s ≥ 0).

Noting that

ϕ′(s) = g′(s)ϕ(s) and ϕ′′(s) = g′′(s)ϕ(s) + g′(s)2ϕ(s) (s ≥ 0),

we can rewrite the function Fϕ(s) as

Fϕ(s) =

(
−g′′(s) +

p(p− 1)

4
χ(s)2 +

g′(s)2

p− 1

)
ϕ(s) (s ≥ 0).

Recalling by (2.2) that

g′(s) =
−r

(a+ s)k
and g′′(s) =

rk

(a+ s)k+1
(s ≥ 0),

we obtain from (1.4) that

Fϕ(s) ≤ Hr(s)ϕ(s) for all s ≥ 0, (2.9)
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where Hr is defined as (2.4). Therefore we see from (2.8) together with (2.9) that

d

dt

∫
Ω

upϕ(v) ≤
∫

Ω

upHr(v)ϕ(v)|∇v|2 + µp

∫
Ω

upϕ(v)(1− u)− r
∫

Ω

upϕ(v)
(−v + u)

(a+ v)k
.

We finally verify from the boundedness of the function s 7→ s
(a+s)k

on [0,∞) (k > 1)

and the positivity of u, v and ϕ that there is a constant c1 > 0 satisfying

−r
∫

Ω

upϕ(v)
(−v + u)

(a+ v)k
≤ c1

∫
Ω

upϕ(v),

and thus we obtain (2.3).

Now we shall confirm the following inequality which enables us to see the Lp-
boundedness of u.

Lemma 2.4. Assume that (1.4) and (1.5) are satisfied with some λ > 0, k > 1,
a > 0 and K > 0. Then there exist p > n

2 and r > 0 such that

Hr(s) ≤ 0 for all s ≥ 0, (2.10)

where Hr is defined as (2.4), which implies that

d

dt

∫
Ω

upϕ(v) ≤ c
∫

Ω

upϕ(v)− µp
∫

Ω

up+1ϕ(v) (2.11)

holds.

Proof. The same argument as in the proof of [14, Lemma 4.1] with ε = 0 leads to
(2.10). Moreover, from a combination of Lemma 2.3 and (2.10) we obtain (2.11).

Now we are ready to show the Lp-estimate for u. By using an argument similar
to that in the proof of [13, Lemma 3.2] we can verify the following lemma.

Lemma 2.5. Assume that (1.4) and (1.5) are satisfied with some λ > 0, k > 1,
a > 0 and K > 0. Then there exist p > n

2 and C > 0 such that

‖u(·, t)‖Lp(Ω) ≤ C

for all t ∈ (0, Tmax).

Proof. From Lemma 2.4 we obtain (2.11) with some p > n
2 and r > 0. We shall

show the Lp-estimate for u by using (2.11). We first note from the definition of ϕ (see
(2.2)) that

Cϕ ≤ ϕ(s) ≤ 1 (s ≥ 0). (2.12)

Noticing from the Hölder inequality and (2.12) that∫
Ω

upϕ(v) ≤
(∫

Ω

ϕ(v)

) 1
p+1
(∫

Ω

up+1ϕ(v)

) p
p+1

≤ |Ω|
1

p+1

(∫
Ω

up+1ϕ(v)

) p
p+1

,

we infer from (2.11) that

d

dt

∫
Ω

upϕ(v) ≤ c
∫

Ω

upϕ(v)− µp|Ω|−
1

p+1

(∫
Ω

upϕ(v)

) p+1
p

,
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which implies that there exists C > 0 satisfying∫
Ω

upϕ(v) ≤ C.

Therefore we obtain from (2.12) that∫
Ω

up ≤ CC−1
ϕ ,

which entails this lemma.

Proof of Theorem 1.1. Lemmas 2.2 and 2.5 directly lead to the conclusion of
Theorem 1.1.
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