
PANM 19

Marek Brandner; Petr Knobloch
Some remarks concerning stabilization techniques for convection–diffusion problems

In: Jan Chleboun and Pavel Kůs and Petr Přikryl and Miroslav Rozložník and Karel Segeth and Jakub Šístek and
Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Hejnice,
June 24-29, 2018. Institute of Mathematics CAS, Prague, 2019. pp. 35–46.

Persistent URL: http://dml.cz/dmlcz/703069

Terms of use:
© Institute of Mathematics CAS, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/703069
http://dml.cz


Programs and Algorithms of Numerical Mathematics 19
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Abstract: There are many methods and approaches to solving convection–
diffusion problems. For those who want to solve such problems the situation is
very confusing and it is very difficult to choose the right method. The aim of
this short overview is to provide basic guidelines and to mention the common
features of different methods. We place particular emphasis on the concept
of linear and non-linear stabilization and its implementation within different
approaches.
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1. Introduction

Convection and/or diffusion govern several important phenomena in physics and
engineering, for example, heat convection and conduction, propagation of pollutants,
compressible and incompressible fluid flows (described by the Euler and Navier–
Stokes equations). The corresponding equations have fundamentally different prop-
erties than the Poisson equation. The convection-dominated phenomena are char-
acterized by skew-symmetric differential operators and solutions of this type of
problems contain sharp layers (contact discontinuities, shock waves, boundary lay-
ers). The standard finite difference method (FDM), finite volume method (FVM)
and Galerkin finite element method (FEM) produce unstable discretizations in the
convection-dominated regime. For the Poisson equation, the Galerkin finite element
approach minimizes the error in the energy norm. But this is not true for other cases
(see [5]). In order to cure these deficiencies, many stabilization techniques have been
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proposed with the aim to remove (or to diminish) spurious oscillations without lead-
ing to excessive smearing of discontinuities or layers. Numerical solution of the
convection–diffusion equations has been the subject of substantial controversy and
criticism (see [6]). The problem is still a challenge and much research in this field
is needed. It is possible to find formulations as a never-ending story or the 30 years
war (see [22] and [10]). This article is a very short and incomplete survey of the
techniques used in this field.

The rest of the paper is organized as follows. In Section 2 basic linear methods for
problems with slowly varying solutions are presented. Section 3 is devoted to linear
methods for problems with rapidly varying solutions. Next, in Section 4, non-linear
techniques are discussed. Finally, Section 5 contains concluding remarks.

2. Linear methods for problems with slowly varying solutions

Consider the finite difference method for simple convection problems in the form

aqx = f, qt + aqx = f.

Here q = q(x) : R → R or q = q(x, t) : R × R
+
0 → R is the unknown function

we wish to determine, a ∈ R is a given constant and f = f(x) : R → R or
f = f(x, t) : R × R

+
0 → R is a given source of the quantity q. Subscripts are used

to denote partial derivatives with respect to x and t. In order to have the classical
or weak solution for this problem, the data have to satisfy certain properties that we
do not discuss here. To discretize the above equations, we introduce the following
notation:

∆x > 0, xj = j∆x, j ∈ Z, ∆t > 0, tn = n∆t, n ∈ N0,

Qj ≈ qj = q(xj), fj = f(xj), Qn
j ≈ qn

j = q(xj , tn), fn
j = f(xj , tn).

Let us first consider two basic schemes for the pure convection problem

a
Qj+1 − Qj−1

2∆x
= fj ,

Qn+1
j − Qn

j

∆t
+ a

Qn
j+1 − Qn

j−1

2∆x
= fn

j .

These schemes are not Lax-Richtmyer stable (linearly stable), i.e., they are not con-
vergent. Moreover, they produce oscillatory solutions. The simplest remedy is to
use a one-sided finite difference to approximate the convective term, i.e.,

a
Qj − Qj−1

∆x
= fj ,

Qn+1
j − Qn

j

∆t
+ a

Qn
j − Qn

j−1

∆x
= fn

j (if a > 0). (1)

This is the well-known first-order upwind method. In the time-dependent case, it is
also possible to apply the Lax–Friedrichs method

Qn+1
j − 1

2
(Qn

j+1 + Qn
j−1)

∆t
+ a

Qn
j+1 − Qn

j−1

2∆x
= fn

j , (2)
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or the Lax–Wendroff method

Qn+1
j − Qn

j

∆t
+ a

Qn
j+1 − Qn

j−1

2∆x
−

a2∆t

2

Qn
j+1 − 2Qn

j + Qn
j−1

(∆x)2
= 0 (if f = 0).

The schemes (1) and (2) can be also rewritten as central schemes with artificial
diffusion:

Qn+1
j − Qn

j

∆t
+ a

Qn
j+1 − Qn

j−1

2∆x
−

a∆x

2

Qn
j+1 − 2Qn

j + Qn
j−1

(∆x)2
= fn

j ,

resp.
Qn+1

j − Qn
j

∆t
+ a

Qn
j+1 − Qn

j−1

2∆x
−

(∆x)2

2∆t

Qn
j+1 − 2Qn

j + Qn
j−1

(∆x)2
= fn

j .

Thus, the above schemes introduce a certain amount of numerical dissipation (dif-
fusion, viscosity). An example of a strictly non-dissipative method is the leapfrog
scheme

Qn+1
j − Qn−1

j

2∆t
+ a

Qn
j+1 − Qn

j−1

2∆x
= fn

j .

Then the numerical solution is not smeared and the scheme is Lax-Richtmyer sta-
ble but it leads to a more pronounced dispersion error (caused by the fact that the
phase errors are different for different frequencies). Note that a phase error is gener-
ally present for any numerical scheme. For more complicated problems it is usually
very difficult or even impossible to construct non-dissipative stable schemes. Never-
theless, a certain amount of numerical dissipation may be of advantage since small
disturbances in the numerical solution are then damped. Therefore, schemes with
numerical dissipation are often preferred.

Alternatives to the schemes (1) are the schemes (again for a > 0)

a
Qj − Qj−1

∆x
=

1

2
(fj−1 + fj),

Qn+1
j − Qn

j

∆t
+ a

Qn
j − Qn

j−1

∆x
=

1

2
(fn

j−1 + fn
j ), (3)

which are motivated by the fact that the steady-state upwind scheme in (3) is second-
order accurate.

For the convection–diffusion equations

aqx − bqxx = f, qt + aqx − bqxx = f,

where b > 0 is a given constant, we can use the central schemes

a
Qj+1 − Qj−1

2∆x
− b

Qj+1 − 2Qj + Qj−1

(∆x)2
= fj , (4)

resp.
Qn+1

j − Qn
j

∆t
+ a

Qn
j+1 − Qn

j−1

2∆x
− b

Qn
j+1 − 2Qn

j + Qn
j−1

(∆x)2
= fn

j . (5)
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The scheme (4) is stable if |a|∆x/2b ≤ 1, i.e., if the approximated solution does
not contain boundary layers. This stability condition guarantees the validity of
the discrete maximum principle. The scheme (5) is L2 stable for b∆t/(∆x)2 ≤ 1

2
.

The L2 stability does not exclude that, for some frequencies, the amplitudes of the
numerical solution grow exponentially, which does not correspond to the behaviour
of the exact solution. Therefore, one usually requires the scheme to be strongly L2

stable for which the additional condition ∆t ≤ 2b/a2 is sufficient.
It is also possible to use the standard Galerkin finite element method or the finite

volume method. Then we obtain similar stability bounds. The FEM and FVM are
more suitable for general cases (complex geometries). The schemes described above
and their generalizations are generally suitable for problems with slowly varying
solutions, i.e., without layers.

3. Linear methods for problems with rapidly varying solutions

Solutions of problems governed by convection and diffusion may contain bound-
ary and interior layers (convection–diffusion equations, incompressible Navier–Stokes
equations), contact discontinuities (pure convection equations), shock waves (non-
linear hyperbolic equations like the Burgers equation or Euler equations), shock
waves and boundary layers (compressible Navier–Stokes equations). Flows of viscous
fluids (described by the Navier–Stokes equations) are often turbulent. Solutions of
all the above-mentioned problems are rapidly varying, at least in some regions of the
computational domain.

In this section we focus on linear schemes, i.e., schemes that are linear when
applied to a linear partial differential equation.

Due to the presence of layers it is useful to introduce different concepts of conver-
gence. One defines the formal accuracy or consistency, i.e., accuracy or consistency
for fixed b outside boundary and interior layers. One can also consider uniform con-
vergence (uniform with respect to b) outside interior and boundary layers. Sometimes
the concept of uniform convergence (with respect to b) on the whole computational
domain is used (see [19]).

For problems with non-smooth and rapidly varying solutions, some numerical sta-
bilization is crucial. The stabilization is added for three distinct purposes (see [15]):

• to eliminate or to suppress high-frequency modes that are not resolved and
contaminate the solution;

• to enhance stability and convergence to steady state;

• to prevent oscillations at discontinuities (contact discontinuities, shock waves)
or layers.

38



3.1. Finite difference method

3.1.1. Steady-state case

The standard second-order finite difference scheme (4) described above is based
on central differences (for both convection and diffusion terms). This scheme is un-
stable for convection-dominated case (and unstable in pure convection case). As we
mentioned, the stability condition is |a|∆x/2b ≤ 1. Since this condition is often too
restrictive, many alternative schemes have been developed. The simplest possibility
is to use a one-sided first-order finite difference for the convective term and the central
second-order difference for the diffusion term. This leads to a monotonicity preserv-
ing scheme which is only of the first order outside layers. One can also use other
upwind schemes – these schemes are not generally maximum principle preserving
but they are more stable than central schemes. Stoyan (see [21]) proposed a scheme
which is second-order accurate outside boundary layers independently of b. This
scheme is a generalized version of the Abrahamsson-Keller-Kreiss scheme originating
in 1974, see [19]. High-order maximum principle satisfying schemes were proposed,
e.g., by Berger et al. (see [2]). Uniformly convergent methods were also proposed,
e.g., the Il’in-Allen-Southwell scheme which is of the second order for fixed b and
first-order uniformly convergent on the whole domain (see [19]). There are also uni-
formly convergent methods based on non-uniform meshes, in particular, on graded
and piecewise equidistant meshes (Bakhvalov, Shishkin) (see [19]).

3.1.2. Evolutionary case

The finite difference scheme (5) satisfies the discrete maximum principle if
|a|∆x/2b ≤ 1 and ∆t ≤ (∆x)2/2b. These conditions often require very fine meshes
and small time steps. As a remedy, an upwind discretization of the convection term
can be again applied. The resulting method is stable and first-order accurate. High-
order methods are L2 stable but can produce oscillatory numerical results (we recall
the well known Godunov barrier theorem for the convection case). In case of linear
convection with a constant coefficient it is possible to combine the Lax-Wendroff and
Beam-Warming method to obtain a third-order L

∞
stable method. Note that odd-

order schemes are usually preferred, e.g., Leonard QUICKEST (Quadratic Upstream
Interpolation for Convective Kinematics with Estimated Streaming Terms) scheme,
see [13], because the leading error term contains an even order derivative (i.e., the
leading error term is dissipative, see [4]).

3.2. Finite volume method

3.2.1. Steady-state case

Finite volume methods stem from integral conservation or balance relations over
a control volume. They are based on the approximation of fluxes (the approximations
are called numerical fluxes). These techniques are very often used in computational
fluid dynamics. They preserve the conservation property on the discrete level (up
to machine precision). There are many finite volume schemes, e.g., schemes based
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on central numerical fluxes, upwind fluxes (these schemes lead to standard finite
difference schemes on uniform meshes) or the Il’in-Allen-Southwell scheme called
Scharfetter-Gummel scheme. The benefits of the finite volume method are more
pronounced in 2D and 3D cases.

3.2.2. Evolutionary case

It is very useful to formulate the finite volume method for the evolutionary case
in the RSA fashion (Reconstruct - Solve - Average, see [14]):

R Reconstruct a (piecewise polynomial) function defined for all x, from the cell
averages.

S Solve the convection part of the equation exactly (or approximately) with this
initial data to obtain a solution on the next time level (i.e., solve the so-
called Riemann problems). This solution is used to compute numerical fluxes.
Compute the numerical viscous fluxes.

A Average the solutions of the Riemann problems over each grid cell to obtain
new cell averages (or use the numerical fluxes to compute the cell averages).

One obtains different schemes depending on the reconstruction technique, Riemann
solver and numerical fluxes. In the 1D case the derived schemes are analogous to the
finite difference schemes. Riemann solvers are an efficient tool to evolve non-smooth
data between time steps (or to evolve unresolved fine scales for given coarse scale
data, see [23]). But we have also to mention the great Riemann solver debate – the
discussion devoted to the drawbacks of the methods based on 1D Riemann solvers.

3.3. Finite element method

In the 1D case, the standard Galerkin finite element method based on continuous
piecewise linear approximation on an equidistant mesh generates the central finite
difference scheme (4) for constant data. Many types of stabilized finite element
methods of upwind type have been developed. For example, one can switch to
a Petrov-Galerkin method with asymmetric basis functions in the test function space
or one can use the finite volume idea to discretize the convective term. This method
is stable and of the first order (i.e., the formal order is equal to 1). Many other
stabilized finite element methods were developed by adding further terms to the
variational formulation.

3.3.1. SUPG method (SDFEM)

Consider the steady-state convection–diffusion–reaction problem

−bqxx + aqx + cq = f in (0, 1), u(0) = u(1) = 0,

40



where, for simplicity, the coefficients a, b, and c are constant and f ∈ L2(0, 1).
Moreover, b > 0. The weak solution q belongs to the space V = H1

0 (0, 1) and
satisfies the variational formulation

A(q, v) = F (v) ∀v ∈ V,

where A(q, v) = b(qx, vx) + (aqx + cq, v), F (v) = (f, v), with (·, ·) denoting the inner
product in the space L2(0, 1).

Now we apply the finite element method. We divide the interval (0, 1) into M
subintervals of equal length h and denote the corresponding nodes by xj = jh,
j = 0, 1, . . . , M . Let Vh ⊂ V be the space of continuous piecewise polynomial
functions on this mesh. Then the Galerkin FEM defines a numerical solution qh ∈ Vh

satisfying
A(qh, vh) = F (vh) ∀vh ∈ Vh.

If Vh consists of piecewise linear functions, then this approach generates a cen-
tral finite difference scheme (if c = 0, it is the scheme (4) with ∆x = h and
Qj = qh(xj)). Hence the Galerkin method is not appropriate in the convection-
dominated regime. A possible remedy is to use the Streamline Upwind/Petrov–
Galerkin (SUPG) method, also called Streamline Diffusion FEM (SDFEM): find
qh ∈ Vh such that

Ah(qh, vh) = Fh(vh) ∀vh ∈ Vh,

where

Ah(q, v) = A(q, v) +

M
∑

i=1

xi
∫

xi−1

(−bqxx + aqx + cq)δhavx dx,

Fh(v) = F (v) + (f, δhavx),

and δh is a non-negative stabilization parameter. This approach is frequently used
since it combines good stability properties with a high accuracy outside the layers. In
particular, this method is consistent, i.e., the exact solution satisfies Ah(q, vh)=Fh(vh)
for any vh ∈ Vh.

The order of the method depends on the choice of the artificial diffusion (i.e., on
the choice of δh) and on the degree of polynomials used for defining the space Vh.
The stabilization parameter δh depends on the Péclet number Pe = |a|h/2b and can
be chosen, e.g., as follows (see [19])

δh =















C1
h2

b
for Pe < 1,

C2
h

|a|
for Pe ≥ 1,

δh =
h

2|a|

(

coth Pe −
1

Pe

)

.

The second choice leads to a uniformly convergent method. There are many other
linear stabilization techniques, e.g., VMS (Variational Multiscale Method), DRM
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(Differentiated Residual Method), RFB (Residual Free Bubbles), DEM (Discontinu-
ous Enrichment Method), CIP (Continuous Interior Penalty), GLS (Galerkin Least
Squares), LPS (Local Projection Stabilization), see [19], [8], [20].

3.3.2. Finite element method – evolutionary case

In the evolutionary case the solution may also have one or more interior layers
(caused by the initial and boundary conditions). The methods described in the
previous section can be applied. We can use, e.g., the Euler or Crank–Nicolson
scheme to discretize the time derivative. In case of residual-based methods the choice
of the stabilization parameter is more complicated (the convective term is combined,
i.e., it has the form qt + aqx). The stabilization parameter depends on the time step.
More suitable choices seem to be the CIP or LPS approaches.

3.3.3. DGFEM (Discontinuous Galerkin FEM)

This method is a combination of the Galerkin FEM and the Riemann solver
based approach applied to discontinuous piecewise polynomial approximations. The
first version of the method was formulated by Reed and Hill to solve the particle
transport problem (see [16]). The first-order version of DGFEM is identical to the
finite volume Godunov scheme (or more precisely to the version with the local Lax-
Friedrichs numerical flux). The stabilization procedure is implemented through the
numerical fluxes. There are many versions of the DGFEM both for steady-state
and evolutionary cases. The main advantages of the DGFEM are flexibility with
respect to the mesh, simple hp-adaptivity, and simple treatment of convective terms
and boundary conditions (see [19]). The method is also efficiently parallelizable.
The main disadvantage is that the number of degrees of freedom is larger than the
number of degrees of freedom in the case of FDM, FVM or FEM.

4. Non-linear methods for problems with rapidly varying solutions

In most cases, to remove or sufficiently suppress spurious oscillations without
introducing too much artificial diffusion, non-linear stabilizations have to be used.
There are many non-linear methods that have different properties: TVD (Total
Variation Diminishing), TVB (Total Variation Bounded), LED (Local Extremum
Diminishing), monotone or monotonicity preserving. The methods are well under-
stood in the 1D case, but in several spatial dimensions the situation is much more
complicated. For example, it is proven that TVD methods are at most of second
order in 1D and at most of first order in the multi-dimensional evolutionary case.
Development of high-order methods (i.e., methods that are of third or higher order)
for systems of equations in the multi-dimensional case is a very complex task, also
due to the fact that we do not have a sufficient theoretical background.

4.1. Non-linear stabilization techniques

There are different techniques for non-linear stabilization (developed originally
for FDM and FVM, see [7], [17]):
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• Slope limiter methods based on the RSA approach that is described above.
Non-linear stabilization is realized through the reconstruction with limiters
or (W)ENO (Weighted Essentially Non-Oscillatory) reconstruction. This ap-
proach is suitable together with the discontinuous approximation and can be
combined with (approximate) Riemann solvers.

• Flux limiter methods based on combining any low-order numerical flux and any
higher-order numerical flux. This approach appeared in the hybrid method of
Harten and Zwas and the FCT (Flux-Corrected Transport) method of Boris
and Book (see [3]).

• Artificial viscosity approach based on the von Neumann idea. This idea was
further developed by a number of authors in various forms.

However, the use of these procedures is not always straightforward and simple. Un-
fortunately, some of the above mentioned procedures are not free of parameter tuning.

4.2. Non-linear stabilizations in the finite element method

As we already mentioned, linear methods of higher order are not monotone, which
causes that numerical solutions are often polluted by spurious oscillations. There-
fore, various non-linear stabilizations have been proposed which are known as shock
capturing methods, discontinuity capturing methods or spurious oscillations at lay-
ers diminishing (SOLD) methods, see [9] for a review of approaches for steady-state
convection–diffusion equations. The aim of these approaches is to reduce or remove
spurious oscillations by adding an additional artificial diffusion term to a linear sta-
bilization method. The amount of this artificial diffusion depends on the unknown
numerical solution so that the resulting method is non-linear. The additional term
usually represents either isotropic or crosswind (i.e., orthogonal to the convection
direction) artificial diffusion, however, also approaches based on edge stabilization or
of LPS type can be found in the literature. For non-linear stabilizations, there are
considerably less theoretical results available than for linear methods; in some cases,
the solvability, error estimates or the validity of the discrete maximum principle were
proved.

Although the non-linear stabilizations often significantly improve solutions of
linear stabilization methods, they are generally not able to remove the spurious
oscillations completely. The only exceptions are methods satisfying the discrete
maximum principle which, however, usually lead to an unacceptable smearing of
the numerical solution. Some of the methods involve parameters which may be
adjusted to improve the quality of the solution. Unfortunately, it turns out, that
these parameters are non-constant in general and depend on the data and the grid
so that it is not clear how to choose them for more complicated problems in advance.
A possible remedy is to optimize the parameters in an automatic way by minimizing
a suitable target functional (see [11]). In this way, also the solutions provided by
linear stabilization methods can be significantly improved.
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A possible criticism of non-linear stabilizations stems from the fact that the
solution of the non-linear algebraic problems is often quite expensive in comparison
with the solution of linear problems. Nevertheless, most of the applications in which
convection dominates are modeled by non-linear partial differential equations and
then the use of a non-linear stabilization does not constitute a significant overhead.
In any case, the solution of non-linear algebraic problems requires the choice of
appropriate numerical approaches and it is not always easy to achieve a convergence
of the used solver.

4.3. Algebraic stabilization

There are many strategies to implement non-linear stabilizations of finite differ-
ence and finite volume methods (TVD, ENO, WENO, LED, FCT). In the case of
the Galerkin FEM the most common strategies are based on a modification of the
variational formulation or on enrichment the finite-dimensional basis. AFC (Alge-
braic Flux Correction) is an alternative approach that acts on the algebraic level,
i.e., on the level of discrete operators. The basic approach is an analogy of the FCT
scheme. For suitable limiter functions the AFC schemes satisfy the discrete maxi-
mum principle and linearity preservation on arbitrary meshes (see [12] and [1]). This
implies the preservation of second-order accuracy in smooth regions.

4.4. Multi-dimensional evolutionary problems

The Godunov-type finite-volume methods and their successors (which include
discontinuous Galerkin and (W)ENO schemes) are based on one-dimensional (ap-
proximate) Riemann solvers. But it is very difficult, if not impossible, to find a so-
lution to the multi-dimensional Riemann problem. We already mentioned several
times that no numerical method, even for linear scalar convection equation, can be
both monotone and better than first-order accurate. Instead of too complicated
high-order methods based on the multi-dimensional Riemann solvers, a number of
alternative approaches have been developed based on the continuous approximation
of the solution (see [18]). These approaches are Riemann solver-free. It is possible to
construct their non-linear versions that are of higher order. Such methods include,
e.g., RDS (Residual Distribution Schemes) based on the fluctuation splitting pro-
posed by Roe and Active Flux Schemes. Flux Vector Splitting schemes and kinetic
Boltzmann approach can also be used.

5. Conclusions

Linear stabilization can be accomplished by many techniques. Because of the Go-
dunov barrier theorem it is not possible to construct linear monotonicity preserving
schemes that are of higher (formal) order than 1 in the evolutionary convection case.
In the convection–diffusion case it seems that, in general, linear stabilizations are
able only to suppress spurious oscillations if layers should not be smeared too much.
The discontinuous approximation and Riemann based approach are not sufficient for
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a complete elimination of unphysical wiggles. However, these two algorithm com-
ponents play a very important role: the first component allows or simplifies stable
(constrained) L2 projection (averaging, reconstruction or limiting) and the second
one evolves unresolved fine scales. On the other hand, approximate Riemann solvers
or upwind techniques (partially based on wave averaging instead of wave evolving)
combined with averaging, reconstruction or L2 projection usually introduce a non-
negligible amount of the artificial dissipation.

To obtain higher-order monotonicity preserving schemes, non-linear discretiza-
tions have to be applied. There are also many non-linear approaches that are not
monotonicity preserving but considerably reduce spurious oscillations. The non-
linear techniques are of advantage also for first-order methods since they add arti-
ficial diffusion only in regions where it is required by the character of the solution
(in particular, in regions of layers, discontinuities and extrema) so that the resulting
approximate solutions do not suffer from excessive smearing. A drawback of these
methods may be the increased computational cost connected with the numerical
solution of the non-linear algebraic systems. However, when these techniques are
applied to non-linear problems, this issue is often of minor importance.
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