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Děkuji všem, kteří nám pomáhali při prováděni soutěže VII. ročníku
M0} zvláště pak těm, kteří přispěli tématy úloh nebo pomáhali tato
témata zpracovávat. Především děkuji svým spolupracovníkům z Mate-
matického ústavu ČSAV, soudruhům dr. M. Fiedlerovi, doc. Jos. Holu-
bářovi a Jiřímu Sedláčkovi; bez nich by se celá práce dala těžko usku-
tečnit. Oba poslední soudruzi spolu se s. dr. Zbyňkem Nádeníkem a se s.
VI. Macháčkem prováděli velmi pečlivě a uvážlivě všechny recensní J
práce a přispěli nemálo ke zlepšení rukopisu; s. VI. Macháčkovi děkuji
za vzorné narýsování obrázků. Můj vřelý dík patří dále doc. dr. Milanu
Kolibiarovi z Bratislavy, který tradičně provádí poslovenštění textu a
nemálo přispívá k zvýšení kvality řešeni. Redaktoru SPN v Praze Ja-
romíru Dubskému děkuji za vzornou pomoc při recensi a při provádění
korektur.

Na poli organizačním děkuji s. M. Jelínkovi z MŠK, zvláště za
různá jednání v MŠK.

Na závěr děkuji všem organizátorům MO, kteří mi zaslali vzorná
žákovská řešení.

V Praze dne 11. května 1959.
Rud. Zelinka

Za přispění spolupracovníků zpracoval Rudolf Zelinka
Recensovali docent Josef Holubář, Vlastimil Macháček,

dr. Zbyněk Nádeník a Jiří Sedláček



I. К PRŮBĚHU VII. ROČNÍKU
MATEMATICKÉ OLYMPIÁDY

1. Ve školním roce 1957/58 probíhal VII. ročník sou-
těže matematická olympiáda (zkratkou MO); byl určen
pro žáky našich středních škol a výběrových odborných
škol.

Podle jednotlivých ročníků jedenáctiletých a výběro-
vých škol byli žáci zařazeni do čtyř kategorií podle této
tabulky:

Kategorie CA DВ

Ročník střední školy 11 10 9 8

Ročník výběrové odborné
školy 3-4 12

2. Soutěž pořádalo ministerstvo školství a kultury
(MŠK) za spolupráce s Matematickým^ ústavem ČSAV
(MÚ ČSAV) a ústředním výborem Československého
svazu mládeže (ÚV ČSM). Soutěž řídil ústřední výbor
matematické olympiády (ÚVMO) spolu s krajskými
a okresními výbory matematické olympiády (KVMO,
OVMO).

Ústřední výbor MO (adresa: Praha II, Žitná 25,
tel. 24-11-93) byl složen takto:
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Předseda: Akademik Josef Novák.
Místopředseda: Akademik SAV Jur Hronec, profesor

přírodovědecké fakulty university J. Á. Komenského
v Bratislavě.

Jednatel: Rudolf Zelinka, vědecký pracovník MÚ
ČSAV v Praze.

Členové:

Anton Dubec, docent Vysoké školy pedagogické v Bra-
tislavě.

Ludmila Frantíkové, učitelka jedenáctileté střední
školy ve Vítkově u Opavy.

Dr. Karel Havlíček5 docent matematicko-fyzikální fa-
kulty Karlovy university v Praze.

Doc. Josef Holubář, vědecký pracovník MÚ ČSAV
v Praze.

Ladislav Hotový, pracovník poverenictva školství a kul-
tury v Bratislavě.

František Hradecký, odborný asistent Vysoké školy
pedagogické v Praze.

Dr. Karel Hruša, docent Vysoké školy pedagogické
v Praze.

Miloš Jelínek, ústřední inspektor ministerstva školství
a kultury v Praze.

Dr. Milan Kolibiar, docent přírodovědecké fakulty
university J. Á. Komenského v Bratislavě.

Jozef Krchňavý, učitel 2. jedenáctileté střední Školy
v Košicích.

Dr. Pírekj učitel osmileté střední školy v Brně.
Miroslav Šmidák, referent oddělení studující mládeže

v ústředním výboru ČSM v Praze.
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Dr. Miloslav Zedek, odborný asistent Vysoké školy pe-
dagogické v Olomouci.

Předsedy krajských výborů matematické
olympiády byli:

Dr. Josef Korous, docent Vysoké školy železniční
v Praze (město Praha).

Dr. Alfons Hyška, docent ČVUT v Praze (kraj Praž-
ský).

František Vejsada, učitel 2. jedenáctileté střední školy
v Českých Budějovicích (kraj Budějovický).

Oldřich Černý, učitel jedenáctileté střední Školy Julia
Fučíka v Plzni (kraj Plzeňský).

Miloslava Žáčková, krajská školní inspektorka v od-
boru školství a kultury rady KNV v Karlových
Varech (kraj Karlovarský).

Josef Porcal, učitel pedagogické školy v Teplicích (kraj
Ústecký).

Zdeněk Kalousek, učitel pedagogické školy v Liberci
(kraj Liberecký).

Josef Mend, učitel pedagogické školy v Hradci Králové
(kraj Hradecký).

Ludvík Kapička, učitel 1. jedenáctileté střední školy
v Pardubicích (kraj Pardubický).

Josef Svoboda, učitel jedenáctileté střední školy v Tře-
biči (kraj Jihlavský).

Josef Holčík, odborný asistent Vyšší pedagogické ško-
ly v Brně (kraj Brněnský).

Dr. Josef Široký, docent Vysoké školy pedagogické
v Olomouci (kraj Olomoucký).

Leo Krakówka, učitel průmyslové školy strojnické
v Gottwaldově (kraj Gottwaldovský).

Josef Andrys, vedoucí kabinetu matematiky při Kraj-
ském ústavu pro další vzdělávání učitelů v Ostravě
(kraj Ostravský).
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Jozef Kroupa, učitel 2. jedenáctileté střední školy
v Bratislavě (město Bratislava).

Dr. Milan Kolibiar, docent přírodovědecké fakulty
university J. Á. Komenského v Bratislavě (kraj
Bratislavský).

jfczef Drábik, učitel 2. jedenáctileté střední školy v Nit-
ře; později jej nahradil Adolf Heinisch, vedoucí
kabinetu matematiky při Krajském ústavu pro dal-
ší vzdělávání učitelů v Nitře (kraj Nitranský).

Dr. Cyril Palajy profesor Vysoké školy lesní a dře-
vařské ve Zvolenu (kraj Banskobystrický).

Ladislav Berger, učitel 1. jedenáctileté střední školy
v Žilině (kraj Žilinský).

Dr. Ján Jakubík, docent Vysoké školy strojní v Koši-
cích (kraj Košický).

Dr. Ernest Jucovič, odborný asistent Vyšší pedagogické
školy v Prešově (kraj Prešovský).

3. Soutěž v kategoriích В, C, D měla dvě kola, v ka-
tegorii A tři kola.

V průběhu I. kola, které mělo přípravný ráz, měly
účastníci soutčže za úkol v době od počátku listopadu
1957 do konce února 1958 řešit devět úloh; úspěšným
řešitelem se stal ten žák, který dobře rozřešil alespoň
6 z těchto úloh. Přitom organizační řád soutěže stanovil,
že počet řešitelů určité kategorie téže*školy nesmí pře-
kročit 10% celkového počtu] žáků * příslušných ročníků
této školy; výjimky mohl povolit jen příslušný KVMO.

Texty úloh I. kola byly uveřejněny ve zvláštním letáku,
který byl zaslán na školy. O zajištění soutěže pečoval na
každé škole referent matematické olympiády, a to ve spo-
lupráci s ředitelem školy, s ostatními učiteli matematiky
a se školní organizací ČSM nebo s pionýrskou organizací.

Úspěšní řešitelé I. kola pak soutěžili ve II. kole sou-
těže, které je závěrečné pro kategorie В, C, D. Úspěšné
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účastníky II. kola kategorie A mohl krajský výbor MO
přihlásit do III. celostátního kola.

II. kolo v kategoriích А, В, C se konalo v neděli
13. dubna 1958 v krajských městech; II. kolo kategorie D
bylo uspořádáno v neděli 20. dubna 1958 v okresních
městech. Žáci měli v průběhu čtyř hodin ze čtyř úloh
rozřešit alespoň dvě dobře.

Stalo se již tradičním zvykem, že výbor MO koná
při příležitosti II. soutěže kola s účastníky soutěže besedu.
Na besedě se žáci seznamují s podstatnými nedostatky,
které se v jejich řešeních vyskytly; dále dostávají in-
formace o studiu přírodních a technických věd na vyso-
kých školách a vůbec o významu matematických věd
na vysokých školách a o důležitosti těchto věd pro
socialistickou společnost. Přitom byli žáci seznamo-
váni s vhodnou studijní literaturou apod. V některých
místech provedli členové výborů s účastníky soutěže
II. kola exkurze do továren nebo navštívili divadelní
představení apod. Pedagogický dozor byl organizován ve
spolupráci s ČSM a se zástupci školských odborů rad
KNV a ONV.

4. Do celostátní soutěže III. kola (v kategorii A) při-
hlásily krajské výbory MO celkem 144 úspěšných ře-
šitelů II. kola; mezi nimi byl jeden žák 10. ročníku
střední školy, který se umístil v pořadí na prvním místě
mezi vítězi letošního ročníku. Z přihlášených žáků do
soutěže III. kola vybral podle organizačního řádu ústřední
výbor MO 80 nejlepších; mezi nimi bylo 12 dívek a mi-
mo jednoho žáka průmyslové školy to byli vesměs žáci
jedenáctiletých středních škol.

Soutěž III. kola se konala v sobotu dopoledne dne
24. května 1958 v budově Matematického ústavu Karlovy
university, a to za podmínek podobných podmínkám
II. kola soutěže. Téhož dne odpoledne se konala beseda
s účastníky soutěže; přítomni byli zástupci vědeckých
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ústavů, vysokých a středních škol, zástupci školských
institucí a zájemci z řad pražských středoškoláků.

Besedu řídil předseda UVMO akademik Josef Novák;
v úvodu besedy podal stručný přehled průběhu VII. roč-
niku soutěže a naznačil problematiku a perspektivu
příštího ročníku soutěže.

O studiu na matematicko-fyzikální fakultě Karlovy
university promluvil akademik Vojtěch Jarník. O vý-
známu matematiky pro studium na vysokých školách
technických pojednal dr. Alois Urban, profesor Českého
vysokého učení technického v Praze.

Obě přednášky vyslechli olympionici se zájmem a na
oba přednášející i na ostatní přítomné vysokoškolské
učitele vznesli řadu dotazů. Po živé diskusi poděkoval
předseda IJVMO všem účastníkům soutěže za jejich vy-
trvalou práci a přál jim v dalším studiu hodně úspěchů.
Dále vyslovil dík za vykonanou práci všem organizáto-
rům olympiády, zvláště pak ministerstvu školství a kul-
tury.

Na závěr rušného dne navštívili účastníci III. kola
divadelní představení „Obrácení Ferdiše Pištory“ v Di-
vadle komedie. Nedělní dopoledne dne 25. května 1958
věnovali olympionici prohlídce Prahy a prohlídce vý-
stavy archivních dokumentů na Pražském hradě; dopro-
vázeli je pracovníci ČSM.

^ Hostitelské úkoly obětavě převzal školský odbor rady
IJNV v Praze.
5. Protože se dosud jeví slabá účast slovenských žáků
v soutěži, provedli slovenští pracovníci ústředního vý-
boru MO řadu instruktáží o významu MO; od této zá-
služné práce mezi slovenskými učiteli matematiky oče-
kávají slovenští pracovníci UVMO i zvýšení úrovně vy-
učování matematice. Na tomto poli čeká všechny pra-
covniky MO další úkol; jde o to, jak pomáhat těm žákům,
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kterým se i při jejich nesporném nadání nedostane potřeb-
né předběžné průpravy ve škole. O těchto a podobných
otázkách jednal ústřední výbor MO (viz časopis Mate-
matika ve škole, roč. 1958, str. 123 a 418).
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II. ZPRÁVA O VÝSLEDCÍCH

JEDNOTLIVÝCH KOL SOUTĚŽE

A. Soutěž I. kola

Počet účastníků v soutěži I. kola v kategoriích А, В, C
je patrný z tabulky č. 1.

O účasti žáků v kategorii D informuje tabulka č. 2.
Počet účastníků I. kola VII. ročníku je poněkud menší

než v předchozích ročnících, což platí i o kategorii D.
Tato situace je však vyvážena tím, že se kvalita účastníků
zlepšuje. Rovněž tu má vliv desetiprocentní kvóta, která
byla organizačním řádem pro jednotlivé školy stanovena
(pokud jde o celkový počet účastníků vysílaných školou do
soutěže); měla za cíl zabránit masové účasti v soutěži a zá-
roveň sledovat náležité hospodářské využití prostředků
věnovaných na soutěž.

Zatím se vyvinula situace, že se žáci výběrových od-
borných škol účastní soutěže celkem výjimečně. Z celko-
vého počtu účastníků I. kola v kategoriích A až C řešilo
asi 30 % úspěšně, v kategorii D asi 60 % účastníků.

Účast dívek v soutěži je celkem ustálená (asi 30%
v kategoriích А, В, C a asi 50 % v kategorii D).

Účastníci soutěže vypracovali v I. kole v kategoriích
А, В, C asi 33 000 řešení úloh, z nichž asi 20 000 bylo
úspěšných, tedy přibližně 60%. V kategorii D bylo po-
dáno asi 80 000 řešení, z nichž bylo asi 60 000 úspěš-
ných, tedy asi 75%; toto číslo odpovídá celkem cílům,
která má kategorie D plnit podle organizačního řádu,
který vstupuje v platnost od VIII. ročníku soutěže.
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Tabulka č. 1

Přehledpočtu účastníků I. kola podle krajů v kategoriích А, В, C*)

Kate-
gorie

Kate-
gorie

Kate-
gorie Celkem

Kraj A В C

P u p и p и p и

Praha město . . 125 39 133 32 248 103 506 174

Praha venkov . . 53 69 179 106 33 228 59

České Budějovice . . 6853 17 22 100 25 221 64

Plzeň 5340 11218 32 20516 66

Karlovy Vary 1819 567 15 938 30

Ústí nad Labem . . 3733 877 14 1575 26

Liberec 5352 1078 14 28 212 50

Hradec Králové . . 6269 26 22 108 45 239 93

Pardubice 7 3327 9 92 52 152 68

Jihlava 6354 24 99 5322 99216

114Brno 34 15786 29 59 357 122

Olomouc 8156 31 28 147 62 284 121

Gottwaldov 78 30 140 3566 15 284 80

Ostrava 110 25105 221 76 436 13736

Bratislava město . . 74 17 103 23 181 48 358 88

Bratislava venkov . . 5834 28 108 20 200 535

Nitra 60 72 17 109 20 241 414

Banská Bystrica . . 50 78 26 105 20 233 5711

Žilina 10395 30 169 ! 18 162 55 426

Košice 120 3326 46 48 104 19

27Prešov 52 15 11628 3 36 9

Celkem 1205 342 1534 429 2545 820 5284 1591

P = celkový počet účastníků, U = počet úspěšných řešitelů.
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Tabulka č. 2

Přehled počtu účastníků I. kola podle krajů v kategorii D

Kategorie D
Kraj

P U

Praha město 6871 006

Praha venkov 303555

České Budějovice 391595

Plzeň 358497

Karlovy Vary 138274

Ústí n. Labem 199389

Liberec 284480

Hradec Králové 231337

Pardubice 291411

Jihlava 252399

629Brno 1 048

525Olomouc 753

Gottwaldov 508740

Ostrava 5261 059

Bratislava město 200347

Bratislava venkov 199408

Nitra . 272532

Banská Bystrica 217353

Žilina 312473

Košice 132230

Prešov 71124

Celkem 11 010 6 725
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В. Soutěž II. kola

Přehled o účasti a úspěšných řešitelích II. kola po-
dávají tabulky č. 3 a 4. Některé kraje mají dosud ne-
uspokojivé výsledky. Klasifikace je nyní celkem rovno-
měrná, což platí zvláště o kategorii A; jednotnost klasi-
fikace si krajské výbory MO zajišťují instruktážemi recen-
sentů, zvláště pokud jde o kategorii D.

V kategoriích A až C se v II. kole umístilo asi 60%
účastníků (v kategoriích А, В jen asi 50%), v kategorii
D asi 70%. Mezi úspěšnými řešiteli II. kola v katego-
riích A až C bylo asi 30% dívek, v kategorii D asi 48%.
Udržuje se již tradice, že průběhem jednotlivých ročníků
projde většina účastníků všemi kategoriemi soutěže.

Deset nejlepších úspěšných řešitelů II. kola v katego-
riích А, В, C v každém kraji bylo odměněno věcnými
cenami; stejně tomu bylo v kategorii D v rámci okresů.
Vedle toho dostali všichni úspěšní řešitelé II. kola MO
pochvalné uznání.

Uvádíme jmenný seznam pořadí prvních deseti úspěš-
ných řešitelů II. kola v kategoriích В, C podle jednotli-
vých krajů.

Pořadí úspěšných řešitelů II. kola
v kategoriích В, C

J = jedenáctiletá střední škola, kterou zpravidla neuvá-
dime,

P — průmyslová škola; Pg = pedagogická škola*)

Praha město

B. Klánská Jitka, Praha 13; Ježek Jan, Praha 13;
Segeth Karel, Praha 6; Šiška Ladislav, Praha 6; Lass J.,

*) Uvádíme nejvýše prvních 10 jmen.
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Tabulka č. 3

Přehled počtu účastníků II. kola podle krajů v kategoriích А, В, C*)

Kate-
gorie

Kate-
gorie

Kate-

gorie Celkem
Kraj CA В

P P u p и ии p

31 65 165 96Praha město 38 20 11 96

Praha venkov 9 17 14 25 10 339 51

České Budějovice . .
22416 20 23 12 596

2216Plzeň 8 3214 4 10 62

184Karlovy Vary 7 15 9 286 5

Ústí n. Labem . . 207 4 14 28147 2

184 25 12Liberec 14 478 2

4720 4 42 35Hradec Králové . . 8 8826

349 3 29 64Pardubice . 2 487

94 81Jihlava 24 19 4418 4921

8034 11 54 49 114Brno . 2026

25Olomouc 27 55 9818 58 11631

37Gottwaldov 28 12 21 744 3115

Ostrava 7622 11 74 53 1311235

Bratislava město . . 1521 11 20 55 30414

Bratislava venkov . . 75 4024 11 46 285 1

Nitra 16 10 21 17 41 284 1

Banská Bystrica . . 153 26 16 20 3413 59

Žilina 1523 17 13 51 5126 94

7Košice 3 19 11 10 32 18

Prešov 39 14 51 2 24

Celkem 325 162 408 208 768 518 1501 888

*) P = celkový počet účastníků, U = počet úspěšných řešitelů
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Tabulka č. 4

Přehled počtu účastníků II. kola podle krajů v kategorii D

Kategorie D
Kraj

P U

Praha město 641 542

Praha venkov 275 229

České Budějovice 197311

Plzeň 227315

Karlovy Vary 128 100

Ústí n. Labem 169 103

Liberec 201252

Hradec Králové 167218

Pardubice 232 194

Jihlava . 180238

Brno 542 389

Olomouc 435 280

Gottwaldov 315443

Ostrava 477 249

Bratislava město . 173 147

Bratislava venkov 155 111

Nitra 239 147

Banská Bystrica 185 142

Žilina 187 142

Košice 75110

Prešov 77 34

Celkem 4 1715 802
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Praha 6; Haklová Miroslava, Praha 6; Fáhnrich Jaromír,
Praha 7; Hlavatý Karel, Praha 12; Bičák Jiří, Praha 12;
John Kamil, Praha 12.

C. Kutiš Ladislav, Praha 6; Pitra Zbyněk, Praha 6;
Souček Jiří, Praha 16; Lang Vratislav, Praha 4; Zvá-
novec Jan, Praha 12; Nekovář Jiří, Praha 14; Temml
Petr, Praha 16; Kamenický Marian, Praha 1; Gonsiorová
Libuše, Praha 6; Hrubcová Jana, Praha 6.

Pražský kraj
B. Fabián, Mělník; Ri Son Thák, Brandýs n. L.; Jirků,

Poděbrady; Kang^Ge Sun, Brandýs n. L.; Lauterbach,
Brandýs n. L.; Čá Son Rjong, Brandýs n. L.; Hájek,
Benešov; Dočekalová, Český Brod; Konečná, Brandýs
n. L.; Dvořák, Benešov.

C. Karhan, Hořovice; Nekolová, Brandýs n. L.; Nová,
Český Brod; Regner, Mladá Boleslav; Kozlovský, Bene-
šov; Kobylka, Hořovice; Motlík, Modřany; Doleček,
Brandýs n. L.; Hejda, Radotín; Mňuk, Benešov.

Kraj Budějovický
B. Šabata Ladislav, 1. J, České Budějovice; Vlček Jan,

Vimperk; Gottwaldová Jana, 2. J, České Budějovice;
Švára Václav, P, Sezimovo Ústí.

C. Komnska Josef, Týn nad Vltavou; Ondřich Bohu-
mír, 1. J, České Budějovice; Kořenáč Josef, Vodňany;
Drexlerová L., Vodňany; Alinče Jar., Vodňany; Havlíček
Václav, 2. J, České. Budějovice; Trchová M., Strako-
nice; Švecová Anna, 2. J, České Budějovice; Moravec
Vladimír, České Budějovice; Holický Milan, Soběslav.

Kraj Plzeňský
B. Novák Pavel, 2. J, Plzeň; Dusík Jiří, Domažlice;

Henig Jan, 2. J, Plzeň; Kropáček Jan, 2. J, Plzeň; Pavlík
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Jan, Klatovy; Haasová Vilma, Sušice; Vobruba Rudolf,
I. J, Plzeň; Pivoňková Marie, Domažlice.

C. Ledvinková Zdeňka, Rokycany; Vrba Antonín,
Přeštice; Kónigsmark Jan, Domažlice; Řezáčová Hana,
Klatovy; Bozděchová Dagmar, Domažlice; Valentová
Hana, Rokycany; Mareš Jaroslav, 2. J, Plzeň; Hájek
Josef, 1. J, Plzeň; Kačena Bořivoj, Březnice; Dikast
Ludvík, Plasy.

Kraj Karlovarský
B. Veselý Arnošt, Ostrov; Dvořák Adolf, Cheb;

Štětina Antonín, Ostrov; Mainzer Miloslav, Cheb.
C. Bohdanecký Václav, Cheb; Malecha Jan, Karlovy

Vary; Novák Jiří, Karlovy Vary; Křišťan Bohumil,
Karlovy Vary; Klír Jiří, Karlovy Vary; Šimek Karel,
Karlovy Vary; Mihalicová Jana, Planá u Mar. Lázní;
Kučera Jiří, Planá u Mar. Lázní; Hanuš Jan, Cheb.

Kraj Ústecký
B. Babický František, Chomutov; Honig Petr, 1. J,

Děčín; Pelíšek Petr, Litoměřice; Boháček Jaroslav,
Roudnice n. L.

C. Kolář Josef, Roudnice n. L.; Pham van Su, P,
Děčín; Zavadil Jaroslav, P, Děčín; Volf Jiří, Lovosice;
Štěpánek Antonín, P, Děčín; Mozerová Jana, Pg, Teplice;
Růžička Karel, Střekov; Borecká Jar., Pg, Litoměřice.

Kraj Liberecký
B. Rolenec J., Tanvald; Barták K., Turnov; Chun-

děla V., Turnov; Stuchlíková J., Turnov.
C. Šída O., Tanvald; Chum J., Nový Bor; HartmanJ., Turnov; Valkounová J., Turnov; Zíbner J., P, Li-

berec; Jonáš S., 2. J, Liberec; Vácha L, Jablonec;
Schlenzová U., Jablonec n. N.; Líbal R., P, Liberec;
Reckziegel W., P, Liberec.
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Kraj Hradecký
B. Melicharová Marie, Hradec Králové; Krčálová

Marie, Hradec Králové; Rydlo Pavel, Kostelec n. O.;
Cerman Jaroslav, Dvůr Králové n. L.; Cífka Ladislav,
Hradec Králové; Kudrnová Jarmila, Rychnov n. Kn.;
Němeček Jaromír, Trutnov; Špička Václav, P, Do-
bruska; Dohnálek Petr, Jaroměř; Fikejs Miloš, Kostelec
n. O.

C. Kubíček Milan, Trutnov; Režný Jan, Kostelec
n. O.; Pelikán Jan, Kostelec n. O.; Báumelt Miloš, Dvůr
Králové n. L.; Kyral Václav, Trutnov; Nosek Pavel,
Hradec Králové; Kovář Jindřich, Nová Рака; Lenfeld
Jaroslav, Rychnov n. Kn.; Morávek Tomáš, Dvůr
Králové n. Lab.; Pikl Milan, Trutnov.

Kraj Pardubický
B. Moudrý Jiří, Pardubice; Vejražka František, P,

Pardubice; Dvořák Libor, Pardubice.
C. Moravec Petr, 2. J, Pardubice; Křivková Iva, 1. J,

Pardubice; Chládek Lubomír, Heřmanův Městec; Krá-
lová Václava, Hlinsko v Č.; Laštovková Marie, 1. J,
Pardubice; Bálek Pavel, Chrudim; Čuda Oldřich, Čáslav;
Kabeláč František, 2. J, Pardubice; Kyncl Jan, Hlinsko
v Č.; Průcha Ladislav, Chotěboř.

Kraj Jihlavský
B. Šedý Ivan, Jihlava; Rokosová Jiřina, Jihlava;

Škrdlová Marie, Třebíč; Růžičková Jaroslava, Ždár;
Braťková Helena, Telč; Lepič Miroslav, Pelhřimov;
Wohrenberg František, Třebíč; Stadiewicz Petr, Třebíč;
Míková Božena, Pacov; Kestřánek Zdeněk, Kamenice;
Nováková Jiřina, Pacov; Zadražil Josef, Pelhřimov;
Vosika František, Kamenice; Choutková Eva, Třebíč;
Douša Jiří, Pacov.
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C. Čapek Ivan, Dačice; Vajsar Oldřich, Třebíč; Štur-
sová Helena, Jihlava; Ondráček Jiří, Havlíčkův Brod;
Mikula Karel, Třebíč; Pokorný Jan, Dačice; Šebesta
Miloš, Telč; Novotný Jan, Třebíč; Kozlíková Eva,
Ledeč; Chytka Bořivoj, Třebíč.

Kraj Brněnský
B. Hladká Helena, Brno; Hanák Jan, Brno; Zakopal

Jan, Brno; Vančura Drah., Blansko; Breithutová Helga,
Brno; Boleloucký Svat., Blansko; Lukáš Boh., Boskovice;
Špíšková Zuzana, Brno; Farka Vlád., Vyškov; Tenková
Marie, Brno.

C. Kanýzová A., Brno; Svěcená Ivana, Blansko; Za-
vadilová Kv., Brno; Schneider Mil., Slavkov; Soukup
Jiří, Brno; Skotáková M., Blansko; Ošmera Jiří, Brno;
Reichlová Marie, Brno; Jančíková Hana, Brno; Jambor
Jos., Brno.

Kraj Olomoucký
B. Hýblová Daniela, 2. J, Olomouc; Keprt Pavel,

Přerov; Brachtl Ivo, Litovel; Menšík František, Přerov;
Novotný Zdeněk, Přerov; Kundrata Arnošt, Zábřeh;
Mráz Jan, Přerov; Pospíšil Stanislav, Přerov; Kovář J.,
Šumperk; Toman Jiří, Přerov.

C. Ženčák Vladimír, 1. J, Olomouc; Blažková Olga,
Pg, Olomouc; Skopal František, Litovel; Čech Jiří,
Litovel; Kobert Petr, Hranice; Berka Antonín, Zábřeh;
Jemelka Petr, Přerov; Hluší Marta,_ 1. J, Olomouc;
Švec Jiří, 1. J, Olomouc; Vrána M., Šumperk.

Kraj Gottwaldovský
B. Křenek Josef, Rožnov p. R.; Vaculín Jaroslav, P,

Rožnov p. R.; Zabadal Stanislav, Hodonín; Blahůšek
Josef, Uh. Brod; Ondrová Sylva, Gottwaldov; Josefí-
ková Svatoslava, Uh. Brod; Veselý Miroslav, Uh. Brod;
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Červinka Otakar, Gottwaldov; Hanuš Leopold, Gott-
waldov; Honig Valdemar, Gottwaldov.

C. Klvaňa Miroslav, Vsetín; Krumpolc Eduard,
Kroměříž; Mach Rostislav, Hodonín; Srkalová Věra,
Holešov; Jurečka Jaroslav, Vsetín; Žarlok Pavel, P, Val.
Meziříčí; Cabák Frant., P, Uh. Hradiště; Petr Jiří,
Gottwaldov; Janů Zdeněk, Kyjov; Pelíšek Vladimír,
Gottwaldov.

Kraj Ostravský
B. Jekerle Pavel, Český Těšín; Tomšů Petr, P, Kop-

řivnice; Drbal Pavel, Český Těšín; Jiříček Petr, Ostrava I;
Kišová Jiřina, Český Těšín; Tenglerová Jana, Český
Těšín; Josková Jiřina, Český Těšín; Putniorz Edvard,
Český Těšín; Šmuk Karel, Ostrava VIII; Zabystrzanová
Berta, Český Těšín.

C. Srovnal Vilém, Ostrava I; Lanta Jan, Ostrava I;
Pindurová Pavla, Český Těšín; Nenička Pavel, Bílovec;
Pokerová Dana, Nový Jičín; Jánoš Vít, Ostrava I;
Baran Eduard, Opava; Drozd Jaromír, Ostrava I; Toman
Arnold, P, Karviná; Koběrský Josef, Ostrava VIII.

Bratislava město

B. Štefan Peter, Bratislava; Kosáková Elena, Brati-
slava; Varga Vojtech, Bratislava; Dikant Ján, Brati-
slava; Imhofová Silvia, Bratislava; Blaho Jaroslav, Brati-
slava; Vyhnanská Romana, Bratislava; Dražkovičová
Hilda, Bratislava; Fejdiová Olga, Bratislava; Budinský
Marian, Bratislava.

C. Orlovský Jozef, Bratislava; Karlík Pavol, Brati-
slava; Uher Ján, Bratislava; Urban Vladimír, Bratislava;
Mihálková Mária, Bratislava; Klein Pavol, Bratislava;
Lehký Peter, Bratislava; Petrovič Michal, Bratislava;
Križanová Soňa, Bratislava; Sládoková Viera, Bratislava.
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Kraj Bratislavský
B. Bertušek Jozef, Senica; Bárdišová Alžběta, Ga-

lanta; Zimmerová Elena, Galanta; Tóth Ján, Galanta;
Mihalko Štefan, Galanta; Vojtko Ján, Holič; Preisler
Peter, 1. J, Trenčín; Piknová Sláva, 1. J, Trenčín;
Václaviková Eva, 1. J, Trenčín; Tiso Peter, 1. J, Trenčín.

C. Herman Miroslav, Nové Město n. Váhom; Krcho
Bohuš, Nové Město n. Váhom; Novomeská Anna,
Nové Město n. Váhom; Marečková Jana, 1. J, Trenčín;
Blaschková Emilia, 1. J, Trenčín; Preislerová Olga,
1. J, Trenčín; Sedláček Juraj, 1. J, Trenčín; Drienková
Emilia, 1. J, Trenčín; Suchánková Zuzana, 1. J, Trenčín;
Gajdoš Vojtech, 1. J, Trenčín.

Kraj Nitranský
B. Kabátová Blažena, Zlaté Moravce; Struhár Leo-

pold, Partizánske; Janovičová Anna, Zlaté Moravce;
Šaling Henrich, Levice; Volke Milan, Levice; Števulová
Mária, Zlaté Moravce; Gombáriková Veronika, 2. J,
Nitra; Hubač Ivan, Zlaté Moravce; Čabrák Milan,
Levice; Vítek Emil, Šurany.

C. Korec Ivan, Partizánske; Kolarovská Helena, Ко-
mámo; Bendlová Helena, Komárno; Chocholáček Július,
Komárno; Perkáczová Karla, Partizánske; Horváthová
Gabriela, Komárno; Váňo Dušan, Partizánske; Petri-
kovits Ebbo, Partizánske; Fiissgánger Egon, Partizánske;
Boháčik Milan, Topolcany.

Kraj Banskobystrický
B. Lukáč Ivan, Lučenec; Priadka Stanislav, 2. J,

Zvolen; Gajdoš Lubomír, P, Zvolen; Lóška Viel, Fila-
kovo; Miskríková Anna, 2. J, Zvolen; Gregussová Anna,
Banská Štiavnica; Pintér Ваша, P, Lučenec; Lizák Peter,
P, Lučenec.
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C. Fridrich Ján, Lučenec; Mils Imre, Šáhy; Urbán
Hermína, Šáhy; Heim Peter, Kremnica; Sarka Kamil,
Žarnovica; Kováč Igor, 2. J, Banská Bystrica.

Kraj Žilinský
B. Obetko Ivan, Mikuláš; Wichterle Karol, 2. J,

Žilina; Sigmund Frant., Ružomberok; Dutková Irena,
Ružomberok; Zvolencová Marta, Ružomberok; Hritzová
Olga, Ružomberok; Tihlaříková Zd., Ružomberok;
Piatka Vlád., Ružomberok; Jablonský Emil, Ružom-
berok; Vrškový Rast., Púchov.

C. Miklóš Vlád., Mikuláš; Mikuláš Ivan, Mikuláš;
Engelová Mária, Mikuláš; Galan Anton, 1. J, Žilina;
Baran Ladislav, 2. J, Žilina; Jagelka Leonard, Púchov;
Matula Pavol, Kláštor; Závodská Marta, 1. J, Žilina;
Droppová Viera, Mikuláš.

Kraj Košický
B. Schwábik Štefan, 2. J, Košice; Lucká Viera, 2. J,

Košice; Sarazová Olga, 2. J, Košice; Briňarská Olga,
Sečovce; Hudáková Klára, 2. J, Košice; Milíček Juraj,
2. J, Košice; Šusterová Dana, 2. J, Košice; Šebová Soňa,
2. J, Košice; Šlampová Zdenka, Poprad; Gedrová Olga,
Sečovce.

C. Mikuš Ján, 2. J, Košice; Tomoriová Eva, 2. J,
Košice; Poracká Edita, 2. J, Košice; Sedláček Antonín,
2. J, Košice; Rondzík Robert, 2. J, Košice; Turek Ivan,
Krompachy; Šlampa Peter, Poprad.

Kraj Prešovský
B. Duplak Ján, 2. J, Prešov; Kotuliak Jozef, P,

Prešov.
C. Tomková Mária, Vranov; Csontó Július, 1. J,

Prešov; Skalský Vladimír, 1. J, Prešov.
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Soutěž III. kola

(Kategorie A )

Do III. kola krajské výbory MO přihlásily 144 úspěš-
ných řešitelů. Z nich 80 nejlepších bylo pozváno к sou-
těži III. kola; všichni se dostavili. Podmínkám soutěže
vyhovělo 53 účastníků. Podle organizačního řádu sou-
těže prvních dvacet z nich se stává vítězi; uvádíme seznam
těchto vítězů sestavený v pořadí vzhledem к jejich vý-
koňům.

Pořadí vítězů VII. ročníku MO

1. Zdislav Kovařík, lO.a tř. J, Hodonín, ul. Legionářů.
2. Zdeněk Vlásek, ll.b tř. J, Hradec Králové, Tylovo

nábřeží.
3. Břetislav Fiala, 11. tř. J, Česká Třebová.
4. Pavel Novák, 11. tř. J, Broumov.
5. Oldřich Vašíček, 11. tř. J, Radotín.
6. Kamil Wichterle, ll.b tř. J, Praha 6 -

Bílá 1.
7. Václav Dvořák, 11. tř. J, Brno - Tábor 35.
8. Pavel Bána, 11.a tř. 3. J, Bratislava, Palisády 20b.
9. Jan Urban, ll.c tř. 1. J, Opava, Komenského 5-7.

10. Ján Dragula, ll.b tř. J, Ružomberok.
11. Marie Srovnalová, 11. b tř. J, Ostrava I, Matiční 5.
12. Václav Hosnédl, 11.a tř. 5. J, Praha 5, ul. Pionýrů 2.
13. Oldřich Bílek, 11.a tř. J, Hradec Králové, Tylovo

nábřeží.
14. Věra Hnyková, 11.a tř. 2. J, Liberec - Horní Růžodol,

Jeronýmova 27.

Dejvice,
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15. Pavel Aksamit, ll.b tř. 1. J, Pardubice, ul. Sloven-
ského povstání.

16. Karel Sladký, ll.b tř. 18. J, Praha 14 - Michle,
Ohradní 5.

17. Radomír Hubálek, 11.a tř. J, Nový Jičín, Palackého tř.
18. Josef Nedoma, ll.b tř. 4. J, Praha 4, Nad Kava-

lírkou 100.
19. Pavel Panenka, 11.a tř. 4. J, Praha 4, Nad Kava-

lírkou 100.
20. Jaromír Pech, 11. tř. J, Ústí nad Labem, Jateční 22.

Vítězové soutěže byli odměněni velmi hodnotnými ce-
námi ministerstva školství a kultury; každý z nich ob-
držel čestný diplom, který podepsal ministr školství
a kultury a předseda ústředního výboru MO.

Uvádíme seznam knih, z nichž byl prováděn výběr
(každý vítěz dostal asi 3 z těchto děl):

1. V. Jarník: Diferenciální počet, díl I, II.
2. V. Jarník: Integrální počet, díl I, II.
3. K. Hruša a kol.: Přehled elementární matematiky.
4. Strojnická příručka, díl I, II.
5. G. N. Berman: Sbierka úloh z matematickej ana-

Jýzy-
6. St. Schwarz: Základy náuky o riešení rovnic.
Jednota československých matematiků a fyziků vě-

novala každému účastníku III. kola soubor matematic-
"kých příruček, vhodných к úvodu do studia na vysoké
škole.

?
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III. KE ZMĚNÁM ORGANIZAČNÍHO
ŘÁDU SOUTĚŽE

Průběhem posledních ročníků soutěže, zvláště v jejím
VI. a VII. ročníku, počaly se objevovat různé obtíže
a závady, které musil ústřední výbor MO ve spolupráci
s ostatními pracovníky z krajů a okresů řešit. Dálo se
tak za účasti zástupců pořadatelů soutěže, tj. ministerstva
školství a kultury, Matematického ústavu ČSAV a
ústředního výboru ČSM; к nim jako další důležitý
činitel přistoupili též zástupci Svazu zaměstnanců škol-
ství, vědy, umění'a tisku.

Obtíže a závady, o nichž jsme se zmínili, lze rozdělit
zhruba do dvou skupin: jednak se vyskytla nutnost podle
zkušeností s dosavadními ročníky zpřesnit cíle, které
chce soutěž plnit, a! jednak bylo třeba řešit otázky ekono-
mického rázu.

Než načrtneme rozbor obou zmíněných problémů, po-
všimněme si zcela krátce cílů, které si soutěž od počátku
kladla. Od prvního ročníku matematické olympiády,
který byl zahájen ve školním roce 1951/52, byl prvořadý
úkol a cíl soutěže v podchycení těch žáků středních a od-
borných škol, kteří mají matematické nadání. К tomu
bylo nutno zaujmout je pracovně v rámci jejich mimo-
školní činnosti, vést je a ukazovat jim, že ke studiu pří-
rodních a technických věd je nezbytné dobře znát a hlou-
běji studovat středoškolskou matematiku. Jako vedlejší
cíl se mělo projevit i zvýšení celkové úrovně vyučovacích
výsledků v matematice, a to jednak tím, že výborný žák
pomáhá učiteli zvyšovat úroveň celé třídy, jednak tím,
že i učitel - matematik, který sleduje soutěž a pomáhá
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nadaným žákům v jejich rozvoji, sám odborně i meto-
dicky přirozeně roste.

Ve školním roce 1953/54 byla zřízena a připojena
к soutěži i kategorie D, která měla budit zájem o matema-
tiku mezi žáky 8. tříd středních škol a současně i kladně
ovlivňovat jejich učitele.

Právě načrtnuté úkoly a cíle zůstávají i nadále v plat-
nosti; nový organizační řád, který byl vydán к počátku
školního roku 1958/59, a platí tedy od VIII. ročníku
soutěže, tyto cíle spíše jen zpřesňuje.

Nyní si povšimněme některých zkušeností, které orga-
nizátoři soutěže v průběhu sedmi let jejího trvání na-
shromáždili.

Žáci, kteří soutěžili v kategoriích A a B, neměli celkem
podstatných potíží v průběhu I. kola (které je vlastně
jádrem žákovského výkonu a posláiíím celé soutěže),
jestliže je vedl zkušený učitel, který popřípadě zřídil
pro olympioniky zvláštní pracovní kroužek. Nesnáze,
které se u některých žáků vyskytovaly, nebyly působeny
ani tak obtížností úloh jako nedostatečnou a nízkou
úrovní vyučovacích hodin matematiky u některých učitelů.
Řada dobře vedených žáků ukázala pěkné výkony, a to
jak po stránce matematické, tak i po stránce stylistické,
což svědčí o tom, že správně ovládali pojmy, termino-
logii i frazeologii. Ukázky některých jejich řešení byly
pojaty do brožur o olympiádě nebo byly skoro doslovně
otištěny v časopisech Matematika ve škole a Rozhledy
matematicko-fyzikální.

Mnozí žáci, kteří se účastní soutěže v kategorii C, měli
většinou obtíže proto, že zaměření kategorie C je poněkud
jiné než zaměření kategorie D, v níž většina z nich v před-
chozím školním roce soutěžila. Tito žáci by si zasloužili
největší pozornosti především ze strany svého učitele
matematiky. Přes tyto počáteční obtíže u některých žáků
lze říci, že kategorie C plnila dobře své úkoly; důkazem
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toho je, že se se všemi jmény nejlepších řešitelů II.
kola této kategorie setkáváme v příštích ročnících sou-
těže (v kategoriích В a A).

Naproti tomu měla kategorie D hned od svého vzniku
poněkud odlišný charakter; požadavky na řešitele se roč-
nik od ročníku snižovaly, aby se více přizpůsobily úrovni
průměrných žáků 8. tříd středních škol. Úlohy v této
kategorii jsou v posledních ročnících zaměřeny na nume-
rické počítání, grafický výkon při konstrukcích nebo nej-
výše na jednoduchý důvtip, který předpokládá jen málo
předběžných znalostí. Názory učitelů na obtížnost jed-
notlivých úloh se navzájem často podstatně liší; totéž
platí i o klasifikaci téže úlohy v rámci různých okresních
výborů MO. Proto pořádaly krajské výbory instruktáže
pro recensenty úloh, aby alespoň v rámci kraje byla za-
jištěna přibližně stejná náročnost při klasifikaci. Tato
situace se odráží i v procentu úspěšných řešení; zatím
co se u kategorií A až C pohybuje kolem 30%, je v kate-
gorii D 50%. Zajímavé je i to, že mezi řešiteli kategorie
D je přes 50% dívek, zatím co v ostatních kategoriích
je jich jen asi 25—30%.

Během trvání soutěže se vyskytly i velmi nezdravé
úkazy, zvláště pokusy o masový nábor účastníků soutěže,
což platí především o kategorii D. To mělo i další stinné
stránky, že totiž někteří učitelé spojovali účast žáků na
soutěži se známkou z matematiky a zdráhali se dát nej-
lepší známku těm, kteří se nechtěli soutěže účastnit.
Jiným nepříznivým zjevem bylo, že se vyskytla hro-
madná žákovská řešení, která nasvědčovala tomu, že se
kolektivně opisovala. Ve všech těchto případech bylo
třeba rázně zakročit.

Na druhé straně jsme dostávali velmi zevrubně opra-
vená řešení, která svědčila jak o úspěšné práci žáka, tak
o patřičně odpovědné klasifikaci. Dnes lze říci, že většina
krajských výborů MO má přiměřené klasifikační měřítko,
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které respektuje jak požadavky odborné, tak i vyspělost
žáků; stejně tomu je i u mnohých okresních výborů,
jestliže navzájem v rámci kraje spolupracují.

Význam olympiády se hodnotí vesměs vysoko. Vedoucí
školští pracovníci se přesvědčují o tom, že olympiáda
zvyšuje odbornou kvalifikaci učitelů matematiky; ti sle-
dují s velkým zájmem řešení olympijských úloh, která
bývají otiskována v časopise Matematika ve škole.

Také naše veřejnost, zvláště rodičovská, soutěž kladně
oceňuje a má o ni vážný zájem; o velkém významu poslání
olympiády mluví i naši političtí a vědečtí pracovníci, jak
uvidíme konečně i v dalším.

Nyní ještě к ekonomické stránce soutěže. Protože se na
mnohých školách stávala soutěž masovou záležitostí, což
silně ohrožovalo její úroveň, bylo již pro VII. ročník
stanoveno, že počet žáků vysílaných do soutěže v každé
z kategorií nemá nikde přesáhnout 10% počtu žáků těch
ročníků, pro něž je kategorie určena. Toto ustanovení je
uplatněno i v novém organizačním řádu. Dále bylo
vzhledem к zásadám uplatňovaným v mzdové politice
za souhlasu odborových pracovníků rozhodnuto, aby
organizační práce v zajišťování soutěže měla dobrovolný
charakter a aby tedy náležela do učitelovy mimoškolní
pracovní povinnosti; učitelova účinná pomoc v olympiádě
je náležitě oceňována z hlediska politicky výchovného.

O všech zmíněných otázkách podrobně pojednali čle-
nové ústředního výboru MO spolu s předsedy krajských
výborů na obou schůzích konaných v roce 1958; bylo na
nich také konstatováno, že průběh olympiády nebude
nadále nikterak závislý na otázce odměn za recense.
Rovněž pracovníci Svazu zaměstnanců školství, vědy,
umění a tisku, s nimiž zástupci ústředního výboru MO
všechny otázky několikrát projednávali, přislíbili soutěži
vydatnou pomoc. Oceňovali kladně význam soutěže jak
z hlediska prospěchu a práce školy, tak i z hlediska celo-
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státního významu znalosti matematiky pro úspěšný rozvoj
našeho hospodářství.

Soudruzi ze Svazu přišli s iniciativním návrhem dát
soutěži v kategorii D zvláštní poslání: získat u žáků zájem
o předmět, zbavit je tradičního strachu před matematikou
a vůbec udělat z této kategorie jednu ze složek, která by
měla na žáky výchovně působit. Školy navzájem nepříliš
vzdálené by měly v úspěšném vyučováni matematice
a v řešení matematických úloh spolu soutěžit; mohly by
třeba pořádat zábavné večery s matematickou tematikou,
pro níž by se našel bohatý materiál např. v knize „Mate-
matičeskaja smekalka“, jejímž autorem je B. A. Kordem-
skij (kniha vyšla v českém překladu v r. 1957 v nakladatel-
štvi Mladá Fronta pod názvem „Matematický důvtip").
Zde tedy čeká učitele ještě mnoho průkopnické práce.
Půjde nejen o získání zájemců o matematiku, ale i o pře-
svědčení široké veřejnosti, že dobrá znalost matematiky
je nezbytná pro náš rychlý hospodářský rozvoj.

Pokusili jsme se alespoň zhruba načrtnout vše, co mělo
závažný význam při vypracování nového organizačního
řádu olympiády, aby tak všichni pracovníci byli informo-
váni o příčinách a důvodech, jež vedly к jeho nynějšímu
znění.

Jsme přesvědčeni, že nový organizační řád se stane
dobrou základnou pro další úspěšné rozvíjení naší soutěže.
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IV. ŘEŠENÍ ÚLOH ZE SOUTĚŽE

1. Úlohy I. kola kategorie A

1. Dokážte, že pre všetky * platí:

a) |cos* + sinx| ^ j/2;
b) cos4* + sin4* ^ у .

Riešenie. a) Platí postupné

sin* + cos* = sin* + sin(R — *) =

= 2sin45°cos(* — 45°) = ]/2cos(* — 45°).
Preto je

|cos* + sin* |= ||/2cos(* — 45°)| = j/2|cos(* —45°)|; (1)
avšak pře všetky čísla * platí

|cos(* — 45°)| ^ 1
a preto je |/2 |cos(* — 45°)| ^ ]/2. Vzhladom na vztahy
(1) oddal dostaneme

|cos* + sin*| ^ У2 ,

čo sme mali dokázat’,

b) Platí postupné
cos4* + sin4* = (cos2* + sin2*)2 — 2sin2*cos2* =

— -i- (sin2*)2.= 1 (2)
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1
Pretože pre všetky * platí |sin2*| ^ 1, je — (sin2*)2 ^

^ . Odtial’ a zo vzťahov (2) dostáváme

cos4* + sin4* = 1 — (sin2*)2 ^ 1 — ~

a teda
1

COS4* + sin4* ^ у ,

čo sme mali dokázat’.

2. Zjistěte průběh funkcí:
* + |*| 2*2

a)y = 5 b)
* + |*|2*2(

Grafy těchto funkcí narýsujte tuší.
Řešení, a) Funkce je definovaná pro * Ф 0.
I. Je-li * > O, je |*| = *, tedy

_ * + * 2* 1 .
У ~ 2*2 “ 2*2 ~ "лГ '

II. Pro * < 0 máme |*| = — *, tedy
* — *

У ~ = 0 .

Příslušný graf je načrtnut na obr. 1, přičemž počátek O
nenáleží grafu funkce a).

b) Abychom rozhodli, kdy je jmenovatel * -f- |*| roven
nule, řešíme rovnici

(1)* + |*| = 0 .

Pro * > 0 je * + |*| = * -f- * = 2* > 0, tedy kladné
* není kořenem rovnice (1).
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Pro x ^ 0 je x + |*| = x — x = 0, tedy každé ne-
kladné x je kořenem rovnice (1).

Daná funkce je tedy definována jen pro x > 0. Pak
však platí

2x2 2x22x2
X , čili у — X .

X + 1*1

УУ

Xоо

21Č
х*т У=7ШУ- 2Х2

Obr. 1 Obr. 2

Graf funkce je na obr. 2, přičemž počátek O nenáleží
grafu funkce b).

3. Nechť m ^ n ^ p jsou velikosti stěnových úhlo-
příček kvádru.

Vypočtěte velikosti hran a, b3 c tohoto kvádru.
Dokažte, že podmínkou řešitelnosti je, aby se dal se-

strojit trojúhelník ze stran o velikostech m, n3 p a aby
tento trojúhelník byl ostroúhlý.

Poznámka. V kvádru ABCDA'B'C'D' (v němž je
AA' || BB' || CG || DD') zvolte toto označení: a — AB3
b — AD, c = AA’3 m — AD'3 n = AB'3 p = AC.
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Řešení. I. V této části řešení určíme rozměry
a = AB, b = AD, c — AA' (10

hledaného kvádru a stanovíme podmínky, při jejichž
platnosti tento kvádr existuje. Řešení provedeme vý-
počtem (obr. 3).

Jestliže hledaný kvádr existuje, potom z pravoúhlých
trojúhelníků DAA', ВAA', BDA o jeho stěnových
úhlopříčkách

(1)DA' = m, А'В — n, BD = p

podle Pythagorovy věty platí
m2 = b2 -j- c2,
n2 — c2 + a2,
p2 = a2 + b2.

Přitom podle textu úlohy je
m n ^ p .

(2)
(3)
(4)

(5)
Tento předpoklad není pod-
statný; lze ho dosáhnout vhod-
ným způsobem označení.

Sečteme pravé i levé strany
rovností (3), (4) a od součtu
odečteme pravou a levou stra-
nu vztahu (2); dostaneme

— rn1 + n2 + p2 = 2d1

DL

c neboli
1

a2 = ~2 (— T n2 + p2) . (*)
Za předpokladu, že platí

— m2 + n2 -f- p2 > 0 ,

Obr. 3

dostaneme ze vztahu (*)

■-П— (— m2 + n2 + p2) .
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Stejným způsobem odvodíme vztahy pro b, c. Celkem
dostaneme

1 (2")-y (- m2 + И2 + p2),a —

-V! (3*)— O2 - П2 + 7>2) ,

c = yi O2 + n2 — p2),
a to za předpokladu, že příslušní odmocněnci jsou čísla
kladná (z geometrického hlediska nestačí, aby to byla jen
čísla nezáporná) neboli že pořadě platí

ni2 < n2 + p2 j

n2 < p2 + m2,
p2 < m2 + n2 .

O kladných číslech m, n, p platí (5); pak také platí
m2 ^ n2 p2 > 0 .

Odtud bezprostředně vyplývá, že vztahy (3'), (4') jsou
za předpokladu (5) splněny. Jestliže tedy má úloha řešení,
musí platit vztah (2').

Obráceně, nechť vedle vztahů (5) platí vztah (2').
Potom čísla a, b, c daná vztahy (2"), (3"), (4 ") vzhledem
к platnosti (**) existují a jsou kladná. Kvádr o rozměrech
<2, b, c daných formulemi (2") až (3") má stěnové úhlo-
příčky o velikostech m, n, p, jak požaduje úloha. O tom
se lze snadno přesvědčit přímým výpočtem.

(4")

(2')
(3')
(4')

(**)

Tím je první část úlohy rozřešena.
II. V dalším budeme potřebovat tuto větu V: „Buď

dán trojúhelník o stranách m, и, p, kde m ^ n > p > 0.
Potom proti straně m leží úhel ostrý, pravý, tupý podle
toho, zda platí vztah

m2 = n2 + p2 (6)
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a obráceně." (Přitom úhly proti stranám n, p jsou zřejmě
vždy ostré.)

Důkaz věty V provedeme pomocí této věty P: „Sho-
dují-li se dva trojúhelníky ve dvou stranách tak, že první
trojúhelník má úhel jimi sevřený menší než trojúhelník
druhý, potom třetí strana prvního trojúhelníka je menší
než zbývající strana druhého trojúhelníka (Geometrie
pro 7. ročník, věta 12, str. 108 (263)). Obráceně, jestliže
se dva trojúhelníky shodují ve dvou stranách tak, že
první trojúhelník má třetí (zbývající) stranu menší než
trojúhelník druhý, potom úhel prvního trojúhelníka
protější к jeho třetí straně je menší než úhel protější ke
třetí straně druhého trojúhelníka/'

Důkaz přímé věty V. Případ rovnosti ve vztahu (6)
je obrácení Pythagorovy věty, nebudeme ho dokazovat
(Geometrie pro 9. ročník, věta 3, str. 103).

Nechť nyní platí
m2 < n2 -f p~.

Sestrojme pomocný trojúhelník AxBxDXi v němž je
A'XBX = n, BXDX = pi <$BX — 90°; o jeho přeponě
A'XDX = mx tedy podle Pythagorovy věty platí

m\ — n2 -f p2.
Trojúhelníky A'BD, A'XBXDX se shodují ve stranách

А'В = A[BX = щ BD = BXDX — p, avšak vzhledem
к (6'), (6") platí m2 < m\ neboli m < mx. Podle obrá-
cené věty P tedy je <£В < ^Вх neboli <££ < 90°.
Trojúhelník A'BD je tudíž ostroúhlý, což jsme právě
měli dokázat.

Obrácenou větu V nebudeme dokazovat; důkaz lze
provést sporem. Tím považujeme větu V za dokázanou.

Poznámka. Věta V vyplývá snadno z věty kosinové
a věty к ní obrácené.

(6')

(6")
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Řešení druhé části úlohy. V druhé části řešení úlohy do-
kážeme, že podmínkou řešitelnosti úlohy je, aby troj-
úhelník, jehož strany mají velikosti m, n, p, byl ostro-
úhlý (obr. 3).

To vzhledem к diskusi provedené v části I znamená,
že vztah (2') je ekvivalentní s požadavkem, aby zmíněný
trojúhelník byl ostroúhlý; dokážeme, že tomu tak sku-
tečně je. Důkaz rozdělíme na dvě části:

Tvrzení [1]. Dokážeme: „Trojúhelník A'BD o stra¬
nách

(7)DA' — m, А'В = и, BD — p
v kvádru ABCDA'B'C'D' o rozměrech a, b, c je ostro-
úhlý.“
(Poznámka. To tedy platí v každém kvádru.)

Tvrzení [2]. Dokážeme: „Je-li dán ostroúhlý troj-
úhelník A'BD o stranách daných vztahy (7), přičemž
m ^ n ^ p jsou daná kladná čísla, potom platí vztah (2'),
takže existuje kvádr ABCDA'B'C'D' “

Důkaz tvrzení [1]. O stěnových úhlopříčkách w15 u2, w3
kvádru o daných rozměrech a, b, c platí u\ = № + c2,
u\ = с2 + я2, «3 = cl2 + b2; snadno zjistíme, že platí
vztahy u\ < u\ + u% u\ < u\ + uj, u\ < u\ + u\. Od-
tud plyne podle věty V, že všechny úhly trojúhelníka,
jehož stranami jsou stěnové úhlopříčky uí9 u2, u3 kvádru,
jsou ostré a důkaz tvrzení [1] je tím proveden.

Důkaz tvrzení [2]. V ostroúhlém trojúhelníku A'BD
o stranách (7) podle obrácené věty V platí vztah m2 <
< w2 + p2 vedle vztahu m^in^pa podle závěru části I
existuje kvádr s rozměry ze vztahů (2") až (4"). Tím je
důkaz tvrzení [2] a celé části II ukončen.

Jiné řešení části II. Dokážeme: [1] „V každém
kvádru ABCDA'B'C'D' je trojúhelník A'BD ostro-
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úhlý.“ [2] „Nechť je dán ostroúhlý trojúhelník A'BD
o stranách (viz obr. 4)

DA' — m, А'В = n, BD — p,
kde m, n, p jsou daná čísla. Potom existuje kvádr
ABCDA'B'C'D' (o obdélníkové podstavě ABCD, při-
čemž je ЛЛ' || ДВ' || CC || DD'), jehož stěnové úhlo-
příčky jsou dány vztahy (1).“

(1)

в'

/

/

Obr. 4

Tím bude podáno řešení druhé části dané úlohy.
Důkaz tvrzení [1] (viz obr. 4). Dokažme, že např.

<£A' v trojúhelníku A'BD je ostrý.
V rovině ABB'A' sestrojme přímku

А'К _L А'В .

Protože přímka A'D' je kolmá к rovině ABB'A', platí
A’D' _L А’В ,

A'D' _L А'К.
Obě kolmice A'D', А'К určují rovinu q = A'KD
která vzhledem ke (2), (3) stojí kolmo к přímce _A'B.
Obdélník ABB'A' zřejmě leží až na bod A' uvnitř polo-
roviny A'KB a celý kvádr ABCDA'B'C'D' tedy leží až

(2)

(3)
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na hranu A'D' uvnitř poloprostoru qB. Polopřímka
А'В _L q s polopřímkou A'D leží tedy až na bod A'
uvnitř poloprostoru qB a z obrázku 5 (kde R je pata
kolmice vedené bodem D к rovině q) se snadno usoudí,
že úhel <$:DA'B = *$A'DR je ostrý. Tím je důkaz
tvrzení [1] proveden,

Důkaz tvrzení [2]. Dů-
kaz provedeme tak, že
sestrojíme bod A takový,
že z tohoto bodu je vidět
strany ostroúhlého troj-
úhelníka A'BD pod pravý-
mi úhly; čtyřstěn AA'BD /
doplníme pak snadno na /
kvádr ABCDA'B'C'D', ^
jehož rozměry jsou udány
velikostmi hran AB, AD,
AA' tohoto čtyřstěnu (obr.
4, 5).

Rozbor. Bod A musí ležet (podle Thaletovy věty) na
kulových plochách xx, x2, x3, které pořadě sestrojíme nad
úsečkami BD, DA', А'В jako průměry. Odtud kon-
strukce:

Sestrojíme právě uvedené plochy x1} x2, x3. Nechť A
je jeden jejich společný bod (pokud leží mimo rovinu
A'BD). Potom je AA'BD hledaný čtyřstěn, neboť podle
Thaletovy věty jsou úhly <£A'AB, <%BAD, <^DAA'
pravé (např. rovina А'АВ protne plochu x2 v hlavní
kružnici, jejímž průměrem je právě úsečka A'B).

Právě popsaná konstrukce bodu A závisí na tom, zda
bod A existuje a zda padne mimo rovinu o = A'BD;
dokážeme, že v případě, kdy je daný trojúhelník A'BD
ostroúhlý, tomu tak skutečně je (viz obr. 6).

Důkaz. Označme X, Y, Z paty výšek vedených vrcholy

в

T- R

Obr. 5
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В, D, A' trojúhelníka A'BD; dále označme A0 průsečík
těchto výšek. Protože A'BD je ostroúhlý trojúhelník,
leží podle známé věty bod A0 uvnitř tohoto trojúhelníka
(a tedy uvnitř každé z úseček DY, A'Z).

Plochy x13 x2i x3 protnou rovinu a po řadě v hlavních
kružnicích kl3 k23 k3. Přitom např. kružnice k13 opsaná nad

průměrem A'D, prochází podle obrácené věty Thaletovy
oběma body F, Z, neboť je <£A'YD = <$A'ZD = 90°.
Stejně se zjistí, že kružnice k2 prochází body Z, X a kruž-
nice k3 body X, F. Bod A0 leží tedy uvnitř každé z kruž-
nic k1} k2) k3 a tím i uvnitř každé z kulových ploch

x2i x3.
Každá z ploch x13 x2 prochází body A'3 Z, přičemž

středná MN těchto ploch (viz obr. 6) je střední příčkou
trojúhelníka A'BD; plochy x13 x2 vzniknou rotací kružnic
k13 k2 kolem této středné. Odtud plyne, že se obě plochy
x13 x2 protínají v kružnici r3 (opsané nad průměrem A'Z),
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jejíž rovina a3 prochází bodem A0 a stojí kolmo ke středné
ploch xí3 x2 a tím i к rovině o. (Pravoúhlým průmětem
r'3 kružnice r3 do roviny a je úsečka A'Z.) Kromě této
kružnice r3 nemají plochy x13 x2 žádný jiný společný bod.

*s

Obr. 7

Dvojice ploch x23 x3 má společnou kružnici rx opsanou
nad průměrem BX a rovina al3 v níž kružnice rx leží,
prochází rovněž bodem A0 a platí a1 J_ o'. Konečně
dvojice ploch x33 xx má společnou kružnici r2 ležící
v rovině a2 _\_ a a procházející rovněž bodem A0.

Roviny a13 a23 a3 procházejí bodem A0 a zřejmě obsa-
hují přímku A0K J_ a3 kde bod К leží uvnitř polo-
prostoru aS (obr. 7), který je jedním z obou opačných
poloprostorů vyťatých rovinou a. Polopřímka A0K má
s každou z ploch a13 a23 a3 as každou z kružnic r13 r23 r3
po jediném společném bodu (počátek A0 polopřímky
A0K leží totiž uvnitř našich ploch i kružnic). Označme
A společný bod polopřímky A0K s kružnicí r33 tato
kružnice leží na plochách x13 x23 takže A je jediný spo-
léčný bod polopřímky A0K s každou z ploch xí3 x2.
Avšak kružnice rx leží na ploše x2 a bod A je jediným
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společným bodem polopřímky A0K s plochou x2; proto
kružnice nutně prochází i bodem A. Protože kruž-
nice rx leží též na ploše xZ) leží i bod A na kulové ploše xz.
Protože polopřímka A0K má s každou z ploch x13 x2, xz
společný jediný bod, je to podle předchozí úvahy právě
bod A.

Tím jsme dokázali, že uvnitř poloprostoru aS existuje
jediný bod A takový, že jsou z něho strany trojúhelníka
A'BD vidět pod pravými úhly. Je tedy AA'BD pomocný
čtyřstěn, který snadno doplníme na hledaný kvádr
ABCDA'B'C'D'.

Tím je řešení II. části provedeno cestou stereo-
metrickou.

4. V rovnici

(m + 2)2x2 — 2{m2 — 4)x + n = 0
o neznámé jc jsou m, n daná reálná čísla.

a) Určete všechna čísla m, n, pro něž má daná rovnice
jediný kořen.

b) Stanovte všechna čísla m, «, pro něž jsou kořeny
dané rovnice převrácená čísla.

(1)

Řešení, a) Jsou dvě možnosti, aby rovnice (1) měla
jediný kořen:

[1] Rovnice (1) je lineární.
[2] Rovnice (1) je kvadratická a má dvojnásobný kořen.
Případ [1]. Tu musí být

(2)m T 2 — Oj
avšak m2 — 4 = (m + 2) (m — 2) a vzhledem к nut-
nému požadavku (2) je m2 — 4 = 0. Proto případ [1]
nemůže nastat.

Případ [2]. Tu musí být m + 2 Ф 0 neboli
m Ф — 2 . (3)
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Podle známé věty z algebry má kvadratická rovnice
o jedné neznámé dvojnásobný kořen právě tehdy, jestliže
je její diskriminant D roven nule. V našem případě je

D — 4(m2 — 4)2 — 4nim + 2)2
neboli postupně

D = 4(w + 2)2(m — 2)2
D — 4(m + 2)2[(w — 2)2 — ri\ .

4w(m + 2)2,
(4)

Podle předpokladu (3) je (m + 2)2 Ф 0, a proto vzhle-
dem ke (4) je D = 0 právě tehdy, je-li

(m — 2)2 — n — 0
neboli

n = (ni — 2)2.
Skutečně, dosadíme-li ze vztahu (5) do (1), pak po

snadné úpravě levé strany (1) obdržíme
[{m + 2)x — (m — 2)]2 = 0 ,

odkud dostaneme jediný kořen

(5)

m — 2
л: =

m + 2
rovnice (1).

b) Podle části a) musí být m -\- 2^0 neboli m ф — 2,
jinak by rovnice nebyla kvadratická. Potom lze rovnici (1)
uvést na tvar

2(m — 2)x n
x2 — = 0 .

(m + 2)2m + 2

Podle známé věty z algebry platí o součinu хгх2 kořenů
x = xlt x = x2 této rovnice

n

(6)*1*2 = (m + 2)2
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1
Přitom má platit x2 = — neboli xxx2 = 1. Podle (6)
tedy musí platit

n
= 1 .

(m + 2)2
Odtud plyne

n = (m + 2)2,
takže vzhledem к (3) je n > 0.

Dosadíme-li ze (7) do (1) za n, dostaneme rovnici
(m + 2)2x2 — 2(m2 — 4)x + (/n + 2)2 = 0;

dělíme-li obě strany její strany číslem m + 2 ф 0, do-
staneme rovnicí

(7)

(m + 2)x2 — 2(m — 2)x + m -f 2 = 0 .

Její diskriminant D je
(8)

D = 4(m — 2)2 — 4(m + 2)2
neboli postupně

D = 4[{m - 2)2 - (m + 2)2],
D — 4[m2 — 4m + 4 — (ni2 + 4m + 4)] ,

D = — 32 m. (9)
Jestliže je D

kořeny x13 x2 rovnice (1) reálná čísla; jestliže je D < 0
neboli m > 0, jsou tyto kořeny imaginární.

Kořeny xl3 x2 rovnice (8) jsou rovny číslům
2{m - 2) ± 1ÍĎ .

ř 2(m + 2)
po snadné úpravě dostaneme pro x13 x2 čísla

0 neboli vzhledem к (9) m ^ 0, jsou

ш-2±2 [/— 2m (И)
772 -j- 2
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Tu platí postupně
2 - 2 V- 2m

m + 2

_ (m — 2)2 — (2 ]/ — 2rrif _ m2 — 4m + 4 + 8m _

~~

(w + 2)2 ~ “

m — 2 + 2 У —■ 2m m
хгх2 =

m + 2

(m + 2)2
_ (m + 2)2

(m + 2)2
takže kořeny x13 x2 dané vztahy (11) jsou vskutku pře-
vrácená čísla.

Závěr. Rovnice (1) má za kořeny převrácená čísla
právě tehdy, jestliže je n — {m + 2)2, kde m Ф — 2 je li-
bovolné reálné číslo. Pro m ^ 0 jsou tyto kořeny reál-
né, pro m > 0 jsou imaginární.

= 1,

5. Určte všetky reálne čísla x3 pre ktoré platí vztah

4-11
(1)

x -f |/2 — x2 x — ]j2 — x2
Riešenie. Nech číslo x je riešením nerovnosti (1);

potom zo vztahu (1) vyplývá
11 1

2 - ° ’ (1)
* + ]/2 — x2 x — ]/2 — x2

Upravme teraz l’avú stranu tejto nerovnosti; dostaneme
2(* - X + x + X) - (x - X) (x - X)

2(x + X) (x - X) ~L{x) =

4x - [x2 - (2 - x2)] — x2 + 2x + 1
2[x2 - (2 - x2)] 2(x2 - 1)

přitom je X = 1/2 —x 2.
Pretože platí

x2 - 2x - 1 = (x - 1 - 1/2) (x - 1 + 1/2),
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platí ďalej
Q - i - 1/2) O - 1 +1/2) (2)од =

- 2{x + l)(x - 1)
Vzhladom na vztah (Г) přečíslo x musí platit’ L(x) ^

^ 0 číže

Q - 1 -1/2)0 - 1 + j/2) (2')^ 0 .

2(x + 1)0 - 1)
Teraz rozoznávajme dve možnosti:

Případ [1]. Nech je
(x + 1)0 — 1) < O ,

takže pre číslo x nutné platí
(3')

(3)— 1 < X < 1 .

Potom zo vztahu (2') vyplývá, že musí byť
1 + p) 0 - 1 -p) ž o.

Odtial vyplývá, že musí platit’ právě jeden zo vzťahov:
íži + 1/2,
* ^ 1 — 1/2 .

o (4)

(50
(5'0

Možnost’ daná vztahom (50 odpadá, lebo je v spore so
vzťahmi (3).

Pretože je — 1 < 1 — ]/2 < 1, musí podlá vzťahov
(3), (5") pre číslo л: platit’

- 1 < x ^ 1 - ]/2 . (6)
Teraz sa pýtajme, či číslo x dané vzťahmi (6) vyhovuje

nerovnosti (1) (urobme to v odseku A3 В).
A. Predovšetkým pre číslo x musí platit’

2 — x2 ^ 0,
inak by nemala odmocnina ]/2 — x2 zmysel; zo vztahu

(7)

48



(7) dostaneme
(x + ]/2)(x-]/2)á,0,

-]/2^x<]/2.
Túto požiadavku však číslo л: dané vzťahom (6) splňuje.

B. Ďalej musia mať oba zlomky na 1’avej straně nerov-
nosti (1) zmysel, t.j. nesmie platit’ ani jedna z týchto
rovností:

(8)

x -{-,]/2 — x2 = 0 ,

x — j/2 — x2 = 0 .

(9)
(10)

Riešme rovnicu
— j/2 — x2, x = ]/2 — я2;

z obidvoch dostaneme postupné
x2 = 2 — x2,
x2 - 1 = 0,

(x + 1)(* — 1) = 0;

x =

je teda buď
(11)x = — 1,

X = 1 .

Číslo x = — 1 je koreňom rovnice (9), číslo x = 1 je
koreňom rovnice (10). Avšak medzi číslami x danými
vzťahmi (6) nie je žiadne z čísel — 1, 1. Každé číslo л:
dané vzťahom (6) má teda tú vlastnost’, že 1’avá strana
nerovnosti (1) a tým aj nerovnosti (Г) má po dosadení
tohoto čísla zmysel. Avšak podlá výpočtu, ktorý sme
vyššie urobili, číslo x zo vztahu (6) splňuje vztah (3') aj
vztah (4) a preto je riešením nerovnosti (Г) a tým aj
nerovnosti (1).

Výsledek [1]. Číslo x dané vzťahom (6) je riešením
nerovnosti (1).

buď
(12)
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Případ [2]. Nech je
(x + l)(x — 1) > O ,

takže pre číslo x nutné platí právě jeden zo vzťahov
x > 1 ,

X < — 1 .

(13)

(14)
(15)

Potom zo vztahu (2') vyplývá, že musí byť
1 - 1/2) (* - 1 + ]/2) ^ 0 .(.x (16')

Odtial vyplývá požiadavka
1 - 1/2 ^ x ^ 1 + 1/2.

Pretože je — 1 <1 — 1/2, neprichádza číslo x dané
vzťahom (15) do úvahy. Zo vzťahov (14) a (16) potom
vyplývá, že pre číslo x musí platit’

1 <x ^ 1 + 1/2.

(16)

(17)
Avšak rovnako ako v odstavci A musia pre číslo x

platit’ vztahy (8); kombináciou požiadaviek (8), (17) pre
číslo x dostáváme

1 <x^]/2.
Medzi číslami x, ktoré sú dané vzťahmi (18), nie je žiadne
z čísel — 1, 1, takže pre takéto čísla x l’avá strana nerov-
nosti (Г) a tým aj nerovnosti (1) má zmysel (pozři od-
stávec В).

Pýtajme sa teraz, či číslo x dané vzťahmi (18) je rieše-
ním nerovnosti (1) čiže nerovnosti (Г). Po dosadení
čísla x do výrazu (2) vzhladom na urobený výpočet platia
zároveň vztahy (13), (16'), takže je L(x) nezáporné číslo;
pre takéto x teda platí (1') a tým aj (1).

Výsledok [2]. Číslo x dané vzťahmi (18) je riešením ne-
rovnosti (1).

(18)
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Závěr. Riešením nerovnosti (1) sú všetky čísla x, ktoré
splňujú jeden zo vzťahov

- 1 -ос ^ 1 - |/2,
1 < x ^ ]/2

a žiadne iné. Pozři graf na obr. 8.

Ш 1-Í2 0 1 № 1+Í2 ч

Obr. 8

6. Buď dán trojúhelník ABC a uvnitř strany AB buď
ďán bod M. Bodem M veďte přímku PQ tak, aby body
P, Q pořadě ležely na polopřímkách 'CA, CB a aby troj-
úhelníky ABC, PQC měly sobě rovné obsahy.

q\ \rn \p

Obr. 9

Řešení. Rozbor (obr. 9). Přímka AMB splňuje také
požadavky úlohy. Předpokládejme, že úloha má ještě
jiné řešení než přímku AMB. Jestliže bod P ^ A padne
na prodloužení úsečky CA za bod A, musí bod Q padnout
dovnitř úsečky CB (obr. 9). Jestliže bod P A padne
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dovnitř úsečky CA, musí bod Q padnout na prodloužení
úsečky CB za bod В (obr. 10). To snadno dokážeme

např. užitím vzorce A = — pro obsah trojúhelníka
ze známé velikosti strany a příslušné výšky anebo ze

vzorce A = -^-ab siny, kde a, b jsou velikosti dvou stran
trojúhelníka а у je velikost úhlu stranami a, b sevřeného.

Dále snadno dokážeme známou větu V: „Buď dán
trojúhelník ABC a uvnitř polopřímek CA, CB pořade
body P, <2 takové, že jsou obsahy trojúhelníků ABC,
PQC sobě rovny. Potom platí AQ || BP.(( (Platí též
obrácená věta.)

Qi\ ь/\
\

r a
\ &
\ T"

уВ
MC' /\

V

\

l\ \

\ \ / \
\\ /

\

P\A‘ A"
P\ \m \7

Obr. 10

Podle věty V je čtyřúhelník AQBP lichoběžník se zá-
kladnami AQ || BP; bod M je společným bodem jeho
úhlopříček AB, PQ. Označme К, L pořadě středy úseček
AQ, PB; potom body K, L leží na přímce CM neboli
body С, M leží na přímce KL (pomocná věta W).

Důkaz. Uvažujme stejnolehlost o středu C, která pře-
vádí bod В v bod Q a tedy úsečku BP v úsečku QA.
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V této stejnolehlosti je obrazem středu L úsečky PB
střed К úsečky AQ. Leží tedy bod C na přímce KL.

Ve stejnolehlosti o středu M, která převádí bod В v bod
A, je obrazem bodu P bod Q a tedy obrazem úsečky BP
úsečka AQ. V této stejnolehlosti je obrazem středu L
úsečky BP střed К úsečky AQ. Leží tedy bod M na
přímce KL.

Tím je důkaz věty W proveden.
Označme A', B' průsečíky přímky m || AQ, vedené

bodem M, pořadě s polopřímkami CA, CB. Podle právě
dokázané věty je bod M středem úsečky A'B' (jak se
snadno dokáže). Na základě tohoto výsledku provedeme
konstrukci.

Konstrukce. Bodem M máme sestrojit přímku m,
která má s polopřímkami CA, CB pořadě společné body
А', В' a to tak, že M je středem úsečky A'B' (obr. 9, 10).

Za tím účelem sestrojíme pomocný rovnoběžník
А'С'В'С o středu M a to takto: Sestrojme obraz C
bodu C ve středové souměrnosti o středu M. Bodem C
veďme přímky a || CA, Ъ || CB a označme A', B' spo-
léčné body dvojic různoběžek (b, CA), (a, CB). Pak se
snadno dokáže, že M je středem úsečky A'B'.

Dále veďme body А, В pořadě přímky q || A'B',
p || A'B' a označme Q společný bod přímek q, CB a dále
P společný bod přímek p, CA.

Potom je CPQ hledaný trojúhelník.
Důkaz. Předpokládejme, že je A' ^ A a tím i В' ^ B.

Potom zřejmě existuje lichoběžník AQBP; to plyne ze
dvou stejnolehlostí o středu C (v jedné bodu B^B'
přísluší bod B', ve druhé bodu A' ^ A přísluší bod A).
Je třeba dokázat, že společný bod M' úhlopříček AB,
PQ našeho lichoběžníka AQBP splývá s daným bodem
M.
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Podle pomocné věty W leží body С, M' na přímce
KL, kde К, L jsou pořadě středy základen AQ, BP
lichoběžníka AQBP. Přitom vnitřní body polopřímky
CK mají tuto vlastnost: Jsou množinou středů všech
úseček XY || A'B', kde X je vnitřní bod polopřímky
CB a Y vnitřní bod polopřímky CA (tato věta se snadno
dokáže pomocí stejnolehlosti).

Protože podle konstrukce úsečky AQ je AQ || A'B',
leží střed M úsečky A'B' uvnitř polopřímky CK; na ní
však podle věty W leží i bod M' (společný bod úseček
AB, PQ). Ale přímky CK, AB mají společný jediný
bod a tím je podle konstrukce úsečky A'B' právě bod M;
proto je M' = M. Bod M je tedy společným bodem
úseček AB, PQ (úhlopříček lichoběžníka AQBP). Tím
je důkaz konstrukce proveden.

Diskuse. Řekli jsme, že je známo, že úsečka A'B' ve-
děná bodem M je jediná. Důkaz konstrukce spočíval na
předpokladu, že je A' ^ A (a tím též B' B). Jestliže
je A' = A, je M středem úsečky BA a jediným řešením
úlohy je přímka AMB. Jestliže však není M středem
úsečky AB, pak existuje výše popsaná přímka A'B' různá
od přímky AB a je A'^áA; úloha pak má podle po-
psané konstrukce právě jedno řešení.

Tím je řešení dané úlohy provedeno.
Jiné řešení. Rozbor (obr. 11). Přímka AMB splňuje

také požadavky úlohy; nadále předpokládejme, že AB,
PQ jsou různé přímky. Jestliže úloha má řešení, jsou
obsahy trojúhelníků ABC, PQC sobě rovné. Tudíž jsou
si rovny i obsahy trojúhelníků AMP, BMQ, jejichž úhly
při vrcholu M mají touž velikost <p (úhly vrcholové);
o obsazích těchto trojúhelníků tedy platí

1 1
— MA . MP . simp — — MB . MQ . simp .
^ Z
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Odtud snadno odvodíme vztah
MA MQ
MB ~ MP ‘

Bodem В veďme přímku b \\ АС a označme D spo-
léčný bod přímek b, CM. Pak jsou trojúhelníky MAC,
MBD stejnolehlé podle středu M stejnolehlosti a platí

MA MC
MB ~ MD '

Porovnáním vztahů (1), (2) dostaneme
MQ MC
MP ~ MD 5 K3)

takže trojúhelníky MCQ,
MDP, jejichž úhly (vrcho-
lové) CMQ, DMP jsou si
rovny, jsou rovněž stejno-

(1)

(2)

c •

/
/
/
/

/
/lehlé podle středu M stej- / ,

nolehlosti; je tedy Z)P||C<2
neboli DP || CB a CBDP \ /
je rovnoběžník. Odtud Зл; /
plyne konstrukce. \ /

Konstrukce. Bodem В
veďme přímku 6 || ЛС
a označme Z) společný
bod přímek 6, CM. Dále
sestrojme rovnoběžník
CBDP a označme Q spo-
léčný bod přímek CB,
MP. Potom je PMQ hledaná přímka.

/

VQ
/

/

/

//\ Лx
\ /

//\
W/

Obr. 11

Důkaz. Podle konstrukce je CB || PD, СЛ || BD. Ze
stejnolehlosti trojúhelníků MPD, MQC plyne vztah

CQ MC
PD MD 5
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avšak PD — ВС (protější strany rovnoběžníka CBDP),
takže z předchozího vztahu plyne

CQ MC
BC ~ MD

Ze stejnolehlosti trojúhelníků MAC, MBD plyne
АС MC
BD ~ MD

(4)

a protože BD = CP, dostaneme odtud
AC MC
CP ~ MD '

Porovnáním vztahů (4), (5) dostaneme
AC CQ
CP ~ BC

(5)

neboli
AC . PC = CP .CQ,

a tedy (označme <£ ACB = y)
1 1

jAC.BC. siny =2CP .CQ siny;
mají tedy trojúhelníky CPQ, CAB sobě rovné obsahy.
Sestrojená přímka PMQ vyhovuje tedy požadavkům
úlohy.

Diskuse. Rovnoběžník CBDP lze vždycky sestrojit,
neboť přímky CM, AC jsou různoběžné. Pokud je
P ^ A, jsou trojúhelníky CPQ, CAB různé. Jestliže je
P = A, pak oba trojúhelníky splývají; potom je nutně
M středem rovnoběžníka CBDP a M je tedy středem
strany AB.

Jestliže je obráceně M středem strany AB, je P = A,
Q = В a AB je jediné řešení. Není-li bod M středem
strany AB, pak podle předchozí úvahy je nutně P ^ A,
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přičemž P padne vždy dovnitř polopřímky CA. Existuje
tedy jediná přímka PQ AB, která splňuje požadavky
úlohy.

Tím je řešení úlohy provedeno.
Podle řešení s. Josefa Houšky,
žáka 11.a tř. 2. jsš, České Budějo-
vice.

7. V posloupnosti {an}, kde
Уи

«я = 100 + n ’
existuje největší člen. Určete jej.

4

Řešení. V dalších úvahách značí n přirozené číslo.
Každý člen #n dané posloupnosti {#„}, kde

]/n (1)an 100 + n 5
je kladné číslo, neboť čitatel i jmenovatel posledního
zlomku je číslo kladné.

Úlohu rozdělíme na dvě části: V části I dokážeme, že
rozdíl

rn an an+1

je kladné číslo pro každé číslo n > 99, tj. že platí
(2)й100 > ^101 > a102 > • • • •

V části II dokážeme, že platí
di <. a2 < ... <C. tf99 < #ioo •

Spojením obou výsledků (2), (3) pak plyne, že člen
= 0,05 je největším číslem dané po-

(3)

10
aioo 100 + 100
sloupnosti. Provedením důkazu platnosti vztahů (2), (3)
bude řešení úlohy provedeno.
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Část I. Protože členy posloupnosti {<an} jsou kladná
čísla, plyne ze vztahu an > an+1 vztah > a|+1 a obrá-
ceně ze vztahu > al+x plyne platnost vztahu
an > an+1- Uvažujme rozdíl rn = a\ — al+1 neboli

_ / ]/n \2 / ]/n + 1 \2
\ 100 + n) \101 + n) ' (4)rn

Platí

(101 + nf. n - (100 + nf. (n + 1)
(100 + w)2(101 + nfrn =

V dalším budeme vyšetřovat číslo
r'n = (101 + rifn — (100 + n)\n -f- 1). (5)

Platí postupně
r'n = 1012я + 202w2 + w3 -

— 1002и — 200«2 — и3 —

- 1002 - 200w - n2 =

= n2 + (1012 - 1002)и - 200w - 1002 -
= n2 + (101 - 100)(101 + 100) и -
- 200w - 1002 -
= n2 + n — 1002. (6)

Pro n ^ 100 je tedy zřejmě
r'n ^ n > 0

a tedy též
rn > 0 .

Tím je dokázána platnost vztahů (2).
Část II. Tu máme dokázat, že číslo rn ze vztahu (4)

je záporné pro všechna čísla
1 <n <99

neboli, že pro tato čísla je číslo r'n ze vztahu (5) číslem
záporným.
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Upravme r'n ze vztahu (6) postupně takto:
rn — h2 + n — (99 + l)2 —

- n2 + n - 992 - 2.99 - 1 =
- (n2 - 992) + (n - 99) - 100 .

Z posledního výrazu je vidět, že pro n ^ 99 jsou všechny
tři jeho sčítanci čísla nekladná (poslední je záporné);
je tedy rn < 0. Proto je rn < 0 pro všechna n ^ 99
a tudíž platí vztahy (3).

Tím je řešení úlohy provedeno; největší člen posloup-
nosti {an} je a100 = 0,05.

8. Buďte dány dvě к sobě kolmé roviny pA, pB, kde
p je jejich průsečnice; dále bud dáno kladné číslo d.
Uvažujme úsečku XY — 2d, přičemž je X bodem polo-
roviny pA a Y bodem poloroviny pB.

Vyšetřte množinu středů všech úseček XY, které
splňují výše uvedené požadavky.

Řešení. V tomto řešení se budeme odvolávat na

obrázky, abychom nemusili široce vykládat některá za-
váděná označení. Dokážeme tuto větu P (jako výsledek
řešení úlohy): Množinou X středů všech úseček XY,
o nichž mluví daná úloha, je společná část určitého válco-
vého prostoru V a pravoúhlého klínu U. Klín U je spo-
léčnou částí poloprostorů pAB, pBA. Válcový prostor V
je omezen rotační válcovou plochou to, která má poloměr
d a přímku p za osu rotace (viz obr. 13).

Množina X je tedy čtvrtina válcového prostoru V;
dostaneme ji také takto: V rovině л J_ p sestrojíme
čtvrtkruh К o středu Yt = p . л a poloměru d, přičemž
příslušná čtvrtkružnice k = (Y13 d) má krajní body
Sí3 S2 pořadě v polorovinách pA, pB. Každým bodem
čtvrtkruhu К vedeme přímku p' || p; množina všech
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bodů přímek p' je množina Z. Právě zavedených ozna-
cení budeme v dalším užívat.

Množina Z vznikne složením určitých čtyř množin
bodů; tyto čtyři množiny nemají, jak dále uvidíme, žádné
společné body; o každém z bodů těchto množin také
hned dokážeme, že je středem jisté úsečky XY = 2d,
která vyhovuje požadavkům úlohy.

Rozeznávejme tyto čtyři možnosti vzájemné polohy
přímky p a přímky q = XY, kde XY je úsečka sestro-

jená podle textu úlohy.

Případ [1]. Nechť p,
q jsou rovnoběžky (obr.
12). Pak je nutně p s= q a
oba body X, Y jsou body
přímky p a tudíž i bod S
je bodem přímky p.

Obráceně je každý bod
o přímky p zřejmě stře-

dem jisté úsečky XY — 2d, přičemž body X, Y jsou
body přímky/). Přímka p je tedy jednou z částí množiny
Z (tvrzení Tj).

Případ [2]. Nechť je p J_ q (viz obr. 13). Přímkou q
položme rovinu л J_ />; taková rovina л zřejmě existuje
jediná; tím je úloha převedena na planimetrickou úlohu
v rovině л. Přímka q může mít jednu z těchto odlišných
poloh:

[a] Přímka q leží v rovině pA; příslušnou úsečku XY
označme Xx YX) kde Yx = p . л a Xx leží uvnitř polo-
roviny pA. Střed úsečky XxYx označme Sx. Označme po-
řadě я || sx \\p přímky (obě leží v rovině pA) vedené
body Xx, Sx (porovnej s obr. 14).

[b] Přímka q leží v rovině pB; příslušnou úsečku
označme X2Y2, kde X2 = Yx, přičemž Y2 leží uvnitř
poloroviny pB. Střed úsečky X2Y2 označme S2 a dále
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pořadě označme у [| s2 \\p přímky (obě leží v rovině pB)
vedené body Y2, S2.

[c] Přímka q J_ p je mimoběžná s přímkou p a body
X, Y leží pořadě uvnitř polopřímek УгХг, X2Y2 (viz
obr. 13); tento předpoklad není na újmu obecnosti. Do-
kážeme, že střed 5 úsečky XY je vnitřním bodem čtvrt-
kružnice k = 5ltS2.

i

Obr. 13

Stačí sestrojit obdélník XYj^YZ v rovině л; jeho střed
je středem S úhlopříčky XY = 2d, a proto je =

= i.XF = d a bod S skutečně leží na čtvrtkružnici k.
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Dokážeme tvrzení T2: Každá čtvrtkružnice k =

= SXS2 o poloměru d,o středu Yx na přímce p3 ležící
v rovině n J__ p a v klínu U, je množinou středů úseček
XY3 které vyhovují podmínkám úlohy. Přitom je
YXSX = = d, yitSt _L />, YXS2 JL p a body S13 S2
leží pořadč uvnitř polorovin pA, pB.

Důkaz. Body SX3 S2
jsou zřejmě pořadě středy
jistých úseček XxYx =
— X2 Y25 jichž sestrojení
je vidět z obr. 13 a patří
tedy к množině.

\ j ’ Bud S libovolným bo-
1 i dem vnitřku čtvrtkruž-

nice k = SXS2. Sestrojme
v rovině ti kružnici я =

= (S, d)j která prochází
bodem Yx = X2 a pro-
tne polopřímky YxX13
X2Y2 ještě pořadě v bo-
dech X=áX13 Y?áY2.
Je-li YXZ průměrem kruž-

nice z, je XYxYZ obdélník; snadno dokážeme, že
úhlopříčka XY tohoto obdélníka má za střed bod 5 a
platí XY — 2d. Sestrojili jsme tedy úsečku XY (podle
podmínek úlohy), která má za střed daný bod 5. Tím je
tvrzení To dokázáno a část válcové plochy to, která
padne do klínu U, náleží к množině 27; tato část je
omezena občma přímkami sx || s2 || p plochy to.

Případ [3]. Nechť jsou přímky p3 q kosé a různo-
běžné (viz obr. 14, kde je zobrazena jen rovina pA; po-
rovnej s obrázkem 13). V tomto případě musí právě jeden
z bodů X3 Y padnout na přímku p. Uvažujme případ, že

i

■

I
v

■7—^17
s

i

Y) I !
чТ)"Я

LrГа

Obr. 14.

62



bod Y leží na p a tedy bod X uvnitř poloroviny pA (pří-
pad, že X leží na p a Y uvnitř poloroviny pB se řeší
obdobně).

Podle předpokladu o přímkách p, q existuje trojúhelník
XYYx (<ХУ je ostrý, <$:Y1 = 90°), a proto je

XYx <XY = 2d,
takže bod X padne dovnitř úsečky Xx Yx o délce 2d; její
střed označme 5xaO střed úsečky X Yv Ze vztahu (1) plyne

(1)

1 1

2XY'<2 XY — d '

neboli
XxO < YXSX = d

a bod O tedy padne dovnitř úsečky proto přímka
OS || p (S je středem úsečky XY) leží uvnitř pásu rovno-
běžek p, sx a s přímkou OS uvnitř tohoto pásu leží
i bod S.

Dokážeme toto tvrzení T3: Vnitřek právě zmíněného
pásu rovnoběžek p, sx spolu s vnitřkem obdobného pásu
rovnoběžek />, s2 z poloroviny pB (viz obr. 13) je třetí
částí vyšetřované množiny.

Důkaz. Buď S bodem vnitřku pásu rovnoběžek p, sx
(viz obr. 14). Šířka pásu je d a bod S má od přímky p
vzdálenost menší než d\ proto přímka p má s kružnicí

(5, d) dva společné body Y Yx. Označme XY
průměr kružnice m, takže je <£ YYxX — 90° a <^XYYx<
< 90°; je patrné, že bod 5 je středem úsečky XY, která
vyhovuje podmínkám úlohy.

Tím je tvrzení T3 dokázáno.
Případ [4]. Nechť jsou přímky p, q kosé a mimoběžné

(viz obr. 15). Úsečka XY leží až na krajní body X, Y
uvnitř klínu U; bod X leží uvnitř poloroviny pA, bod Y
uvnitř poloroviny pB. Označme Ax ^ Bx pořadě paty

m =
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kolmic vedených body X, Y к přímce p. Sestrojme
v polorovině pA obdélník XAÍB1B2 a v polorovině pB
obdélník YB1A1A2. Považujme obdélník XAxBxB2 za
stěnu kvádru Q a bod Y za vrchol jeho druhé stěny
A3A2YBs s předchozí rovnoběžné (je tedy A3X || A2AX ||

Obr. 15

|| YBX || B3B2). Střed S úsečky XY3 která je tělesovou
úhlopříčkou kvádru Q, je středem tohoto kvádru. Ro-
vina o J_ p, která prochází bodem S, vytne na kvádru
střední řez' (obdélník) MNDQ A3A2AxX. Velikost
úsečky DS je vzdálenost bodu 5 od přímky p. Z vlast-
ností kvádru plyne, že SD = \ .DM, DM — Ay43,
XY = 2d (stěnová úhlopříčka kvádru je menší než jeho
tělesová úhlopříčka); je tedy SD < | .XY neboli SD <
< d. Leží tedy bod S uvnitř klínu U a zároveň uvnitř
rotační válcové plochy to.

Dokážeme toto tvrzení T4: Každý bod S, který leží
uvnitř klínu U a zároveň uvnitř rotační válcové plochy
to, je středem úsečky XY — 2d, která splňuje podmínky
úlohy.
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Důkaz (obr. 15). Označme D patu kolmice vedené
bodem 5 к přímce p; podle předpokladu je 0 < SD < d.
Sestrojme v rovině (S, p) kružnici n = {S, d); protože
platí SD < d, má kružnice w s přímkou p dva společné
body Ax Bx (bod D je středem úsečky AXB^). Označme
A3, B3 obrazy bodů Bx, Ax v souměrnosti o středu S.
Protože bod 5 leží uvnitř klínu U, leží A3, B3 rovněž
uvnitř klínu U; přitom je SAX = SBX — d (podle kon-
strukce), SA3 = SBj = d, SB3 = SAX = d (ze souměr-
nosti podle S) neboli v rovnoběžníku AXBXB3A3 jsou
úhlopříčky AXB3 — BXA3 — 2d, tj. je to obdélník. Proto
je A3AX _L p, B3BX J_ p; leží tedy bod Ax v rovině £ _|_ p
vedené bodem A3. Označme X, A2 paty kolmic vede-
ných bodem A3 pořadě к rovinám pA, pB. Protože U
je pravoúhlý klín a A3 leží uvnitř tohoto klínu, padne X
dovnitř poloroviny pA a A2 dovnitř poloroviny pB, tj.
X Ax, A2^ Ax; přitom body A3, X, Ax, A2 leží v ro-
vině £ a jsou vrcholy obdélníka XAxA2A3. Uvažujme
kvádr Q o stěně XAxA2A3 v rovině £ a o hraně AXBX £.
Protože podle konstrukce bodu A3 je S’ středem úsečky
A3BX, je tento bod středem kvádru; stěnu YB3B2BX
protější ke stěně XAxA2A3 dostaneme pomocí souměr-
nosti o středu S. O tělesové úhlopříčce XY ted/ platí
XY=2.SX = 2.SAx = 2d; úsečka XY = 2d má
tedy střed S' a vyhovuje podmínkám úlohy. Tím je
tvrzení T4 dokázáno.

Protože přímky p, q nemohou mít žádné jiné vzájemné
polohy než ty, jež jsme v případech [1] až [4] uvedli, ne-
dostaneme žádné další středy úseček XY. Tím jsme do-
kázali větu P a provedli řešení dané úlohy. Množina X se
tedy skládá: [1] z přímky p; [2] z části plochy w, pokud
leží v klínu U; [3] z vnitřků obou pásů rovnoběžek p, sx
a p, s2; [4] z bodů, které zároveň leží uvnitř plochy co a
uvnitř klínu U.
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9. V rovině je daná kružnica ^ = (53 r) a na nej dva
rožne body A, B. Uvažujme o trojuholníku ABC, kde C
je bod kružnice k; označme X priesečník výšok tohto
trojuholníka.

Co vyplnia všetky body X, keď bod C prebieha všetky
body kružnice k (s výnimkou bodov A, B) ?

Riešenie. Rozoznávajme dve možnosti: 1. Tětiva
AB je priemerom kružnice k; 2. tětiva AB nie je prie-
merom kružnice k.

Případ, keď AB je priemer, je velmi jednoduchý.
Trojuholník ABC je pravoúhlý a je X = C (priesečník
výšok v pravouhlom trojuholníku je vrchol pravého
uhla).

Závěr. Body X vyplnia teda celú kružnicu s výnimkou
bodov A, B.

Případ, keď AB nie je priemer, budeme teraz riešiť
(obr. 16). Body X vyplnia určitú množinu, ktorú ozna-
číme £. Zaveďme tieto označenia: Os úsečky AB na-
zvime p. Váčší oblúk AB kružnice k nazvime v a menší
oblúk m. Polrovinu ABS nazvime g, polrovinu opačnú q'.
Spoločný bod priamky p a oblúka v nazvime C', spo-
ločný bod oblúka m a priamky p nazvime C". Středový
uhol <£ ASB označme co, vypuklý uhol ASB nazvi-
me co'; je

co' = 360° — co .

Zostrojme v bode A kolmicu к priamke AB a označme
Сг jej spoločný bod s oblúkom v. Bod Cj existuje. Stačí
bodom В viesť priemer kružnice k a označit’ Cx protilahlý
bod к bodu В; podl’a Thaletovej vety je uhol <£BACX —
= 90°. Označme Bx obraz bodu Cx v súmernosti s osou p.
(V dalšom sa pri zavádzaní označení odvoláváme na
obrázok.)
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Pretože celý útvar je súmerný podlá osi p, budeme
skúmať len tie body C, ktoré ležia v polrovine pA. Sú
tri možnosti.

Případ [1] (obr. 16). a) Bod C Cx leží na oblúku
C'CX (v polrovine q). Pretože C leží v pravom uhle

kru lnice к

<£ВАС13 je uhol <£BAC ostrý. Z toho istého dóvodu
je ostrý aj uhol <$:ABC. Uhol «£BCA je obvodový
nad oblúkom m a preto sa rovná —co < 90° a teda je
ostrý. Trojuholník ABC je preto ostrouhlý a priesečník
X jeho výšok AVX, BV2, CV3 padne podlá známej vety
dovnútra trojuholníka. Bod V3 leží vnútri úsečky AB
a polpriamka CV3 dělí uhol $:BCA = ico na uhly
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Yu Yz> kde
1

(1)Yi + У2 = ~2 w •

Vypočítáme velkost’ uhla :AXB = e. Platí
e = <AXVa + <$.BXVZ,

<MXF3 = <£FxXC = 90° - y2

(2)
(3)

(z trojuholníka XCFJ,
<BXVZ = <£F2XC = 90° - y! (4)

(z trojuholníka VCF2).
Po dosadení z (3) a (4) do (2) máme vzhTadom na (1)

e = 90° - Гг + 90° - Yi = 180° - (Yl + y2) =
1

= 180° -jrto,
V • V

cize

e = \ (360° — ") = \ ™ *

To znamená, že úsečku ЛВ vidieť z každého bodu X

pod tým istým uhlom -i- co'. Body polroviny £>', z ktorých
vidieť úsečku pod týmto uhlom, vyplnia podlá známej
vety oblúk m. Body X ležia v polrovině q a preto ležia na
oblúku m', ktorý je obrazom oblúka m v súmernosti
s osou AB. Osou oblúka m' je aj priamka p. Oblúk m'
je častou kružnice k! = [S', r), ktorá je obrazom kruž-
nice k s= (5, r) v súmernosti s osou AB. Druhá časť
kružnice k' (po odobratí oblúka m') je oblúk v'3 ktorý je
obrazom oblúka v v súmernosti s osou AB.

b) Dokážeme: Body oblúka m' bez krajných bodov
А, В patří к vyšetrovanej množině £.

Musíme teda dokázat’, že každý bod X vnútrajška
oblúka m! je priesečníkom výšok istého trojuholníka
ABC, kde C je bod oblúka v a to na priamke XVz _L AB.
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Ak zostrojíme bod C, podlá časti a) prislúcha bodu
C priesečník výšok trojuholníka ABC, ktorý leží na
priamke XV3 ± АВ a na oblúku m!. Je to teda ne-
vyhnutne bod X. Tým sme dokaž urobili.

Případ [2]. Nech je C = Cx. Potom priesečníkom
výšok trojuholníka ABC je bod A, lebo <£BACX = 90°.
Patria teda oba krajné body A, В oblúka m! к skúmanej
množině £.

Případ [3]. a) Nech bod C leží vnútri oblúka ACX
(ktorý je častou oblúka v ležiaceho v polrovine g; pozři
obr. 17). Tu bod Cx leží vnútri uhla <£CAB. Pretože je
$lCxAB = 90°, je uhol <|tCAB tupý a trojuholník ABC
tupouhlý. V tupouhlom trojuholníku ABC, ako vieme,
padne priesečník X výšok dovnútra uhla vrcholového
к uhlu <£CAB. Vypočítáme velkost’ uhla e' = <^AXB.
Vieme, že je uhol <£ВСА — co. Pravoúhlé trojuhol-
niky BXV-! (<^ = 90°), BCV2 (<F2 = 90°) majú
spoločný ostrý uhol pri vrchole B. Ich zbývajúce ostré
uhly sú zhodné, t. j. platí

, 1
e =

2 ■
1

Bod X leží vnútri polroviny q' a platí <£AXB — 00•

Všetky body polroviny q'3 z ktorých vidieť úsečku AB
pod uhlom y (0 vyplnia vnútrajšok oblúka v' (s krajnými
bodmi А, В), o ktorom sme už hovořili vyššie (je obrazom
oblúka v v súmernosti s osou AB). Avšak bod X leží
vnútri polroviny a (pozři obr. 17), ktorá je opačná к pol-
rovině АСгВ. To preto, že je CV3X || AC^ (obe priamky
stoja kolmo к AB) a bod A leží vnútri úsečky V3B.
Označme v\ tú časť oblúka v', ktorá leží v polrovine a.
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Bod X je teda vnútorným bodom oblúka vA\ jeho jeden
krajný bod je A, druhý označíme A'.

b) Dokážeme ešte: Vnútrajšok oblúka v'A patří
к množině |.

Nech X je bod vnútrajška oblúka v'A. Uvažujme
o trojuholníku ABX (obr. 17); v ňom je uhol <£A tupý
(bod A' leží vnútri tohoto uhla a <£BAA' — 90°). Zo
súmernosti podlá osi АВ a z odstavca a) tohto případu
[3] vyplývá, že priesečník C výšok trojuholníka ABX
padne dovnútra oblúka CXA (časti to oblúka v z polro-
viny q), lebo oblúky СгА, vA si tu vymieňajú úlohu. Ak
teraz skúmame priesečník výšok trojuholníka ABC, do-
spejeme 1’ahko к výsledku, že je to daný bod X. Tým sme
dokaž urobili.

Patří teda vnútro oblúka v'A a vnútro oblúka v'B (ktorý
je s predošlým súmerne združený podlá osi p) к mno-
žíně £.

Případ [4]. Nech je C vnútorným bodom malého
oblúka m kružnice k (obr. 16). Aby sme skrátili vyšetro-
vanie a využili predošlé výsledky, označme tento bod X',
takže hladáme priesečník výšok trojuholníka ABX'
(pozři obr. 16); písmenom C označíme celkom iný bod.

Zostrojme obraz X bodu X' v súmernosti s osou AB,
takže je XX' J_ AB; oblúky m, m' sú súmerne združené
v tej istej súmernosti. Ďalej zostrojme spoločný bod C
priamky XX' a oblúka v (bod Cx leží zrejme na
oblúku CjC'). Ak zostrojíme podlá odst. a) případu [1]
priesečník výšok trojuholníka ABC, dospejeme к bodu X
a obrátene, priesečníkom výšok trojuholníka ABX je
bod C. Ak sledujeme obrazy ABX', ABC0 trojuhol-
níkov ABX, ABC v súmernosti s osou AB, dokážeme
tým toto:

Ak prebieha bod X' vnútro oblúka m, vyplní příslušný
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priesečník výšok C0 trojuholníka ABX' vnútrajšok ob-
lúka A'B', tj. tú časť oblúka v', ktorá leží vnútri pása
rovnobežiek ACX, BBX. Vnútro malého oblúka A'B' patří
teda к množině f (pozři obr. 16).

Závěr. Množina | je teda množinou všetkých bodov
kružnice k! (obraz kružnice k v súmernosti podia osi AB)
s výnimkou bodov А', В'. (K týmto bodom sme ne-
dospěli. Ostatně, keby bod A' mal byť priesečníkom
výšok trojuholníka so stranou AB, bola by priamka AA'
jeho výškou, příslušnou к straně AB. Potom by třetím
vrcholom mohol byť jedine bod Cx, ale trojuholník ABCX
má priesečník výšok v bode A a nie v bode A'.)

Poznámka. Zo zhodnosti kružnic k = (S, r), k' =
= (S', r) vyplývá, že ich možno stotožniť posunutím
velkosti ACX. Z toho však vyplývá, že vo všetkých uvažo-
váných trojuholníkoch ABC je AX — CXC a tiež AX ||
II QC.

Iné riešenie (případ, keď AB nie je priemer kružnice
k). Pri označení uvedenom v texte úlohy a v predošlom
riešení dokážeme túto vetu: Ak je X priesečník výšok
trojuholníka ABC, ktorý vyhovuje podmienkam vyšlo-
veným v texte úlohy, potom je CX — CXA, kde Cx je
třetí vrchol pravoúhlého trojuholníka BCXA, vpísaného
kružnici k == (S, r); přitom je CX || CXA aj čo do zmyslu.

Dokaž urobíme v troch častiach. Označenie vidieť
z obrázkov 18—20.

Případ [1] (pozři obr. 18). Nech C leží vnútri oblúka
CXBX (v polrovine ABS = q). Eahko dokážeme, že troj-
uholník ABC je ostrouhlý. Podlá známej veta padne
priesečník X výšok trojuholníka ABC dovnútra tohto
trojuholníka. Platí

CX J_ AB , CXA _{_ AB
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a teda
CX || CXA ,

pričom sú obe priamky rožne.
Trojuholník BCXC má uhol <£C — 90° (podlá Thale-

tovej vety, lebo BCX je priemerom kružnice k). Teda je
CXC J_ BC.

(1)

vvc kružnice к Jcružnice к

суCj'
A\

AA
C/>

>
4

4
^/ f

s
i s

^/ ьЛ/м.Ш•o в /в
1ГК- -p' в-+\.> X i И,

i
Г

m
m

Obr. 18 Obr. 19

Ďalej je
АХ 1 ВС (AX je výška A Vx)

a teda
AX || CXC. (2)

Zo vzťahov (1), (2) vyplývá, že AXCCx je rovnoběžník
a platí

CX — CXA , СХП CXA , (3)
čo sme malí dokázat’.

Případ [2] (obr. 19). Nech C leží vnútri oblúka ACX
(v polrovine q). Trojuholník ABC má uhol <£Л tupý;
preto bod X padne dovnútra uhla <^V2AV3i vrcholo-
vého к uhlu <£BAC. Trojuholník BCXC je vpísaný kruž-
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nici k a BCX je jej priemer. Podlá Thaletovej vety je
CXC JL BC;

ďalej je
AX 1 ВС (AX je výška AVJ .

kružnice к kružnice к

Z oboch vzťahov vyplývá
AX || CtC

a vela toho je
CX || CXA .

Те teda AXCC, rovnoběžník, ako sa 1’ahko usúdi a platí
vztah (3).

Případ [3] (obr. 20). Nech C leží vnútri menšieho
oblúka m, ktorý leží v polrovine q\ opačnej к polrovine
ABS. Trojuholník ABC má uhol <£C tupý a bod X
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padne dovnútra uhla $.VXCV2, vrcholového к uhlu
<fJBCA. Trojuholník BCXC má podlá Thaletovej vety

C = 90°, lebo BCX je priemer kružnice k. Je teda
QCjLBC, AVxX±BC

CXC || AX.
a teda

Ďale je
CX || CXA .

Z oboch posledných vzťahov lahko usúdime, že AXCCx
je rovnoběžník a zrejme platí (3).

Závěr (obr. 21). Priesečník X výšok trojuholníka ABC
z textu úlohy dostaneme posunutím bodu C o úsečku
velkosti CXA a to v zmysle polpriamky CXA. Body X
vyplnia zrejme kružnicu k', zhodnú s kružnicou k a sú-
merne združenú s k podl’a osi AB, pričom z kružnice k\
ktorá zrejme prechádza bodmi A, В, musíme vylúčiť
body A', B' polroviny qktoré vzniknú v zmienenom
posunutí ako obrazy bodov А, В (bod C je totiž nevyhnut-
ne rozny od každého z bodov A, B, inak by sme nedo-
stali trojuholník ABC).

Kružnica k zrejme vznikne z kružnice k' obráteným
posunutím. Preto každý bod X' kružnice kkde X' ^ A
X' ^ B\ je priesečníkom výšok istého trojuholníka ABC,
kde C je bod kružnice k, a to rózny od bodov A, B.

Poznámka. Podlá Pythagorovej vety, použitej na troj-
uholník BCCX (kde ^:CX — 90°) dostaneme pre velkost
x = CX — CXA nášho posunutia AC\ = ВCl — АВ2,
t.j.

x = ]/4r2 — c2,
kde c = AB. Tým sme zároveň odvodili zaujímavú for-
mulu pre vzdialenosť priesečníka X výšok trojuholníka
ABC od jeho vrcholu C.
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2. Úlohy II. kola kategorie A

1. Určete všechna řešení rovnice

]/7sinjc — 2 = У2 cos* .

Řešení. Položme

sin* = t, kde — 1 ^ t ^ 1 .

Levá strana má smysl jedině pro
7t - 2 ^ 0

neboli pro

Rovněž pravá strana je nezáporné číslo, kde cos* =

У1 — t2. Danou rovnici lze psát ve tvaru

У7г"^2 = У2(1 - t2).

1 (1)

Obě strany rovnice umocněme na druhou; postupně do-
staneme

7ř - 2 = 2(1 - ř2),
2r2 + It — 4 = 0 ,

zčehož je
- 7 rb У49 + 32 - 7 ± 9

*1,2 — 44
a tedy

1
-4.*i — 2 J —

Číslo ř2 nepřichází vzhledem к (1) v úvahu. Neznámou x
určují tedy rovnice

1
sinx — — , cosx =
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což dává množinu čísel
1

-jríz + 2&Tt, kde k je číslo celé.
Zkoušku stačí provést pro číslo x = Označme po-

řadě L, P výsledek dosazení do stran dané rovnice. Je

P = 1/2.

(2)x =

Je tedy L = P a všechna čísla (2) jsou řešeními dané
rovnice.

Řešil s. Zdislav Kovařík,
10.a tř. jsš, Hodonín.

2. Buďte dány dvě mimoběžky p, q a rovina g3 která
je různoběžná s každou z přímek p3 q.

Na přímkách p3 q stanovte pořadě body P, Q tak, aby
platilo PQ || g a PQ = d3 kde d je dané kladné číslo.

Popište příslušnou prostorovou konstrukci a načrtněte
obrázek.. Proveďte důkaz konstrukce a diskusi řešitelnosti
úlohy.

Řešení (obr. 22). Rozbor. Označme pořadě P0, Q0
průsečíky přímek p, q s rovinou g. Hledaná úsečka PQ
má krajní body P, Q, které pořadě leží na přímkách p3 q,
přičemž platí PQ || g, PQ = d. Na přímce p zvolme bod
Px a hledejme druhý krajní bod Qí úsečky PiQi, o níž
platí PiQi = d, PiQx || g. Bod Qx zřejmě leží v rovině
gx || g vedené bodem Pl3 a to na kružnici = (Px, d),
ležící v rovině gv Probíhá-li bod Рг přímku p3 dostaneme
ke každé jeho poloze právě jednu kružnici kx. Všechny
tyto kružnice zřejmě leží na válcové ploše Q, jejíž řídicí
kružnice je k = (P0, d)3 která leží v dané rovině e;
povrchové přímky této plochy jsou rovnoběžné s přím-
kou p.
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Krajní bod <2 hledané úsečky PQ je tedy společným
bodem přímky q s plochou Q; odtud plyne konstrukce.

Konstrukce (viz obr. 22). Sestrojme pořadě průsečíky
P0, Qq přímek p, q s rovinou p; v této rovině sestrojme

Obr. 22

kružnici k = (P0, d), která je řídicí kružnicí pomocné
válcové plochy Q, jejíž osou je přímka p. Vyšetříme spo-
léčné body přímky q s plochou to provedeme podle
známé konstrukce užitím roviny r rovnoběžné s přím-
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kou p takto: Bodem A Q0 přímky q vedeme přímku
p' ||p a označíme A' její průsečík s rovinou q (je zřejmě
A'^Q0); rovina x je dána různoběžkami q, p'3 takže
přímka t = Q0A' je průsečnicí rovin q, x. Označme M
jeden ze společných bodů přímky t s kružnicí k a veďme
jím přímku m \\p. Společný bod přímek q, m, které leží
v rovině r, označme Q a veďme jím přímku n || P0M;
společný bod přímek p a n (n leží v rovině různých rovno-
běžek p || m) označme P. Potom úsečka PQ je jedním
řešením úlohy.

Důkaz. Jestliže existuje bod M, pak existuje i přímka
m a tím i bod Q; přímky m, q leží totiž v rovině r a jsou
různoběžné; jinak by p, q nebyly mimoběžkami. Podle
konstrukce je P0M = d. Jestliže je M = Q03 je P0M
hledaná úsečka PQ3 tj. je Q = Q0 = M, P = P0. Jestliže
je M ^ Qq, potom dvojice rovnoběžek p || m a P0M || n
určují rovnoběžník QMP0P, takže bod P existuje a platí
PQ = P0M = d, PQ || P0M; je tedy PQ || {?. Tím je
důkaz proveden.

Diskuse. Rovina x existuje jediná, neboť q, p' jsou
různoběžky (jinak by q, p nebyly mimoběžné). Přímky
P, q a tím i přímky p', q jsou různoběžné s rovinou q3
takže existuje jediná průsečnice t rovin r, q. Řešitelnost
úlohy závisí tedy jen na tom, zda přímka t má či nemá
s kružnicí k společný bod. O tom rozhodneme podle
známé planimetrické věty; dostaneme snadno tento vý-
sledek: Úloha má dvě, jedno nebo žádné řešení podle
toho, je-li vzdálenost v bodu P0 od přímky t menší, rovna
nebo větší než d (neboli je-li přímka q sečnou, tečnou
nebo nesečnou plochy Q).

Dodatek. Při řešení lze užít též tohoto postupu (viz
obr. 22): Promítneme hledanou úsečku PQ ve směru
přímky p do roviny q. Průmětem přímky q je přímka t
a průmětem bodů P, Q jsou pořadě body P03 M3 přičemž
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je P0M = d а P0M || PQ. Odtud plyne v podstatě totéž
řešení, jako jsme uvedli nahoře.

Podle řešení s. Jana Palisy,
11. tř. jsš, Opava.

3. Sestrojte rovnoramenný lichoběžník ABCD (AB |j
|| CD, AB > CD), kterému lze vepsat kružnici. Je dána
úhlopříčka АС — e a výška v. Určete podmínky řešitel-
nosti vzhledem к daným číslům e, v.

Řešení (obr. 23). Rozbor. Předpokládejme, že jsme se-
strojili lichoběžník ABCD, který vyhovuje požadavkům
úlohy. Při označení uvedeném v obrázku platí

1 1
АР = AT = BP = ВТ' = ^ AB — --a,

DQ = DT = CQ = CT — ~ CD =jc.
Je tedy

1
AD = BC — — (a + c). O)

V pravoúhlém trojúhelníku ACCX je
AC = e , CCX = PQ = v , <£ACXC = 90° (2)

(P, 2 jsou pořadě středy úseček /1Р, CD).
Přitom je

ACX = AP + PCX = AP + QC —

— ~2^а + c) = BC > (3)
jak plyne ze vztahu (1).

Dále si všimněme toho, že polopřímka AC leží v úhlu
*£DAB, takže je

A-CAB < <$DAB = <ACBA . (4)
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Je tedy
ВС < АС. (5)

Odtud konstrukce.

Konstrukce (obr. 23). Sestrojme pravoúhlý trojúhelník
ACC1} o němž platí vztahy (2); ve zvolené polorovině q
o hranici CCj lze sestrojit nejvýše jeden takový troj-

G[ (I
у

У/1/ \

ArTF iyýкi

í УхУ-'

\*У

Ep В

Érip Щ
Obr. 23

úhelník. V polorovině q' opačné к polorovině q za před-
pokladu, že platí (5), sestrojme pravoúhlý trojúhelník
BCCX o přeponě

BC = ACX.
Označme p osu úsečky AB a sestrojme obraz BAD troj-
úhelníka ABC v souměrnosti o ose p = PQ. Potom je
ABCD hledaný lichoběžník. •

Důkaz. Podle konstrukce je AB _|_ p, CD J_ p a tedy
AB || CD. Pokud je В ^ C19 je <£CBCX ostrý a obě sou-
měrně sdružené přímky BC} AD jsou různoběžné, při-

(6)
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čemž je BC = AD; je tedy ABCD lichoběžník rovno-
ramenný se základnou AB — a a výškou PQ — v.

Ještě musíme dokázat, že se mu dá vepsat kružnice:
Označme 5 společný bod os úhlů <£DAB, <£ABC; ze
souměrnosti vzhledem к ose p plyne, že bod 5 padne na
přímku p. Označme T' bod polopřímky ВС, o němž
platí

(7)ВТ = BP= AP.

Jestliže bod P leží uvnitř úsečky ACX [přitom platí
(6)], je AP < AC1 a vzhledem к (6) a (7) je ВТ' < ВС,
takže bod T leží uvnitř úsečky BC. Ze souměrnosti podle
přímky BS plyne, že polopřímka ВТ' je obrazem polo-
přímky BP, a podle (7) je bod T obrazem bodu P. Proto
je úsečka ST' obrazem úsečky SP neboli

ST= SP,
<$BT'S <%BPS = 90°.

(8)
(9)

Dále je
Д SCQ £2 SCT (Ssu),

neboť stranu SC mají společnou, = <£<2 = 90°
[viz (9)], přičemž platí QC = PCX = ACX — AP =
= ВС - ВТ = CT [viz (6) a (7)]. Je tedy SQ = ST
a vzhledem к (8) odtud plyne

SQ = ST = SP,
přičemž je SP J_ AB, ST J_ BC, SQ ± CD. Proto
kružnice k = (S, SP) se dotýká přímek AB, BC, CD;
dotýká se však i přímky AD, což plyne ze souměrnosti
lichoběžníka podle přímky p. Tím je důkaz proveden.

Diskuse. (1) Trojúhelník ACCX lze sestrojit právě tehdy,
jestliže platí AC > CCX neboli

(10)e > v .

(2) Bod C musí padnout dovnitř poloroviny pB‘, to

816 95-0-02



podle známé věty nastane právě tehdy, jestliže je
AC> BC, (И)

ale BC = AC13 kde ACX je odvěsna pravoúhlého troj-
úhelníka ACCX s přeponou AC, takže vztah je splněn.

(3) Musí existovat trojúhelník BCC1} tj. musí být
BC > CQ neboli

(12)ACX > CC1.
Z trojúhelníka ACC1 však podle Pythagorovy věty plyne

ACX = УAC2-CC\ = ]/e2 - v2 .

Po dosazení do (12) dostaneme
]/e2 — v2 > v

neboli
e > v]/2

a tedy
1

v < j e 1/2 . (13)

Jestliže platí obráceně tento vztah, pak o úsečce AC13
sestrojené podle předchozího postupu, platí vztah (11)
a lze sestrojit trojúhelník BCC}, přičemž zřejmě je
BC < AC. Platí-li (13), pak platí i (10).

Závěr. Úloha má řešení, a to jediné, právě tehdy, platí-li
vztah (13).

Podle řešení s. Jaroslava Střeštíka,
11. tř. jsš, Litovel.

4. Určte všetky reálne riešenia rovnice
_ x — 4

^2 ~ x — 2

s neznámou x. Urobte diskusiu riešitelnosti vzhladom
na dané reálne číslo p.

Щ -p (1)
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Riešenie. Ak je číslo x riešením rovnice (1), musí
platit’ postupné

x — p _{x — 4)2
x — 2 (x — 2)

(x — 2) (x — 4)2 = (jc — 2)2 (x — p),
(x — 2)[(jc — 4)2 — (x — 2) {x — p)\ = 0,
(я — 2)[x2 — 8x -f 16 — (x2 — px — 2x + 2p)] = 0 j

(л: — 2) [(p — 6)jc + 16 — 2p] = 0 .

2 5

Z toho vyplývá, že buď jeden, buď druhý činitel sa rovná
nule. Sú teda možné dva případy.

Případ [1]. Platí x — 2 = 0 číže
x = 2 .

Toto číslo nie je riešením danej rovnice (1), lebo žiadny
zo zlomkov pre x = 2 v tejto rovnici nemá význam, na-
kolko sa menovatel’ rovná nule.

Případ [2]. Platí
(p — 6)x + 16 — 2p = 0

číže
(2)(p — 6)я: — 2p — 16 .

Rozlišujme dve možnosti:
a) Nech p — 6 = 0 čiže p — 6. Potom rovnica (1)

znie

Ш
— 6

_ x — 4
~^2 ~ x — 2 '

Ak je л: riešením tejto rovnice, musí platit’
4 O — 2) = 0 ,

ako sa 1’ahko přesvědčíme, rovnako ako vo výpočte, ktorý
sme urobili vyššie. Zo vztahu vyplývá x — 2. Avšak
číslo x — 2 nie je riešením rovnice (1), ako sme už zistili
v případe [1].

(3)

(4)
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b) Nech je p — 6 Ф 0. Potom z rovnice (2) vyplývá
2p - 16

x = — T-

p — 6 (5)
V • V

cize

20 — 6) — 4
p- 6

4
= 2 -

p — 6 *
4

Z toho vyplývá, že je * #2, lebo zlomok — ^ má pre
p Ф b vždy význam a je rózny od nuly. Preto oba zlomky
v rovnici (1) majú význam.

Skúška. Dosaďme zo vztahu (5) do oboch stráň rov-
nice (1). Označme L, P 1’avú a pravú stranu rovnice po
dosadení. Platí

P-

2p— 16
x — 4 p — 6
*-2 = 2j> — 16 “ lp- 16-2(p-6)

P — 6

4
_ 2j> — 16 — 4(j> — 6)P =

— 2p + 8 _p — 4
(6)- 4 2

Toto číslo musí byť nezáporné, rovnako ako číslo na
1’avej straně rovnice (1), lebo odmocnina, pokial’ má
význam, je nezáporné číslo. Musí teda platit’ p — 4^0
čiže (7)6 ф p ^ 4 .

Namiesto L počítajme ZA Platí
2p - 16

-P 2p — 16 — p2 + 6pp — 6x — p
x -2 ~ 2/> — 16 “ ~ 2p - 16 - 2p + 12

p - 6 2
L2 =

-pí-T
— p2 + — 16

_ p2 — 8p + 16
4- 4
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Pretože podia (7) je p — 4 ^ 0, je —^ 0
a zo vztahu

=(^íL2

vyplývá
p — 4 (8)L =

2

Porovnáním (6) a (8) dostáváme
L = P,

takže číslo x, dané vzťahom (5), je za předpokladu (7)
riešením rovnice (1).

Závěr. Daná rovnica nemá riešenie, ak je p = 6 alebo
p < 4. Pre p ^ 4, p ф 6 má jediné riešenie, dané
vzťahom (5).

Tým je riešenie úlohy ukončené.

* 3. Úlohy III. kola kategorie A

1. Určete všechna reálná řešení rovnice

x }/2p — x2 = 8
o neznámé x, přičemž p je dané reálné číslo. Proveďte
diskusi řešitelnosti vzhledem к číslu p.

Řešení. Nechť číslo x je řešením rovnice (1) a tedy
i rovnice

(1)

]/2p - x2 = 8 - (2)x .

Umocníme-li obě strany rovnice (2) na druhou, obdržíme
rovnici

2p — x2 = 64 — 16x -f x2}
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ze které postupně dostaneme
2jc2 — 16x + 64 — 2p = 0,

x2 — Sx + 32 — p = 0,
xx = 4 + Ур — 16 , x2 = 4 — Ур — 16 .

Odtud plyne, že nutně platí p — 16^0 neboli
(3)

(4)P ^ 16;
jinak by nebyla čísla xl3 x2 reálná. V případě p — 16 do-
spějeme к jedinému kořenu

*i = 4,
v případě p > 16 je

*1 *2 •

Nyní provedeme zkoušku, zda za předpokladu plat-
nosti vztahu (4) jsou čísla x13 x2 ze vztahů (3) skutečně
kořeny dané rovnice (1). Označme pořadě L, P dosazení
do levé a pravé strany rovnice (1). Rozeznávejme dva
případy:

Případ [1]. Dosaďme do (1) kořen xx — 4 + | p — 16;
dostaneme postupně:

L = 4 + ]/p - 16 + ]/2p - (4 + ]/p - 16)2 =

= 4 + }/p - 16 + У/> - 8 |/p - 16 =

= 4 + Ур - 16 + У(4 - \fp - 16)2 =
= 4 + ýp - 16 + |4 - yp - 16| .

Aby řešení bylo správné, musí platit L = P, tj.
4 + Ур - 16 + |4 - Ур - 161 = 8 (*)

neboli

|4 - Ур - 161 = 4 - Ур - 16 .

Protože vlevo je nezáporné číslo, musí platit
4 - Ур - 16 ^ 0,

(**)
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tj. musí platit
1p- 16 ^ 4; (5)

protože je p — 16 ^ 0 [viz vztah (4)], má levá strana
smysl a umocněním obou stran nerovnosti (5) na druhou,
dostaneme postupně

p - 16 ^ 16,
(6)P^32.

Ze vztahů (4), (6) plyne, že číslo p leží v intervalu
16 ^ p ^ 32 .

Snadno usoudíme, že pro p z intervalu (7) skutečně platí
vztahy (**), (*) a že číslo xx je tedy kořenem rovnice (1).

(7)

Případ [2]. Dosaďme do (1) kořen x2 = 4 — ]]p— 16;
dostaneme postupně

L = 4- ]]p - 16 + 1/2p - (4 - ]/p^Ibf =

16 + Mp + 8 ]/p - 16 == 4 - yp
= 4 - J/p - 16 + ]/(4 + Ур - 16)2 -

16 + |4 + Ур - 16'| .
= 4 - ]jp

Dále musí platit L — P, tj.
4 - Ур - 16 + |4 + Ур - 16| = 8

neboli

|4 + Ур - i6) - 4 + Ур - i6.
Protože vlevo je nezáporné číslo, musí i vpravo být číslo
nezáporné; to vsak je splněno, neboť vpravo je součet
čísla 4 a nezáporného čísla j/p — 16 (pro p ^ 16).

Je tedy číslo x2 kořenem rovnice (1) pro všechna
p ^ 16.
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Závěr je patrný z tabulky:
Reálné kořeny rovnice (1) PoznámkaParametr p

rovnice nemá řešeníp < 16

JCj = 4 -f- ]/p — 16
*2 = 4 - ]Jp — 16

Pro p = 16
je лгг = x2;
pro p Ф 16
je xl Ф x2

16 ^ p ^ 32

лг2 =4 — j/p — 16p > 32

Podle řešený s. Břetislava Fialy,
ll.b tř. jsš. Česká Třebová.

2. Sestrojte trojúhelník ABC, je-li dána velikost
výsky vci velikost těžnice tc a velikost úhlu y.

Řešení (obr. 24). Rozbor.
Předpokládejme, že jsme
úlohu rozřešili a že existuje
trojúhelník ABC, který vy-
hovuje úloze. Doplňme jej
na rovnoběžník ACBD3 kde
D je jeho čtvrtý vrchol, ležící
na prodloužení úsečky CS
za bod 5 (což je střed strany
АБ) ve vzdálenosti tc. Platí
<£ACB — <$iADB = у ,

<£CAD = <£CBD =
= 180° - у .

Přitom přímka АВ má od
bodu C vzdálenost vc3 a proto

je tečnou kružnice к = (C, vc). Na základě tohoto roz-
boru provedeme konstrukci.
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Konstrukce (obr. 25). Sestrojíme úsečku CD velikosti
2tc3 jejíž střed označíme 5. Pak sestrojíme množinu všech
bodů X, pro které platí, že

CXD = 180° - у .

Jsou to dva kruhové oblouky mí3 m2 s krajními body
C, D, které do této množiny nepatří. Pak sestrojíme
kružnici k = (C, vc) а к ní vedeme z bodu 5 tečny t13 t2;
body dotyku těchto tečen s kružnicí k označíme Pí3 P2.
Společné body přímky t1 s uvažovanou množinou na-
zveme Al3 B13 společné body přímky t2 s uvažovanou
množinou nazveme A2, B2 (body A13 Bx leží na ml3
body A23 B2 na m2). Pak trojúhelníky AXBXC3 A2B2C
jsou hledané trojúhelníky.

Důkaz konstrukce je zřejmý z rozboru. Nalezené troj-
úhelníky (pokud existují) mají skutečně žádané vlast-
nosti: Protože oba oblouky m,, m2 jsou souměrně sdru-
žené podle přímky CD i podle bodu S3 jsou AXCBJ)3
B2CA2D shodné rovnoběžníky a platí

A,S = BXS , A2S = B2S,
takže úsečka CS je těžnicí trojúhelníků A^C, A2B2C.
Dále je <£AÍCBÍ = $iA2CB2 = у a konečně platí, že
oba trojúhelníky jsou shodné, neboť jsou souměrně
sdruženy podle přímky CD. Protože přímky АгВ13 A2B2
jsou tečnami kružnice, je jejich vzdálenost od bodu C
rovna vc3 takže sestrojené trojúhelníky mají výšky pří-
slušné к vrcholu C velikosti vc. Tím je důkaz proveden.

Diskuse. Řešitelnost úlohy především vyžaduje, aby
úhel у byl dutý. Počet řešení závisí na počtu různých
tečen, které lze vést z bodu 5 ke kružnici k.

(1) Jestliže bod S leží vně kružnice k3 pak je nutně
tc > vc. Jestliže obráceně je tc > vc3 lze sestrojit ke
kružnici k dvě různé tečny t13 t2. (2) Jestliže je = vc3

(*)
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lze sestrojit jedinou tečnu tx. (3) Jestliže je tc < vc}
nemá úloha řešení.

V případech (1), (2) musíme ještě dokázat, že např.
tečna tx má s oblouky mx, m2 pořadě společné body
Ax, Bx (přitom je zřejmě C ^ Ax, Сф Bx). Přímka tx
však prochází bodem S, který je středem tětivy CD obou

oblouků mXi rn2; podle známé věty každá polopřímka,
jejímž počátkem je bod, který leží uvnitř kružnice, ob-
sáhuje právě jeden bod této kružnice. Tím je existence
bodů Ax, Bx zajištěna.

Závěr. Jestliže je у dutý úhel a jestliže je: (1) tc > vci
má úloha dvě řešení; oba trojúhelníky jsou souměrně
sdružené a různé; (2) tc — vCJ je jediné řešení; příslušný
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trojúhelník je zřejmě rovnoramenný; (3) tc < vc, nemá
úloha řešení.

Podle řešení s. Václava Dvořáka,
11. tř. jsš, Brno-Tábor.

3. Určete všechna reálná čísla x, která splňují nerov-
nost

FI (1)sinx .cosx

Řešeni. Aby řešení x dané nerovnosti bylo reálné,
musí platit vztahy

5
-j cosx ^ 0 , (2)2 +

sinx ^ 0 . (3)
Ze vztahu (2) plyne

^ 4cosx ^ -

Za předpokladu, že platí (2) a (3), můžeme obě strany
dané nerovnosti (1) umocnit na druhou; dostaneme po-
stupně

(2')5 •

5
2 + — cosx ^ sin2x ,

2 + — cosx ^ 1 — cos2x ,

5
cos2x + — cosx + 1^0,

2 cos2x -f- 5 cosx + 2^0,

^cosx + — \ (cosx + 2) (4)^ 0 .
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Při odvození posledního vztahu jsme užili rozkladu
kvadratického trojčlenu; rovnice

2v2 + 5v + 2 = 0 (*)
má totiž kořeny

— 5 rb j/25 — 16 -5±3
У1,2 — 44

1
tj- Уг = ~

straně rovnice (*)' proto zní

у2 = — 2; rozklad trojčlenu na levé2 5

2^ + у) (y + 2).
Z nerovnosti (4) plyne, že o čísle л; nutně platí:
(1) buď zároveň cosx + ^ 0, cos* + 2 ^ 0; z po-

slední nerovnosti však plyne cos* ^ — 2, což nelze
splnit žádným reálným číslem x;

(2) nebo zároveň cos* + -y ^ 0, cosx + 2^0 neboli
1

- 2 COS* — —

2'

Připojíme-li к těmto požadavkům vztahy (2'), (3), pak
, dostaneme vztahy^protože platí —2 < — у < ——

4 1
(5)sin* ^ 0.cosx 5^ — —

2 55

Označme <p úhel, o němž platí
4

у , sin9? b; 0COS 95 = —
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1
(nechť např. je ^ ^ < ф < тг, takže <p = 143°10'). Potom
řešením vztahů (5) je úhel x, o němž nutně platí

2
— 7Г + 2kn ^ X ^ (p + 2&7Г,3 (6)

kde k je libovolné číslo celé.
Číslo X dané vztahy (6) vyhovuje zřejmě vztahům

(2), (3), takže obě strany nerovnosti (1) mají smysl.
Obrácením postupu se přesvědčíme o tom, že toto číslo x
nerovnosti (1) skutečně vyhovuje.

Podle řešení s. Igora w Ďuriše,
11. tř. jsš, Banská Štiavnica
a s. Josefa Nedomy, ll.b tř. 4. jsš,
Praha 4.

4. Nech sú dané kladné čísla d3 v, o ktorých platí
d > v. Ďalej nech sú dané dve kolmé mimobežky p3 q,
ktorých najkratšia priečka má velkost’ v. Uvažujme o všet-
kých úsečkách velkosti d3 takých, že jeden z oboch kraj-
ných bodov leží na priamke p a druhý na priamke q.

a) Čo vyplnia krajné body týchto úsečiek na priamkep ?
b) Čo vyplnia středy týchto úsečiek ?
Riešenie (obr. 26). Označme q || q rovinu, ktorá

prechádza priamkou p a aj\p rovinu, ktorá prechádza
priamkou q; je teda q || a. Ďalej nech sú А, В (v tomto
poradí) body priamok p, q, také, že AB je najkratšia
priečka mimobežiek p3 q. Platí teda AB J_ q. Ďalej
označme P, Q body, ležiace po radě na priamkach p3
q3 a to také, že PO je úsečka, ktorá splňuje požiadavky
úlohy, t. j. platí PQ = d.

Časť a). Bod A dělí priamku p na dve opačné pol-
priamky. Možeme sa zrejme obmedziť na skúmanie jed-
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nej z nich. Označme ju AM. Nech bod P^á A prebieha
polpriamku AM; pýtajme sa, ku ktorým bodom přitom
prislúcha taký bod Q, že úsečka PQ má vlastnosti vy-
žadované úlohou. V trojuholníku PBA je <£ A = 90°

R'

a podlá Pythagorovej vety platí BA2 + АР2 — BP2. Ak
označíme AB — v, AP = x, BP — a (kde v, x, a sú
kladné čísla), možno predošíý vztah písať

а = ]/v2 + x2.
Pretože platí p J_ q-> АВ J_ q, platí BPA J_ Я a teda
BP X Я- Kružnica (P, d), opísaná v rovině qP, podlá
známej vety z planimetrie má s priamkou q spoločné buď
dva body, buď jeden bod, buď žiadny bod, podlá toho,
či (v tomto poradí) platí vztah

а < d , а = d , a> d .

(1)
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Dosaďme sem zo vztahu (1); dostaneme po úpravě po
radě vztahy

(2)x2 0 d2 — v2.

Možme povedať: „Híadanú množinu na priamke p
tvoria tie jej body, o ktorých plati x2 ^ d2 — v2íi (přitom
táto podmienka platí zrejme aj pre povodně vylúčený
bod A). Tieto body vyplňujú úsečku PXP[ (kde APX =
= AP[ = ]/d2 — v2, pričom Px leží na polpriamke AM)
so stredom A. Z vnútorných bodov tejto úsečky možno
viesť dve požadované úsečky; bodmi Ply P[ len po je-
dinej takej úsečke, pričom druhým jej krajným bodom je

Q'. Úsečka PXP'\ vždy existuje, lebo zo vztahu
d > v, daného v texte úlohy, vyplývá, že číslo x, dané
vzťahom (2), je kladné. Tým je úloha roznesená.

Časť b) (pozři obr. 26). Označme 5 střed úsečky PQ,
ktorá vyhovuje úlohe. Ďalej nech je T střed úsečky AB.

Je známa táto stereometrická veta W: „Nech q || o
sú dve rožne roviny a AB X Q úsečka, ktorej krajné body
po radě ležia v rovinách o, o. Ďalej označme P, Q body,
ktoré ležia po radě v týchto rovinách. Potom množinou
stredov úsečiek PQ je rovina r || £>, ktorá prechádza
stredom T úsečky AB, pričom je т X AB.“

Leží teda střed úsečky PQ, uvažovanej v nasej úlohe,
vždy v rovině r, ktorá je kolmá к úsečke AB a prechádza
jej stredom T.

Označme ql pravoúhlý priemet priamky q do roviny £>;
priamka qx X p prechádza bodom A. O střede S' úsečky
PiQ' (kde bod Px leží na polpriamke AM a platí APX —

= |Id2 — v2, Q' = B) platí: bod S' leží podl’a vety W
v rovině r, pričom TS' — -^- ]/ď2 — v2, lebo TS' je
středná priečka v trojuholníku PXBA, v ktorom je APX =
= 1Id2 - v2.

bod В
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Nech je v ďalšom P Ф Px bod úsečky APX. Dokážeme,
že střed 5 úsečky PQ, ktorá vyhovuje úlohe, leží v ro-

vině t na kružnici m = {r^d\, kde dx = ]/d2 - v*.

Dokaž (pozři tiež obr. 27). Označme Qx pravoúhlý
priemet bodu Q do roviny g. Ten leží na priamke qx.
Z pravoúhlého trojuholníka PQQX s přeponou PQ = d,
jednou odvěsnou QQX = AB = v, vyplývá

PQi = УРО2 - QQi = = dv
Ďalej označme Sx pravoúhlý priemet středu 5 úsečky PQ.
Pretože je SSX _L g, je SSX |l QQX, takže SSX je středná
priečka v trojuholníku PQQX a Sx je stredom úsečky PQXi
t. j. PSX = -i dx. Sú dve možnosti: Buď je P = A, takžeS^

leží v priamke qx a je ASX dx; buď je P^á A a existuje
pravoúhlý trojuholník PQXA\ s přeponou PQX3 takže Sx je
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jej stredom a teda aj stredom kružnice opísanej tomuto
i

trojuholníku. Platí teda SLA — SXP = = -y dv Avšak
bod 5 leží nevyhnutné v rovině r (pozři vetu W), takže

1
ASiST je obdížnik a preto je TS = ASX = Bod 5

. Tým“(r4*)leží teda v rovině r na kružnici m

je dokaž hotový.
Nech teraz obráteneSje bod právě zostrojenej kruž-

nice m, ktorá leží v rovině r. Musíme dokázat’, že je
stredom úsečky PQ — d, kde body P, Q ležia (v tomto
poradí) na priamkach p, q. Pokiaí’ bod S leží v jednej
z rovin pB, qA3 je z předešlého zřejmé, že taká úsečka
existuje. V dálšom sa obmedzíme na případ, že bod 5
leží vnútri jedneho zo štyroch pravoúhlých ldinov, v ktoré
delia priestor navzájom kolmé roviny pB, qA. Označme

= Sj pravoúhlé priemety kružnice mm1

a bodu 5 do roviny g. Bod St leží na kružnici m1 a to vnútri
jedneho z pravých uhlov, v ktoré delia priamky p, q1
rovinu g. Zostrojme v tejto rovině obdížnik (pozři obr.
27) АРА'0^г so stredom Taký obdížnik existuje právě
jeden. O jeho uhlopriečkach platí PQX = AA' = 2.ASX=

dx. V bode Qi zostrojme kolmicu к ro-

vine g a označme Q jej priesečník s priamkou q. V právo-
uhlom trojuholníku PQQi je PQX = di3 QQ1 = AB = v
a z Pythagorovej vety vyplývá PQ — ]/PQl + QQi —
— ]/dj + v2 — ]/d2 — v2 + v2 — d. Úsečka PQ, takto
zostrojená, vyhovuje úlohe. Jej střed S0 leží v rovině т
a jeho pravoúhlý priemet do roviny g je nevyhnutné
střed úsečky PQi3 tj. bod S13 z ktorého sme pri tejto

= 2.(1^) =
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úvahe vyšli. Je teda S0 == 5. Podařilo sa nám teda zo-
strojiť úsečku PQ daným bodom 5 kružnice m. Tým je
dokaž hotový.

Možno teda povedať: „Množinou stredov všetkých
úsečiek PQ, ktoré vyhovujú úlohe, je kružnica m

, ktorá leží v rovině r.cc Tým je rieše-
nie časti b) hotové.

Dodatok. lni riešitelia, ktorí postupovali obdobné, sa
opřeli o známu vetu U z planimetrie: „V rovině q nech
sú dané kolmice p, q1 s priesečníkom A. Ďalej nech je
dané číslo d1 > 0. Množinou stredov všetkých úsečiek
PQX = dí3 keď body P, Q1 ležia (v tomto poradí) na priam-
kach p, qx, je kružnica mx = ^|.сс Výslednú kruž-
nicu m dostali použitím vety W ako rez rotačnej valcovej
plochy s riadiacou kružnicou mx s rovinou r. Právě vy-
slovená veta z planimetrie im pomohla pri oboch smeroch
dókazu o bode S kružnice m (t. j. ak je S střed úsečky PQ,
leží na kružnici m; obrátene, ak je 5 bod kružnice m,
prechádza ním úsečka PQ, ktorá vyhovuje požiadavkám
úlohy).

Podlá riešenia s. Kamila Wich-
terle, 11. tr. jsš, Praha-Dejvice
a s. Marie Srovnalovej, ll.b tr.
jsš, Ostrava I, Matičná ul.

Jiné řešení (obr. 28). Zaveďme soustavu právo-
úhlých souřadnic x, y, z v prostoru takto: osa x = p,
osa z = AB (kde А, В jsou pořade body přímek p, q,
přičemž AB je osa mimoběžek p, q), osa у = qí3 kde
q1 || q prochází bodem A; počátkem této soustavy je
bod O = A. Rovinu přímek x = p, у = qx označme q.
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a) I. Bod P na přímce p má souřadnice [л^, 0, 0],
bod Q na přímce q má souřadnice [0, yQ, v]. Hledáme
body P, <2 takové, že o nich platí

PQ = d

]/xl + y\ + v2 = d •

neboli

(П

[Poznámka. Pro vzdálenost d = MN bodů M =
— [*u #i], N — [^25 ^2» zz\ v prostorové analytické
geometrii platí d = ]/(xí — x2)2 + (j^—j>2)2 + Oi — ^2)2 >

jak se snadno dokáže, např. s použitím vzorce pro
velikost tělesové úhlopříčky kvádru daných rozměrů.]
Ze vztahu (Г) dostaneme

x2p + y% = d2 — v2 . (1)
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Odtud plyne, že musí být |*P| ^ ]/d2 — z;2; jinak by
číslo yQ nebylo reálné. Z toho plyne, že bod P leží na
přímce p = x> a to na úsečce PXP[, jejímž středem je
bod O = A; přitom platí APX = AP[ — ]/d2 — z;2. Pro-
tože je d > z;, tato úsečka vždy existuje.

II. Obráceně, buď P = [*P, 0, 0] bodem úsečky PXP{;
tu o čísle xP nutně platí

|xP| ^ ]/d2 — v2. (2)
Po dosazení do (1) za xP tedy obdržíme

y% = d2 — v2 — xP; (3)
vzhledem ke (2) je tedy у\ ^ 0, takže číslo yQ vždy
existuje a tím i bod Q = [0, yQ, v]. Vzdálenost PQ obou
bodů P = [л:Р, 0, 0], Q = [0, yQ, ©], kde xP je libovolné
číslo, o němž platí (2), a yQ je číslo dané vztahem (3),
je rovno

]/xp + y% + V2 .

Dosadíme-li sem za y\ ze vztahu (3), zjistíme, že tato
vzdálenost je skutečně d.

Výsledek. Všechny body P, které vyhovují úloze,
vyplní na přímce p úsečku PXP'X velikosti 2]Id2 —v2,
která má bod A za střed.

b) I. Buď PQ = d úsečka, která vyhovuje úloze; při
předchozím označení střed S této úsečky má souřadnice

1 1

^-"2^5 Уб — ~2yQ 3

[Poznámka. Úsečka MN o krajních bodech M =
— [*i> Jůj 'S'iIj N = [*2э У2з z2\ střed S o souřadnicích

=

J (xX + X2), ys = (yx + y2), zs= j (zx + Z2)-]

1
(4)zs — ~2 v •
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Dosaďme ze (4) za xs,ys do (Г); dostaneme

V(2*s)2 + (2ys)2 + v2 = d
neboli

Xs +ys = (j]/d2- V2} з (5)

přičemž je zároveň
1

(6)**= 2V-
Označme T střed úsečky AB; je T

Dále označme r || q rovinu jdoucí bodem T. Ze vztahů (5),
О, О, Ц■

(6) plyne, že bod 5 leží na kružnici k = ^P, ]/d2 — v2 j,
která leží v rovině r.

xs> ys> > kde |*я| ^

^ у |/d2 — г>2 je libovolné číslo aj^ splňuje (5), je zřejmě
bodem kružnice k. Pro jeho souřadnici ys platí

— X2

takže je ys vždy číslo reálné. Uvažujme body P =
= [2xs, 0, 0], <2 = [0, 2ys, v}; o jejich vzdálenosti <5 platí

d = 1/4*| + 4 j>! + •

Dosaďme sem za y2s ze vztahu (7); dostaneme d = d.
Protože body P, Q leží pořadě na přímkách p, g, vyhovuje
úsečka PQ požadavkům úlohy. Podařilo se nám ke zvo-
lenému bodu S sestrojit úsečku PQ o daném středu S.

-II. Obráceně, daný bod S

(7)S з
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Výsledek. Středy všech úseček, které splňují poža-
. dávky úlohy, vyplňují kružnici k

T je střed úsečky AB; tato kružnice k leží v rovině r,
která je kolmá к úsečce AB a prochází jejím středem T.

Podle řešení s. Zdislava Kovaříka,
10.a tř. jsš, Hodonín.

4. Úlohy I. kola kategorie В

1. Určete všechna reálná čísla p tak, aby rovnice
P* ■ * + 1

x + p^~ X — p

měla jeden kořen x = 2. Vypočtěte pak všechny kořeny
této rovnice.

Řešení. Jestliže existuje číslo p, které vyhovuje úloze,
pak platí

= -1

2j> i 3
2 + p '2 — p

= -1.

Odtud plyne
4p - 2p2 + 6 + 3p = p2 - 4

čili
3p2 - 7/> — 10 = 0.

Poslední rovnice má kořeny
20 10
6 “ 37 ± 1/49 + 120 7 ± 13/

”

6 “ 6 \P\,i 6
= -1.

6
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Provedeme nyní zkoušku pro každé z čísel p1} p2 od-
dělené; přitom vypočteme pro tato čísla p všechny ко-
řeny dané rovnice.

Případ [1]. Pro p = ^ má daná rovnice tvar
10

T X + 1
= -1

10 10
* +!y X —

3
VM •

Clil
3x + 3

Ъх + 10 1 3x — 10
Budeme ji řešit; dostaneme postupně

10x(3x - 10) + (3x + 3)(3* + 10) = 100 - 9x\
30jc2 — 100л: + 9л:2 + 9л: -f 30л: + 30 = 100 — 9л:2,

48л:2 - 61л: - 70 - 0.

Diskriminant této rovnice je
D = 612 + 4.48.70 = 3721 + 13440 = 17161 = 1312;
dále je

lOx
= -1.

192 96 12
ir=261 ± 131/2 . 48

2.48
48

*1,2 — 70 35
48 *

Případ [2]. Pro p = — 1 má daná rovnice tvar
x -f- 1

л: — 1 1 л: + 1
Má-li rovnice (*) řešení, můžeme ji přepsat na tvar

2.48

—л:

(*)= -1.
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V «1 •Clil X
= -2.

X — 1
Odtud

x — 1
x = 2x — 2,
x — 2 .

Zkouškou se snadno přesvědčíme o správnosti vy-
počtených kořenů.

Závěr. Daná rovnice má kořen x — 2 pro každé z čí-
sel p — p = — 1 a pro žádné jiné.

D

2. Nad úsečkou AB = 2a jako průměrem sestrojme
polokružnici kx o středu S. Označme SC JL АВ polo-
měr kružnice kx a nad úsečkou SC jako průměrem se-
strojme kružnici k2 se středem O.

Sestrojte kružnici k, která se dotýká polokružnice kx,
kružnice k2 a přímky AB. Vypočtěte její poloměr pomocí
daného čísla a.

Řešení (obr. 29). Bod C je bodem dotyku kružnice
a polokružnice kx o poloměru a. Kružnice

k2 leží zřejmě v polokruhu (kx), který je omezen polo-
kružnicí kx a jejím průměrem AB. Kružnice k nemůže
proto ležet uvnitř kružnice k2 a splňovat požadavky
textu úlohy (pak by bylo k == k2). Dotýkají se tedy
kružnice k3 k2 vně.

Dokážeme nyní, že kružnice k (pokud ovšem existuje)
nutně leží v polokruhu (kx). Kdyby tomu tak nebylo, mu-
sila by se kružnice k dotýkat kružnice kt v bodě C anebo
v bodě iS (jen v těchto bodech by se totiž kružnice k
mohla dotýkat kružnice k2). Avšak žádná z kružnic,

k‘ s (°> la)
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které se dotýkají kružnice k2 v bodě C nebo v bodě 5
a leží vně kruhu (k2)3 nesplňuje všechny požadavky textu
úlohy. Tím je důkaz proveden.

--i-'

Obr. 29

Hledaná kružnice k leží tedy v polokruhu (kx) a vně
kružnice k2. Tato oblast roviny se rozpadá ve dvě části.
Tyto části přecházejí jedna v druhou osovou souměr-
ností vzhledem к ose SOC souměrnosti; to plyne
z toho, že polokružnice k13 přímka AB a kružnice k2
mají přímku SOC za osu souměrnosti. V dalším se
omezíme na jednu z těchto částí uvažované oblasti.

Předpokládejme, že kružnice k = (M, x) existuje.
Označme pořadě N3 P, Q dotykové body kružnice k
s čarami k13 AB, k2; tyto body musí být vesměs navzá-
jem různé. Protože kružnice k, k2 mají vnější dotyk,
odděluje bod Q body M, O. Dále je MB J_ AB3 OS J_
_L AB. Protože je nutně P^á S3 vzniká čtyřúhelník
PSOM3 v němž je

^p = = 90°,
-i-a + x3 MP — x3 PS OS = i а . (1)МО -

105



Veďme přímku MR || PS, kde R je vnitřním bodem
úsečky SO (bod R nemůže zřejmě padnout na úsečku
OC, jak se snadno usoudí, uvažujeme-li kružnice vepsané
do polokruhu (&j) a porovnáme-li velikosti jejich polomě-
rů s číslem Pak v trojúhelníku MOR je <£ R =

= 90° a podle Pythagorovy věty dostaneme MO2 —
= MR2 + OR2, kde OR — OS — RS = OS — MP =

= ya — x, MR — PS = y; po dosazení z (1) a za
OR dostaneme

(±a+xj=? + (la-xj

(r +xf-(r-xj-
| a + x —x^ =y2,

neboli postupně

У,

1

(i-^a + x — -^a + x
(2)2ax = y2 .

Z vnitřního dotyku kružnice k, kx plyne, že bod M
odděluje body N, S, a o trojúhelníku MSP platí: <£P =
= 90°, MS = NS — NM — a — x, MP — x, PS — y;
podle Pythagorovy věty dostaneme MS2 — MP2 + PS2
neboli

(a — x)2 — x2 + У2
a po zjednodušení

(3)a2 — 2ax — y2.
Porovnáním výsledků (2), (3) dostaneme

á2 — 2ax — 2ax
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neboli postupně (nutně je а Ф 0)
a2 — 4ax,

1
x - ~r cl.

4

Je tedy bod R středem úsečky OS.
Na základě tohoto výsledku provedeme snadno kon-

strukci, kterou pro stručnost a snadnost nepopisujeme
a nedokazujeme.

Diskuse. Ve zvolené části oblasti, kterou jsme popsali
v rozboru, jsme určili jednu kružnici k požadovaných
vlastností. Podle toho, co bylo řečeno v rozboru, existuje
ještě další taková kružnice k\ která je obrazem kružnice
k v souměrnosti o ose SOC. Úloha má tedy právě dvě
řešení.

3. Určte všetky reálne čísla x, pre ktoré platí vztah
> —

=

2
1*1 ~ 1 (1)x2 — 1

Riešenie. Najprv stanovíme, čo musí platit’o reálnom
čísle x, ktoré je riešením nerovnosti (1).

Zlomok na 1’avej straně danej nerovnosti (1) má zrny-
sel pre všetky reálňe čísla jc, pre ktoré je x2 — 1 Ф 0;
pre také čísla x, pre ktoré je x2 — 1 = 0, t. j.

(* — 1)(* + 1) = 0,
nemá tento zlomok význam. V ďalšom teda predpoklá-
dáme, že je

(2)x Ф 1 alebo x Ф — 1.

Ďalej si všimnime, že zlomok na 1’avej straně nerovnosti
(1) sa rovná zlomku, ktorý dostaneme, keď do 1’avej
strany tejto nerovnosti dosadíme namiesto čísla л: číslo
— x [je totiž |я| = | — x\3 x2 = (— x)2]. Z toho vyplý-
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va, že sa pri naŠej úvahe možeme obmedziť na čísla
x ^ 0. Pre také číslo platí \x\ = x a nerovnost’ (1) možeme
písať v tvare

x — 1 1

x2 — 1 ~ 2

alebo postupné
Í1x — 1

~

2 5(x — 1) (x + 1)
1 1

(3)-

2 'x -(- 1

Obe strany poslednej nerovnosti znásobíme číslom
2(x +1), ktoré je zrejme kladné; dostaneme

x -f- 12
t.j.

1 ^ v.

Z oboch predpokladov я ^ 0, x ф 1 a z posledného
výsledku vyplývá, že z nezáporných čísel možu výhovo-
vať danej nerovnosti (1) len čísla intervalu

0 ^ x < 1.

Teraz dokážeme, že všetky tieto čísla sú riešením ne-
rovnosti (1).

Pre čísla x z tohto intervalu má zlomok na 1’avej straně
(1) skutočne zmysel. Přitom platí postupné

x — 1

O — i) o + i)
ШмЗСЖк .O

Číslo x + 1 je však menšie než 2 a preto je číslo

1

x2 — 1 Я + 1 ■

1

x -J- 1
váčšie než —, takže nerovnost’ (1) je splněná (zrejme bez
případu rovnosti). Tým je dokaž hotový.

1
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Povedali sme už, že ak je číslo x riešením nerovnosti
(1), je riešením aj číslo — x; preto sú aj čísla л; intervalu

— 1 < л; 0

riešením nerovnosti (1).
Závěr. Každé číslo x intervalu

— 1 < x < 1

je riešením nerovnosti (1) a žiadne iné číslo nie je rieše-
ním tej nerovnosti. Tým je úloha rozriešená.

4. Nech je daný obdížnik ABCD, pre ktorý platí
AB = 4r, BC = 2r, kde r je dané kladné číslo. Označme
X taký bod obdížnika ABCD, t. j. bod jeho obvodu alebo
vnútra, ktorým prechádzajú dve rožne kružnice s polo-
merom r, ktorých všetky body patria danému obdížniku.

Čo vyplnia všetky body X majúce právě opísanú vlast-
nosť ?

Riešenie. I. Zavedieme označenia podlá obrázku 30,
kde GH, EF sú středné priečky daného obdížnika a
k! = (O', r), k" = (O", r) sú kružnice vpísané štvorcom
AEFD, EBCF. Celý útvar má priamky GH, EF za
osi súmernosti a bod S, střed daného obdížnika, za střed
súmernosti. Preto pri skúmaní všetkých bodov X, o kto-
rých hovoří text úlohy, stačí, keď sa namiesto obdíž-
nika ABCD obmedzíme na body obdížnika GSFD;
o ňom dokážeme, že z jeho bodov prislúchajú množině
(.X) všetkých bodov X tieto body alebo množiny bodov:

(1) Bod S; (2) vnútro menšieho oblúka SM kružnice
k(3) vnútro úsečky SF; (4) vnútorné body štvorca
O'SFM, pokial’ ležia zvonku kružnice k'.

II. Všimnime si tieto fakty: Dvojice zhodných kruž-
nic (t. j. ležiacich v tej istej rovině a navzájom róznych),
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ktoré majú spoločný bod (t. j. aspoň jeden), možno roz-
deliť do dvoch tried:

(a) Kružnice dvojice sa zvonku dotýkajú a majú spo-
ločný jediný bod, totiž střed ich strednej.

(b) Kružnice dvojice majú spoločné body Y F0,
pričom na osi úsečky YY0 ležia středy 01} 02 oboch
kružnic a to tak, že priamka YY0 je osou strednej 0Х02.

III. Vráťme sa к danej úlohe. Středy všetkých kružnic,
ktoré sa dotýkajú oboch priamok AB || DC, ležia na priam-
ke GH. Do triedy (a) dvojíc kružnic, ktoré sa dotýkajú
oboch priamok AB, DC, patří (pozři obr. 30) dvojica
k', k" a žiadna iná dvojica, ako vidieť z toho, keď túto
dvojicu posunieme o akúkolvek dížku (nenulovú), či
v zmysle polpriamky SG, alebo SH. Z úsečky GS patří
do množiny (X) jedine bod S. Tiež je zřejmé, že žiadny
bod úsečky DF nepatří do (.X). Každým z nich prechádza
jediná kružjiica s polomerom r a dotýkajúca sa priamok
AB, DC. Ďalšie body X dostaneme teda len pomocou
triedy (b) dvojíc našich kružnic s polomerom r a dotýká-
júcich sa priamok AB, DC.
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Uvažujme teraz o množině (У) bodov, ktorá sa skládá
z týchto bodov: vnútrajška úsečky GD, vnútrajška štvor-
ca GO'MD, vnútrajška úsečky 0'M, vnútrajška štvrť-
kruhu so stredom O' a polomerom r, a to toho štvrť-
kruhu, ktorý leží v štvorci 0'SFM. Eubovolnýbod tej-
to množiny (У) označíme У. Pretože vzdialenosť bodu
У od priamky GS je kladná a menšia než r, prechádza
ním dvojica kružnic kx ^ (01? r), k2 = (02, r) triedy
(b), ktoré sa dotýkajú pria mok AB, DC. Označenie
zvolme tak, aby polpriamky 0X02, GS mali ten istý
zmysel.

Bodom У veďme priamku у || GS a jej (jediný) spo-

ločný bod s vnútrajškom menšieho oblúka SM kruž-
nice k' označme Z; polpriamka yZ má ten istý zmysel
ako polpriamka GS. Kružnicu k13 príslušnú к bodu У,
dostaneme posunutím kružnice k' o úsečku Z У v právě
napísanom zmysle (jej střed Ox padne totiž zrejme
„nal’avocc od paty kolmice У', vedenej bodom У к priam-
ke GS). Týmto posunutím přejde bod G v bod G',
ktorý zrejme leží zvonku obdlžnika ABCD. Žiadny bod
množiny (У) nepatří do hladanej množiny (X).

IV. Zostáva dokázat’, že každý bod množin (2), (3), (4)
patří к hladanej množině (X). Označme X lubovolnýbod
tejto množiny (obr. 31) a veďme ním priamku x |j GS.
Jej jediný spoločný bods menším oblúkom SN kružnice
k' označme Z' a jej jediný spoločný bod s menším oblú-
kom SN kružnice k" označme Z". Buď je X = Z', buď
leží bod X vnútri úsečky Z'Z", ako sa 1’ahko usúdi.

Kružnicu kx = (013 r), idúcu bodom X a dotýkajúcu
sa priamok AB, CD, dostaneme posunutím kružnice
k' o dížku Z'X > 0 v tomto zmysle. Pretože je Z'X < r,
leží obraz S' bodu S v tomto posunutí vnútri úsečky
SO" a kružnica kx leží teda v obdížniku ABCD. Ak je
Z' = X, je kx právě kružnica k!.
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Kružnicu kz — (02з O? idúcu bodom X a dotýkajúcu
sa priamok AB, DC, dostaneme posunutím kružnice
k" o dížku Z 'X v tomto zmysle. Přitom je Z "X < MN,
čiže Z "X < 2r. Preto obraz 5" bodu 5 v tomto posu-
nutí leží vnútri úsečky GS a kružnica kz leží teda v obdíž-
niku ABCD. Tým je dokaž hotový.

M r N

_A_

H

П £A \>

Obr. 31

Odpoved. Všetky body X tvoria množinu (X), ktorá
sa skládá z tých vnútorných bodov obdížnika ABCD,
ktoré majú tieto vlastnosti:

(1) žiaden neleží na obvode obdížnika ABCD;
(2) žiaden neleží v niektorom z obdížnikov AM'MD,

N'BCN;
(3) žiaden neleží vnútri niektorého z kruhov ohřáni-

čených kružnicou k' alebo k".

5. Buďte a, 6 daná reálná čísla. Řešte rovnici

X
_ (<22 — ^2)(1 — X2)

я — 62 (x — a2)(jc — 62)
x

(1)
x — a2
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o neznámé х a proveďte diskusi řešitelnosti vzhledem
к daným číslům a, b.

Řešení. Jestliže číslo x je řešením rovnice (1), potom
musí o tomto čísle především platit x — а2 ф 0, л: —
— b2 Ф 0, jinak by alespoň jeden ze zlomků v rovnici (1)
neměl význam. V dalším předpokládáme, že o čísle x
platí

(2)x ф a2, x ф b2.
Obě strany rovnice (1) znásobme číslem

(x — a2). (x — b2);
dostaneme postupně

х[л: — b2 — (x — a2)] = (a2 — 62)(1 — x2)3
(a2 - b2)x2 + (a2 - b2)x - (a2 - b2) = 0.

Rozeznávejme dvě možnosti:
(3)

Případ [1]. Nechť je a2 — b2 = 0 neboli
(a — b) . (a + b) — 0,

což znamená, že je a = b anebo a = — b. Potom je rov-
nice (3) splněna pro každé číslo x. Řešením rovnice (1) je
každé číslo x ф a2, tj. číslo, o němž platí vztahy (2). Sku-
tečně rovnice (1) má pro a2 — b2 = 0 tvar

= 0
JC л:

x — a2

a ta je splněna pro každé я ф а2.
Případ [2]. Nechť je a2 — b2 ф 0. Potom znásobme

x — a2

1
obě strany rovnice (3) číslem Ф 0; obdržímea2 - b2

x2 + я — 1 = 0.
Diskriminant D této rovnice je

D = 1 - 4 . (- 1) = 5
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a její kořeny jsou

J(- 1 + Vš) > О, *2 = j(- 1 - y,5) < 0. (4)*1 =

Čísla x — x13 x = x2 jsou zřejmě kořeny rovnice
(3), od níž dospějeme к rovnici (1) znásobením obou
stran rovnice (3) číslem

1
pokud má ten-(* - a2)O - b2) 3

to zlomek smysl.
Toto číslo existuje, jestliže platí vztahy (2). Musí

tedy platit
x ф a2, x Ф b2.

Pro kořen x — x2 jsou tyto vztahy vždy splněny, neboť
čísla a2, b2 jsou nezáporná, kdežto x2 < 0.

Naproti tomu pro kořen x = xx > 0 může nastat pří-
pad

a2 = j (— 1 + У 5) nebo b2 = j (— 1 + ]/ 5) ;
to nastane, jestliže je

“- ±]/j(' + У 5) nebo b = ± |/i (—1 + У 5) .
- 1

(5)
Závěr. [1] Je-li a — b anebo a — — b3 je řešením

rovnice (1) každé číslo x, o němž platí x ф a2.
[2] Je-li а Ф b} а Ф — b, potom je číslo

ic-t-Vš)x —

řešením rovnice.

Jestliže je každé z čísel a, b různé od čísla

У^(-1+1/5),i
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potom má rovnice (1) ještě řešení
1

x — 2 (— 1 + У 5 ),
kdežto jinak nikoli.

6. Trojúhelníkové pravítko z umělé hmoty má tvar
pravoúhlého trojúhelníka ABC, jehož vnitřek je z části
vyříznut a má rovněž tvar pravoúhlého trojúhelníka
A'B'C. Přitom šířky pásů omezených dvojicemi rovnobě-
žek AB || A'B', BC \\B'C', CA || CA' jsou si rovny;
označme je m. Jsou dány obě odvěsny a = BC, b — CA
trojúhelníka ABC.

Dokažte, že trojúhelníky ABC, A'B'C jsou stejno-
lehlé, a určete střed S stejnolehlosti. Koeficient k této
stejnolehlosti vyjádřete pomocí čísel a, b,m a rozhodněte,
v jakých mezích při daných číslech a, b musí ležet číslo m.

Potom stanovte číslo m tak, aby pravítko po vyříznutí
otvoru A'B'C mělo váhu o 25 procent menší, než kdyby
bylo plné, tj. bez otvoru.

Řešení (viz obr. 32; vylučujeme možnost, že by
polopřímky AB, A'B' byly nesouhlasně rovnoběžné).
Označme v'
úhelníku A'B'C a dále pořadě X', Y', Z' její dotykové
body se stranami B'C, C'A', A'B'. Je tedy

SX' _L B'C, SY' J_ CA', SZ' _L A'B';
protože příslušné strany trojúhelníků ABC, A’B'C
jsou souhlasně rovnoběžné, platí též

SX' J_ BC, SY' JL CA, SZ' J_ AB.
Označme X, Y, Z paty právě zapsaných kolmic jako

v obrázku; potom podle textu úlohy je XX' = YY' —
— ZZ' = m, a protože je SX' = SY' — SZ' = q', platí

(S, q') kružnici vepsanou hledanému troj-

(1)

též
(2)SX= SY = SZ= q' + m.
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Kružnice v = (S, o = q' -\- m) je vzhledem ke vzta-
hům (I), (2) kružnicí vepsanou trojúhelníku ABC.
Uvažujme stejnolehlost (S) o středu 5 a konstantě ■—

Q
в

x

stejnolehlosti; v této stejnolehlosti přechází kružnice v'
i se svými tečnami B'C, CA', A'B' a příslušnými
dotykovými body X', Y', Z' v kružnici v s jejími pří-
slušnými tečnami BC, CA, AB i s jejich příslušnými
dotykovými body X, Y, Z. Proto jsou oba trojúhelníky
A'B'C, ABC stejnolehlé ve stejnolehlosti (5) a obráceně
trojúhelníky ABC, A'B'C jsou stejnolehlé ve stejno-
lehlosti (č>') obrácené к (S); její střed je S a konstanta k
stejnolehlosti je -^-neboli ^ — . Je tedy

q — m (3)k =

Q
Protože musí být k > 0, plyne z toho požadavek na

dané kladné číslo m,
(3')m < q .
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Konstantou k a středem 5“ je stejnolehlost (S') zcela

Označme B'C = a'3 C'A' = b\ A'B' = c\ AB =
= c\ potom ze stejnolehlosti (S') a z Pythagorovy věty
plyne
a' — ka, b' — kb, c' — kc3 kde c = ]/a2 + b2.

Pro obsahy P, P' uvažovaných trojúhelníků platí
A P' = A a'6' =

(4)

(5)P = £2P

P'
a tedy

Obsah trojúhelníka ЛРС lze vyjádřit jako součet obsa-
hů trojúhelníků SAB, SBC, SCA, tj. A-]—A +

+ A neboli ř(a + ř + c); ^porovnáním s prvním
vztahem (5) dostaneme

в =

(6)= k2.
P

ab
a + b + c

— neboli k = 1 — — , lze kon-f? -Protože £ =

stantu k vyjádřit takto:
6 Q

m(a + b + |ta2 + b2)k=\-
ab

kde však musí být
ab

m <
a + b + ]Ia2 + b2

jinak by úloha neměla řešení. Tím je dáno omezení
čísla m >0.
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Má-li se váha pravítka snížit vyříznutím otvoru o 25 %,
musí platit

F_
P ~ 4

a vzhledem к (6)
1

k2 = T4
neboli

1
(7)2 *

Ze vztahu (3) plyne m — g — ko neboli m — p(l — k)
a tedy

1
m = 2e'

Poznámka. Pomocí výsledku (7) bychom snadno
provedli konstrukci trojúhelníka A'B'C.

7. Řešte soustavu rovnic

x +P
У +P

kde xj у jsou neznámé a p je dané reálné číslo.

x — p (1)= b,: a,
У-p

Řešení. Nechť dvojice čísel (x, 3;) je řešením dané
soustavy (1), takže zlomky v rovnicích (1) mají význam.
Znásobme obě strany rovnic (1) čísly у + p, у — p.
Dostaneme postupně soustavy:

x p = ay + ap, x — p = by — bp ,

я — ay — ар — p j x — by = p — bp .

Po odečtení příslušných stran rovnic soustavy (2) dosta-
neme

(2)

y(b — a) = p(a + b — 2). (3)
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Rozeznávejme dvě možnosti:
Případ [1]. Nechť je b — a = 0 neboli

a = b .

Potom daná soustava (1) zní

*±Ž=a,
У+Р 5

Musí tedy platit

(4)

x — p (5)= a.
У-P

x + P
= x — p

У +Р~У-p
neboli

O + p)(y -p) = (x- P){y + p)
a tedy

(6)— px = — py .

Jsou dvě možnosti [a], [b]:
[a] Je p — 0; pak soustava (5) zní

x x
— = a, —

— a
У У

neboli redukuje se na rovnici
x
—

— a .

У

Číslo у zřejmě musí být různé od nuly, tj.
У Ф 0 .

číslo x je pak dáno vztahem x = ay, kde уф 0 je libo-
volné.

[b] Jер Ф 0. Potom ze vztahu (6) plyne, že nutně je
у — x. Po dosazení do prvé rovnice (5) dostaneme
x +p

— a neboli nutně a = 1.
x +p
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Jestliže je a = b = 1, p Ф O, má soustava (1) tvar

x +p
У +P

x —p
= 1, = 1

У-P

a je skutečně splněna pro každou dvojici (x3y = x) čísel,
pokud je л: ± P Ф 0 neboli pokud je

x ф ±p\

pro a — b= у = хф±рф0 jsou totiž oba před-
chozí zlomky zřejmě rovny jedné.

Případ [2]. Nechť je b — а ф 0, tj. а Ф b. Potom ze
vztahu (3) dostaneme

ффа(а + Ь-2). . (7)У =

Po dosazení do druhé rovnice soustavy (2) dostaneme
postupně

bp(a -\- b — 2)
x — p — bp +

— {bp — b2p — ap + abp + abp -f b2p — 2bp) =

=

a (2<з6 — a — b),

b — a

1

b -

tj.
— (2ab — a — b) .b — a

(8)x —

Jestliže dvojice (x, у) čísel je řešením soustavy (1)
. a platí b — а ф 0, potom je to jedině dvojice čísel daných

vztahy (8), (7). Dosaďme tato čísla do levých stran rovnic
(1); dostaneme postupně (příslušné zlomky hned rozší-
říme číslem b — а ф 0):
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I. Dosazení do levé strany první rovnice (1) je:
o + p)(b - a)

_

(У + P)(P - a)
— [p(2ab — a — b) + p(b — a)]:

2ap{b - 1)
2P{b - 1) '

• [PÍ.a 4" b — 2) + P(b — a)] —

Odtud je patrno, že musí současně platit /> Ф 0, b — 1 Ф
Ф 0 neboli

(9)РФ 0,
b Ф 1.

Za těchto předpokladů je zřejmě Lx — a a dvojice
(.x, у) vyhovuje první rovnici (1).

(10)

II. Dosazení do levé strany druhé rovnice soustavy
(1) je

2bp{a - 1)
2 2p(a - 1) '

Nutně musí být p Ф 0, a — 1^0 neboli
P Ф 0,
а ф 1.

Za těchto předpokladů je Lz — b a dvojice (x, у)
vyhovuje druhé rovnici (1).

Závěr. [1]. Jestliže je a = b, p — 0, je řešením dané
soustavy dvojice

(x = ay,y)3
kde уф 0 je libovolně zvolené číslo.

[2]. Jestliže je a = b = 1, p Ф 0, je řešením dané sou-
stavy dvojice

(x,y = x),
kde x ф ± p je libovolné číslo.
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[3]. Jestliže je а ФЬ3 p ф O, přičemž každé z čísel
a3 b je různé od čísla 1, je řešením dané soustavy dvojice
(x3y) daná vztahy (8), (7).

Jinak nemá soustava řešení.

Poznámka. Soustava tedy nemá řešení, jestliže sou-
časně platí:

1. a = b ф 1, p ф 0;
2. а Ф by p = 0;
3. p Ф 0, a = 1, b Ф 1;
4. p ф 0, а Ф 1, b = 1.

8. V rovině buďte dány dvě shodné kružnice kx ==
e= (5ц r), k2 = (S2, Oj které se navzájem dotýkají;
označme t jednu ze společných vnějších tečen těchto
kružnic.

V polorovině tSx sestrojte kružnici k tak, aby se dotý-
kala obou daných kružnic k13 k2 a přímky t.

Řešení proveďte dvěma odlišnými způsoby.
Řešení. Nejprve vyšetříme, jakou polohu musí mít

hledaná kružnice k = (S, x) vzhledem к daným kružni-
cím kx ^ (Sl3 r), k2 = (52, г) а к dané přímce í, která
je vnější tečnou kružnic kí3 kz. Na základě toho prove-
deme potom dvě řešení úlohy. První bude mít početní
ráz, druhé se opírá o stejnolehlost útvarů v rovině.

Označme p osu úsečky SxS2y P dotykový bod kružnic
kX) k2 (viz ostatně obr. 33). Předpokládejme, že jsme našli
kružnici ky která vyhovuje požadavkům úlohy. Tato
kružnice nutně leží v polorovině q3 vyťaté přímkou r,
a to zároveň s oběma kružnicemi kX) k2. Kružnice kl3
k se musí dotýkat vně. Kdyby se dotýkaly uvnitř, musila
by kružnice k ležet uvnitř kružnice kx a dotýkala by se
pak kružnice k2 v bodě P; tu by vzhledem к tomu, že
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se má dotýkat přímky í, splynula s kx. Rovněž i k, k2
jsou různé kružnice. Proto kružnice k neprochází bodem
P. O úsečkách SSl3 SS2 vzhledem к vnějšímu dotyku
platí

neboli
SSX = r + x, SS2 = r + x

SSl = SS.,1

'КЪ T r

přitom je л; velikost poloměru (vzdálenost bodu 5 od
přímky ř).

Leží tedy bod 5 na ose souměrnosti p celého útvaru
složeného z kružnic k13 k2 a přímky t J_ P (označme
T^p.t).

Bod S neleží na prodloužení úsečky TP za bod P
(viz obr. 33). Kdyby tam totiž ležel, pak by platilo
SSX — x + r < SP + PSX — SP + PT — x (přepona
SSX trojúhelníka SSXP je menší než součet odvěsen)
neboli x + r < x3 což je vzhledem к tomu, že x > 0,
spor.

Jestliže tedy kružnice k existuje, pak bod S leží uvnitř
úsečky PT (viz obr. 34).

Nyní již přejdeme к jednotlivým postupům řešení.
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Řešení I. Sestrojme obdélník STT&. Potom o pra-
voúhlém trojúhelníku s přeponou platí
(obr. 34 a 35)

SSj_ = л; -f r, SQ = r, = r — x;

podle Pythagorovy věty dostaneme SSx2 = SQ2 -f
+ QS2 neboli

(я + r)2 — r2 + (r — ^)2.
Odtud obdržíme

4rx = r2,
a protože musí [být r > 0,
máme konečně

x =
1

4 Г ’

Jestliže tedy má úloha řeše-
ní, leží bod S uvnitř úsečky
PT a platí TS = -i-r. Odtud



snadno plyne konstrukce, její důkaz i diskuse, z níž
plyne, že úloha má jediné řešení; to nebudeme pro-
vádět.

Řešení II (obr. 36). Rozbor. Víme, že bod 5 musí
padnout dovnitř úsečky PT. Přitom je

SM1 = SM2 = ST=x.

Sestrojme na polopřímce ST úsečku ST' = ST + r,
tj. TT = r. Pak je

SSX = SS2 — ST' — x + r
neboli

SSt SS2
_ ST

SMX ~ SM2 ~ ST
což je konstanta. Jsou tedy trojúhelníky MXM2T, S1S2T/

X + r
_ .
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stejnolehlé vzhledem ke středu S stejnolehlosti při kon-
stantě A > 0. Odtud konstrukce:

Na polopřímce PT sestrojíme úsečku PT' = 2r.
Sestrojme střed 5 kružnice k' trojúhelníku SXSJ'
opsané (bod S leží na ose p úsečky SXS2 a na kolmici
ox JL SXT vedené společným bodem Ox přímek ř,
SXT', přičemž je = OxT', jak se snadno dokáže).

Bod 5 podle konstrukce leží jistě uvnitř polopřímky
TP. Ale zřejmě je A OxTS ~ A T'PSX (uu); protože

je PS^r, TO, = jr, PT’ = 2r, je
TS = PSX .

1 r2 ' 'OxT 1
= r.

2Г 4r’TP

(To je v souhlase s předchozím výsledkem.)
Snadno bychom dokázali, že stejnolehlost o středu S

a konstantě převádí trojúhelník SXS2T' v trojúhelník
MXM2T (viz obr. 36) a kružnici kf = (S, SSX) v hledá-

nou kružnici k = ; to plyne obráceným postu-

pem naznačeným v rozboru.

9. Daná je kruhová výseč s obsahom P, kde P je
dané kladné číslo. Označme x poloměr tejto výseče
a <p velkost’ (v oblúkovej miere) jej středového uhla.

Určte čísla x3 у tak, aby obvod výseče bol čo najmen-
ší. Urobte skúšku svojho výpočtu.

Riešenie. Výseč s polomerom x > 0 a středovým
uhlom y, kde

(1)0 < у < 2n ,
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má obsah P a obvod p} pričom je

p = 2x + xcp .

V našom případe je P dané kladné číslo.
Po dosadení za cp do (3) zo vztahu (2) dostaneme

(2)

(3)

2P
p = 2x + — •

v

Pravú stranu tohto vztahu postupné vhodné upraví-
me:

+ 2 . ]/2x .2x —P =

+ í\!p. (4)2x —P =

Na právej straně tohto vztahu máme dve čísla. Druhé
z nich je 4]/P a teda konštanta. Prvé z nich závisí od čísla
x a je zrejme nezáporné (lebo druhá mocnina reálného
čísla je vždy nezáporná). Číslo p bude teda iste najmen-
šie, keď prvé číslo

\2i-
sa bude rovnať nule. Ihned dokážeme, že také číslo x
skutočne existuje, a to jediné.

Riešme rovnicu

(5)У2x 0,

kde P > 0 je dané číslo a x neznáma; přitom je x ne-
vyhnutne kladné číslo (inak by prvá alebo druhá odmoc-
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nina na 1’avej straně predošlej rovnice nemala význam).
Rovnicu upravíme na tvar

]/2x —

a obe strany rovnice umocnime na druhů. Dostaneme
postupné

2P
2x — —

x 5
X2 = P,
X — ±]/P.

Pretože musí byť x > 0, móže byť koreňom rovnice
(5) jedine číslo

* = 1/Р.
Toto číslo skutočne vyhovuje rovnici (5), lebo je

= l/21/p]/2x -

= ]/4P-]/4P= 0.
Pre x = ]/P je podlá (4)

p = 4 ]jp,
čo je minimálna hodnota p.

Jiné řešení. Stejně jako v předchozím řešení dospě-
jeme ke vztahu (3); z něho znásobením obou stran čís-
lem x po snadné úpravě dostaneme

2x2 — px + 2P = 0.
Za předpokladu^ že p} P jsou známá čísla3 lze odtud vy-

(6')
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počítat číslo x; obdržíme
p±\f - i6P (6)*1,2 — 4

Pro naše úvahy má smysl jen x kladné; přitom čísla
x1} хг jsou reálná právě tehdy, je-li p2 — 16P ^ 0 (jinak
nemá odmocnina ve výrazu (6) smysl) neboli jestliže je

P ž 4\P,
kde P > 0 podle textu úlohy. Protože P je dané číslo,
plyne ze vztahu (7), že číslo p je nejmenší, jestliže platí

p = 4jP
a jestliže zároveň к číslům P, p = 4]/P přísluší kladné
číslo x. Dosaďme do (6') za p číslo 4]/P a vypočtěme pří-
slušné kořeny; protože je p2 — 16P = 0, dostaneme

P
ze (6) výsledek x = ^ neboli vzhledem к (7')

x=]jp.
Po dosazení tohoto výsledku do (2) obdržíme

(7)

(7')

(p — 2 .

Dvojice hledaných čísel x, cp by tedy mohla jedině být
xQ = |/P, <p0 = 2. Nyní se přesvědčíme, zda tato dvojice
splňuje požadavky úlohy.

К této dvojici x = *0, 99 = 990 podle (3) přísluší p, =
= А» kde

р, = Ф.
Dokážeme, že pro kladné číslo x ф |/P je příslušný

obvod p > p0: Položme x = k]/P, kde k Ф 1 je kladné
číslo; pro p podle (3) dostaneme

(8)

1
P = 2 neboli p k + k
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a tedy
i /— H- 1

p = 2|/P —j—•
Porovnejme tento výsledek s číslem p0 ze vztahu (8);
abychom dokázali platnost vztahu p > p0, stačí dokázat,

£2 i
že je —— > 2. Platí rovnost

k2 + 1 (* ~ l)2
- 2 =

& £

kde zlomek napravo pro kladné k Ф 1 je kladný. Proto
pro kladné číslo x ф ]/P je vždy p > p0, takže pro čísla
*o = 1/Ps <Po = 2 dostaneme skutečně nejmenší obvod,
což jsme měli dokázat. Tím je řešení provedeno.

Podle řešení s. Jana Vlčka, 10. tř.
jsš, Vimperk.

5. Úlohy II. kola kategorie В
1. Určete reálné číslo p tak, aby rovnice

x2 — p{x — 1) — 9 == 0
o neznámé x měla rozdíl kořenů (ve vhodném pořádku)
roven šesti. Řešte pak tuto rovnici.

Řešení. Předpokládejme, že takové číslo p existuje.
Pak (1) má diskriminant

D = p2 — 4(p — 9) = p2 — 4p -)- 36
a kořeny

P ±Jd*1,2 2

130



Absolutní hodnota rozdílu kořenů rovnice (1) je tedy
|*i — *2| = ]/D .

Podle úlohy platí
]/p2 — Ap + 36 = 6 .

Umocněním dostáváme pro číslo p rovnici
P2 — 4p = Oj

která o hledaném čísle musí nutně platit.
Její kořeny jsou

pi = 0, p2 = 4.
Pro p jsou tedy myslitelné dvě hodnoty:

Případ [1]. Je px = 0. Rovnice (1) zní
*2 _ 9 = 0;

její kořeny jsou
*1,2 — i 3;

jejich rozdíl je skutečně 6.

Případ [2]. Je p2 — 4. Rovnice (1) zní
x2 — 4x — 5 = 0;

její kořeny jsou
*i = 5,

jejich rozdíl je skutečně 6.
Obě čísla px = 0, p2 — 4 tedy vyhovují požadavkům

úlohy.

*2 = — 1;

Závěr. Daná rovnice (1) má rozdíl kořenů roven číslu
6, jestliže je číslo p rovno jednomu z čísel 0 nebo 4 a pro
zadně jme číslo.

2. Nech je daný trojuholník ABC. Vnútri tohto troj-
uholníka zostrojte dve zhodné kružnice kx = (SXi r),
kt == (52j r), ktoré sa navzájom dotýkajú, pričom kruž-
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nica kx sa dotýká priamok CA, AB a kružnica k2 sa dotý-
ka priamok CB, AB.

Riešenie (obr. 37). Rozbor. Nech kx, k2 sú hladané
kružnice а Г je ich spoločný dotykový bod. Bod T je
stredom úsečky SXS2 = 2r. Označme Tx, T2 (v tomto
poradí) dotykové body kružnic kx, k2 s priamkou AB.
Platí SXTX = S2T2 = r. Přitom bod Sx leží nevyhnutné
na osi AS uhla <£CAB, bod S2 na osi BS uhla <$.ABC,
kde 5 je střed kružnice vpísanej trojuholníku ABC.
Bod Sx leží zrejme vnútri úsečky AS a bod S2 vnútri
úsečky BS (iste je Sx S ^ S2; na predížení úsečiek
AS, BS za bod 5 nemóžu body Sx, S2 ležať, inak by zrej-
me kružnice kx, k2, dotýkajúce sa (v tomto poradí) ramien
uhlov <£A, <£B, nemalí vonkajší dotyk). Štvoruholník
SXTXT2S2 je obdížnik s rozmermi r — SXT13 2r —
= SXS2, t. j. rozměry sú v pomere 1 : 2. Úloha sa dá teda
previesť na úlohu: Do trojuholníka SAB vpíšte obdížnik
S1TÍT2S2 tak, aby body Sx, S2 padli (v tomto poradí)
dovnútra úsečiek SA, SB a body Tx, T2 dovnútra úsečky
AB. Túto úlohu vieme riešiť napr. použitím rovnolah-
losti so stredom 5 (pozři obr. 37), ktorá prevádza po-
mocný obdížnik MNPQ (v ktorom je MN = 2 . MQ,
pričom je MN vhodné zvolená úsečka) do obdížnika
SXTXT2S2. Z toho vyplývá konštrukcia:

Konštrukcia. Vnútri úsečky AS, kde 5 je střed kružnice
vpísanej trojuholníku ABC, zvolme bod M a označme N
bod ležiaci vnútri úsečky BS a to taký, že je MN || AB.
Taký bod N existuje к bodu M právě jeden. V polrovine
opačnej к polrovine MNS zostrojme obdížnik MNPQ,
kde MQ — -i- MN. Označme Tx, T2 (v tomto poradí)
body, ktoré prislúchajú bodom Q, P v rovnolahlosti
so stredom S, ktorá priraďuje priamke QP priamku AB
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(taká rovnolahlosť existuje zrejme jediná). V tejto rovno-
Tahlosti prislúchajú bodom M3 N (v tomto poradí) bo-
dy Sl3 S23 ktoré sú stredmi hladaných kružnic k13 kz.

Dokaž konštrukcie vyplývá z rozboru a urobenej kon-
štrukcie.

Diskusia. Z predošlého vyplývá, že úloha má vždy právě
jedno riešenie. To preto, že obdížnik MNPQ leží v uhle
<£ASB, lebo oba uhly <tSAB, <£SBA sú ostré (sú
to po radě polovice dutých uhlov <í:CAB3 <$iABC)
a preto paty Q3 P kolmic vedených (v tomto poradí)
bodmi M, N к priamke r = P'Q' |j AB, kde Q'3 P' sú
(v tomto poradí) vnútorné body polpriamok SA3 SB3
nevyhnutné padnú dovnútra uhla <$ASB. Teda aj
body T13 T2 padnú dovnútra úsečky AB a teda body Sí3
S2 padnú (v tomto poradí) dovnútra úsečiek SA3 SB.

Přitom riešenie zrejme nezávisí od volby pomocného
obdížnika MNPQ.

Tým je riešenie úlohy hotové.
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3. Buď p dané reálné číslo. Určete všechna reálná ře-
šení x rovnice

1 1
(1)= 1 .

X+P ' x — p
Proveďte diskusi a zkoušku dosazením.

Řešení. Nechť je x řešením rovnice (1); potom postup-
ně platí

X + p + x — p
= 1,

(x + p)(x - P)
2x

= 1,x2-p2
2x = x2 — p2,

0 = x2 — 2x — p2.
Kořeny této rovnice jsou

x± — 1 + ]/p2 + 1> ^2—1 — l/^2 + 1 • (2)
Pro každé číslo p je p2 + 1 číslem kladným, větším

než \p\; proto je хг Ф x2. Jestliže rovnice (1) má řešení,
potom tímto řešením je některé z čísel (2). Proveďme
zkoušku dosazením.

Případ [1]. Dosaďme do rovnice (1) za x číslo xx;
snadno zjistíme, že příslušné zlomky mají smysl. Označme
L dosazení do levé strany rovnice (1). Platí postupně

11
L =

i + i/p2 +1 - pi + W + i + p
i + урчп - p ± i + ]/p2 + i + p

(i + l/^TT)2-^
2 + 2|lý + 1

=

1 + 2 Ур2 + 1 + f + 1 - f
2 + 2 Ура + 1

'

2 + 2 }/p* + 1
1 .
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Je tedy L = 1, což je v souhlase s pravou stranou dané
rovnice (1). Číslo хг ze vztahů (2) je tedy řešením dané
rovnice (1) pro každé číslo p.

Případ [2]. Dosaďme do (1) za л; číslo x2 ze vztahů (2).
Jmenovatelé jsou x2 + p = 1 — ]/p2 + í + jpj x2 — p —

= 1 — У í + p2 — p; snadno zjistíme, že jsou rovny nule
právě pro p — 0. Dále nechť je p ^ 0; označme L do-
sazení do levé strany (1). Platí postupně

1 1
L =

i - l/p2 +1 +p i - i/p*+1 - p

i - У/ +1 p + i-i/ť + i+p
(1 - ]/ý + l)2 - f

2 - 2 Ур2 + 1
1 - 2 Ур* + 1 + f + 1 - ř2

2(1 - IV + 1)
2(1 - 1+ 1)

Číslo л:2 ze vztahů (2) je tedy řešením dané rovnice
(1) pro všechna čísla p Ф 0.

(3)= 1 .

Závěr. Daná rovnice (1) má pro p Ф 0 dvě různá
řešení daná vztahy (2). Pro p = 0 má jediné řešení
xx = 2 .

4. Nech je daný lichoběžník ABCD (AB || CD,
AB > CD).

Zostrojte priamku p, ktorá dělí daný lichoběžník
na dve časti, z ktorých každá má ten istý obsah, a to tak,
že priamka p prechádza bodom A.

Urobte dokaž konštrukcie a diskusiu riešitel’nosti.
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Riešenie (pozři obr. 38). Rozbor. Označme AB = a,
CD = c, v výsku lichoběžníka. Podlá textu úlohy je
a > c > O, v > 0. Obsah lichoběžníka ABCD je

1

j (я + Ф;P =

1
obsah trojuholníka ABC je T — аг>. Tu je P — Г =

— ~cv,a pretože je c < a, je P — T < T, čiže T > -^-P.
Z toho vyplývá, že od trojuholníka ABC musíme oddeliť
trojuholník AXC, ktorý je častou trojuholníka ABC tak,

aby sa obsah trojuholníka ABC zmenšil na -xP. Z toho
vyplývá, že bod X nevyhnutné padne dovnútra úsečky
BC, čiže, že priamka p = AX nutné prechádza vnútraj-
škom uhla^.CAB. Označme x velkost’ výšky trojuholníka
ABX, ktorá prislúcha к straně AB. Potom podl’a textu
úlohy o čísle x má platit’

1 1

2P>-х-ax —

2
v • v

cize

Y<e + e>'7>
a

^ T (a + c)

X =

t.j.
(1)

Xv

Označme O bod polpriamky BA, o ktorom platí
1

~2 (a + c) .
BO =
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Zo vztahu (1) vyplývá, že platí
Д ABC '—' Д OBX,

takže tieto trojuholníky sú rovnolahlé podlá bodu В
a je
Z toho vyplývá konštrukcia.

AC || OX.

Dá /

/
/ /X?/ /

/
/ \Xx

/ <7

/ 7I/ / /

/ L/
/ /

//
/ ж/ /

/ //
/ /

/

Aú±/

í вA

w*|fo+c) /<?

Obr. 38

Konštrukcia (obr. 38).‘Zostrojme rovnoběžník ACDE.
Platí BE = a + c. Označme O střed úsečky BE. Bodom
O veďme priamku q || АС a označme X spoločný bod
úsečky ВС a priamky q. Potom je ABX hladaný troj-
uholník a p = AX hladaná priamka.

Dokaž konštrukcie. Pretože je a > c, padne bod O
dovnútra úsečky АВ = a. Preto priamka q || AC má ne-
vyhnutne s úsečkou BC spoločný vnútorný bod X a po-
dla konštrukcie, ktorú sme urobili, je výška x trojuholní-
ka ABX, prislúchajúca к straně AB, daná vzťahom (1).
Obsah trojuholníka ABX je

jAB.*,
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čiže
1 1 f , n v 1 1 , . v 1 D2a'2{a + c)' H=2‘2(fl + e)"B= 2P’

čo bola požiadavka úlohy.
Z dókazu konštrukcie vyplývá, že úloha má vždy jedi-

né riešenie.
Tým je riešenie úlohy hotové.

6. Úlohy I. kola kategorie C

1. Ve dvou nádobách (označme je A a B) máme dva
lihové roztoky; v nádobě A jsou 2 litry lihu 60procent-
ního, v nádobě В pak 3 litry lihu 80procentního. Z ná-
doby В do A přelejme 1 litr tekutiny, důkladně pro-
míchejme a pak přelejme 1 litr tekutiny z nádoby A
do B.

Vypočtěte, kolikaprocentní je líh v nádobách A z В
po obou přelitích.

Řešeni. Řešme nejprve tuto úlohu: Smísíme a litrů
/>-procentního lihu s b litry ^-procentního lihu. Kolika-
procentní líh tak dostaneme?

P
V jednom litru p-procentního lihu je litru lihu;

v jednom litru ^-procentního lihu je litru lihu.
Qp

V a litrech ^-procentního lihu je y^litru lihu;
bq

v b litrech <?-procentního lihu je litru lihu.
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V (a + b) litrech směsi získané v našem případě je
{ap + bq) litru lihu; procento я lihu ve směsi je

tedy
1

ш{ap +bq) ap + bq
a -\- b a + b

x — 100 .

Po prvním přelití dostaneme v nádobě A 3 litry směsi;
příslušné procento xx je [a — 2, p — 60; b — 1, q = 80]

2.60 + 1 . 80
2+1

Po druhém přelití dostaneme v nádobě B3 litry směsi i
příslušné procento x2 je [a = 1, p = xx; b = 2, q — 80]

200
66,7.3- = 663*1 =

200
1 .

~ + 2.80
200 + 2.3.80

x2 = 3.31 + 2
200 + 480 680

~== 75,6 .9 75 99

Po provedených přelitích jsou v nádobě A 2 litry
2 5

lihu 66yprocentního a v nádobě В 3 litry lihu 75-^-pro-
centního.

Podle řešení s. Ireny Voříškové,
žákyně 9.b tř. jsš, Strakonice.

Jiné řešení. Po prvním přelití bude v nádobě В
líh 80procentní, kdežto v A bude tekutina, která obsahuje
čistý líh o objemu (v litrech)

60 80 200
2 + 100 * 1 100 2;100 *
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je tedy v nádobě A čistého lihu (tj. lOOprocentního)
2

2 litry a vody 1 litr; jde tedy o líh 66-^-procentní.
2

Po druhém přelití bude v A líh 66^- procentní, kdež-
o

to v nádobě В bude tekutina, která obsahuje čistý líh
o objemu (v litrech)

4 11
je tedy v nádobě В čistého lihu 2^ litru a vody litru.

Zbývá vyjádřit tento poměr čistého lihu к celkovému
objemu v procentech. Tu platí

_4 34
15 15 34
3 _ 3 ~~ 453

a proto příslušný počet procent je
34 34 680 5
45 = 20-V =^ = 759 -

2
V nádobě A jsou nakonec 2 litry 66—procentního

5
a v nádobě В 3 litry lihu 75-^- procentního.

Proveďme ještě zkoušku. Původně v nádobě A byly
2 litry lihu 60procentního a v nádobě В 3 litry lihu
80procentního; v obou nádobách bylo tedy

6
, 12

= 18
5^5 5

80 48 + 20 68
_= 2— •

30 15 5
. 1 -

100 * 30

100.

60 80
2 —— 4- 3

100 ^ ‘ 100

litrů čistého lihu.
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nádobě A byly 2 litry lihu jд . 10oj
centního a v nádobě В 3 litry lihu
ního; v obou nádobách bylo tedy

2 34

2.3 + 3
litrů čistého lihu.

Oba výsledky tedy souhlasí, čímž je správnost výpočtů
potvrzena.

Nakonec v pro-

(! • 10°) procent-

20 34
= 54= 18

15 15 15 5
4 34

"

3 + 15 _*45

2. Zostrojte pravoúhlý trojuholník ABC s přeponou
AB, ak sú dané velkosti ťažníc tai tc. Urobte diskusiu
riešitelnosti.

Riešenie. Rozbor. Označme 5 střed přepony AB,
A' střed odvěsny ВС a konečne T ťažisko hladaného
pravoúhlého trojuholníka ABC. Je známe, že bod 5
je stredom kružnice trojuholníku ABC opísanej a preto
platí

1
tc = SC = SA = SB = j^AB .

Ďalej je známe, že ťažisko trojuholníka dělí jeho ťažnicu
v pomere 1 : 2 a to tak, že váčšia časť takto rozdelenej
ťažnice je pri vrchole trojuholníka. Preto o trojuholníku
AST platí

1 2
AT = 4 (1)SA — řc, ST — ~^tci

Konštrukcia (obr. 39). Zostrojme 1’ubovol’ne v rovině
úsečku SA = tc a označme g jednu z oboch opačných
polrovín vyťatých priamkou SA. Do zvolenej polroviny
umiestime hladaný trojuholník ABC a teda aj pomocný

3?a*
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trojuholník AST. Zostrojme teda kružnice k = ,

- [Щ . Spoločný bod oboch kružnic k, k19
pokial leží v polrovine g, označme T. Na predíženi
^1

/

8s'

úsečky SA za bod 5 zostrojme úsečku SB = SA a na
polpriamke ST zostrojme úsečku SC = SA. Potom je
ABC hladaný trojuholník.

Dokaž. Musíme dokázat, že ABC je pravoúhlý troj-
uholník s přeponou АВ a ďalej, že jeho ťažnice prislú-
chajúce к vrcholom A, C (v tomto poradí) majú dané
velkosti ta, tc.

Pretože podlá konštrukcie je bod 5 stredom strany AB
a pretože platí SA = SB = SC, je S stredom kružnice
trojuholníku opísanej a podlá Thaletovej vety je uhol
<£C = 90°.

Úsečka SC je zrejme ťažnica a má podlá konštrukcie
velkost’ te. Bod T je teda podlá konštrukcie ťažiskom troj-
uholníka ABC (lebo SC = 3 . ST). Preto v polpriamke
AT leží ťažnica příslušná к vrcholu A. Pretože podlá
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2
konštrukcie je AT = yřa, je velkost’ ťažnice príslušnej
к vrcholu A skutočne ta.

Tým je dokaž hotový.
Diskusia. Riešitelnosť úlohy závisí od toho, či možno

zostrojiť pomocný trojuholník AST. To je však možné
právě vtedy, ak úsečky (1) splňujú trojuholníkovú ne-
rovnost’, t. j. ak platí | SA — ST \ < AT < SA + ST3
čiže

2 42

3 řc < 3 ta < 3 řc
a po 1’ahkej úpravě

te <ta < 2 te.
Potom má úloha jediné riešenie; inak nemá riešenie.

Tým je riešenie úlohy ukončené.
Podlá riešenia s. Olgy Preislerové,
9.d tr. jsš, Trenčín.

3. Je dán zlomek
x2 + 2ax + a2 — 16
ax — 4x + a2 — 16 *

Vyšetřte, za kterých předpokladů ztrácí zlomek vý-
znám. Potom zlomek zkraťte.

a) Předpokládejme, že a je dané číslo; vypočtěte, pro
která x je daný zlomek roven nule. Potom proveďte zkouš-
ku dosazením.

b) Předpokládejme, že dané číslo a je větší než číslo 4;
určete všechna x, pro která je zlomek Z větší než číslo 1.

Podobně předpokládejme, že dané číslo a je menší než
číslo 4; určete všechna x, pro něž zlomek Z je větší než
číslo 1.

Řešeni. Čitatele i jmenovatele daného zlomku Z

(1)Z =
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rozložme v činitele; postupně dostaneme
x2 + 2ax + a2 — 16
ax — 4x a2 — 16

(x + a)2 — 42Z =

x(a — 4) + (a2 — 42)
(x + a)2 ~ 42 {x + a — 4)(x + a + 4)

(a — 4){x + я + 4)x(a — 4) + (a + 4)(a — 4)
Zlomek ztrácí smysl, jestliže je

(a — 4)(x + a + 4) = 0 .

Platí věta: Jestliže součin dvou čísel je roven nule,
je alespoň jedno z těchto čísel rovno nule. Buď tedy je

a — 4 = 0
neboli

(3)<2 = 4;
x + cl + 4 = 0 nebolinebo je

x = — (a + 4) . (3')
Jestliže tedy platí jeden ze vztahů (3), (3') anebo oba,

zlomek (1) ztrácí smysl. V dalším tyto případy vyluču-
jeme. Pak ale lze zlomek (2) zkrátit a dostaneme

x + a — 4Z = (4)
<2 — 4

a) Je známo, že zlomek je roven nule, jestliže je jeho
čitatel roven nule. Aby tedy bylo Z = 0, stačí, aby ve
vztahu (4) platilo x + a — 4 — 0 neboli, aby bylo

x = 4 — <2 .

Snadno zjistíme dosazením za x do posledního zlomku (2),
že postupně platí

(5)

(4 — a + <2 — 4)(4 — a + a + 4)
(ia — 4)(4 — a + a + 4)

Z =

0.8 °
= 0

(a - 4) . 8
"

(a - 4) . 8 "
(za předpokladu, že а Ф 4). \
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b) Zlomek Z ze vztahu (4) lze upravit takto
- 4x

■ a

a — 4 1 a

Z=1 +—
a — 4

Z =
- 4

neboli

Nechť je a > 4; potom je a — 4 kladné číslo. Aby bylo
Z > 1, musí být я > 0, tj. x musí být kladné číslo.

Nechť je a <4; potom je a — 4 číslo záporné. Aby bylo
X

Z > 1, musí být opět zlomek — — kladný a protože

jeho jmenovatel je záporný, musí být též čitatel záporný,
tj.musí být x záporné číslo.

Závěr.' Jestliže je a > 4, potom je zlomek Z > 1 právě
pro všechna kladná čísla x; jestliže je a < 4, potom je
Z > 1 právě pro všechna záporná čísla x.

4. Daný je trojuholník ABC, ktorého strany označíme
a = BC, b = CA, с = AB. Na predížení úsečky BC
za bod C zostrojme bod C tak, aby CG = a. Na pre-
dížení úsečky CA za bod A zostrojme bod A' tak, aby
AA' = 2b. Konečne na predížení úsečky AB za bod В
zostrojme bod B' tak, aby BB' = 3c.

Tým dostaneme trojuholník A'B'G. Vypočítajte,
kolkokrát je obsah trojuholníka A'B'G váčší než obsah
trojuholníka ABC.

Riešenie (pozři obr. 40). V danom trojuholníku ABC
označme v13 v2, vz (v tomto poradí) příslušné výšky
к stranám a, b, c; obsah trojuholníka ABC označme P.

Výsledný trojuholník A'B'G rozložíme na štyri troj-
uholníky

ABC, AA'B', BB'G, CGA',
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ktoré nemajú okrem bodov na obvode žiadnych spoloč-
ných bodov a přitom úplné pokrývajú trojuholník
A'B'C, ktorého obsah P' je súčtom obsahov P, P15 P2)
P3 týchto trojuholníkov.

Platí:

1. Trojuholník AA'B' má stranu AA' — 2b а к nej
příslušná výška má velkost’ 4v2i čo dokážeme takto:

a) Ak je BAC — 90°, vyplývá to priamo z kon-
štrukcie bodu B'.

b) Nech je *$.BAC Ф 90°. Označme X, X' paty
kolmic vedených bodmi P, B' (v tomto poradí) к priam-
ke CA. Trojuholníky ABX, AB'X' majú pri vrcholoch
X, X' pravé uhly a pri vrchole A majú spoločný uhol.
Platí teda

Д ABX ~ Д AB'X' (uu)
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a preto je
B'X' AB'
BX ~ AB 5

teda
4c

B'X' = BX . —

c

a teda výška
B'X' = 4v2 ,

čo sme mali dokázat’.
Obsah P± trojuholníka АА'В' je teda

1 11
Л = jAA'. B'X' = j2b ,iv2 = 8.jbv2 = 8P. (1)

2. Podobné trojuholnik BB'tH' má stranu BB' = Ъс
a příslušná výšku velkosti 2v3i takže jeho obsah je

P2 = j . 3c . 2v3 = 6 . j cv3 = 6P.
3. Podobné trojuholnik CCA' má stranu CC — a

a příslušná výšku velkosti 3^, takže jeho obsah je

(2)

1 1
(3)~2 a • 3»i = 3 . 2" av1

Z výsledkov (1) až (3) dostaneme
P' = P + Px + P2 + P3 = P(1 + 8 + 6 + 3),

^3 = 3P.

čiže
P' = 18P.

Odpoved. Obsah trojuholníka A'B'C je osemnásť-
krát váčší než obsah trojuholníka ABC.

5. Podél přímé železniční trati vede silnice, po níž
jel cyklista rychlostí 18 kilometru za hodinu. Cyklistu
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dostihl po trati jedoucí vlak a předjel jej. Cyklista odhadly
že od okamžiku, kdy jej míjela lokomotiva, do okamžiku,
kdy kolem něho projel konec vlaku, uplynulo asi 5\
vteřiny. Potom však musel vlak na trati zastavit; cyklista
jej dostihl a podél celého stojícího vlaku přejel za 19 vte-

Vypočtěte přibližnou rychlost jedoucího vlaku.

v •

rin.

Řešení. Označme x km/hod rychlost jedoucího vlaku.
[1] Délku s vlaku vypočítáme takto: Cyklista předjel

stojící vlak za 19 vteřin od okamžiku, kdy jej dostihl,
18 000

přičemž jel rychlostí 18 km/hod neboli rychlostí
m/sec; proto je

60.60

18 000
. 19 metrů.s =

60.60

Proveďme výpočet; platí
18 000 30

= 5 . 19 = 95.. 19 = T-1960.60

Délka vlaku je s = 95 m.

[2] Nyní vypočítáme rychlost x (km/hod) jedoucího
vlaku. К tomu užijeme známého vzorce

(1)s = ct,
který platí pro rovnoměrný pohyb; tu s je dráha v metrech,
c rychlost v metrech za vteřinu a t doba ve vteřinách.

Když vlak předjížděl cyklistu, jevila se situace cyklis-
tovi takto: Cyklista sám stojí (tj. je v klidu) a předjíždí
jej vlak rychlostí x — 18 km/hod; předjíždění trvalo

5^- =^ vteřiny. Vlak urazil za dobu t — ^ vteřiny
1000(* - 18)dráhu s = 95 m, a to rychlostí c — metrů

60.60
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za vteřinu. Po dosazení do (1) dostaneme postupně
10000- 18) 11

60.60 * 2 5
95 -

95 _ 10Q - 18) ,11‘

2 336

95_5(*-18)
36 •“>

x — 18
. и ;19

36

36
po znásobení obou stran číslem yj dostaneme postupně

36. 19
= x — 18 ,11

684
—— -f 18 = x ,11

62^ + 18 = *,

X = 80Д-
11 *

Rychlík jel rychlostí asi 80 km za hodinu.
6. Buď dán rovnostranný trojúhelník ABC. V poloro-

vině opačné к polorovině BCA sestrojme nad úsečkou
BC oblouk kXi z jehož bodů je úsečka BC vidět pod úhlem
60°. V polorovině opačné к polorovině CAB sestrojme
nad úsečkou CA oblouk k23 z jehož bodů je úsečka CA
vidět pod úhlem 60°. Konečně v polorovině opačné к po-
lorovině ABC sestrojme oblouk k3) z jehož bodů je úseč-
ka AB vidět pod úhlem 60°.
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Na oblouku kx zvolme bod M (různý od bodů В, C)
a sestrojme polopřímky MC, MB; označme NC
společný bod polopřímky MC a oblouku k2 a dále označ-
me P=£B společný bod polopřímky MB a oblouku kv

Potom body A, N, P leží v téže přímce; dokažte.

Řešení (obr. 41). Nejprve dokážeme, že existuje bod
N uvnitř oblouku Označme CA', CB' pořadě polopřím-
ky opačné к polopřímkám CA, CB. Vnitřek oblouku kx
podle známé konstrukce (a s ním i bod M) leží právě
uvnitř úhlu <$:BCA'. Vnitřek oblouku k2 leží uvnitř
úhlu <£ACB'. Označme k2 oblouk, který oblouk k2
doplňuje na kružnici k; potom oblouk k2 leží (podle
známé konstrukce) až na body C, A uvnitř úhlu <):BCA,
přičemž přimka CB je tečnou kružnice k v bodě C.
Odtud plyne, že přímka CM ^ CB není tečnou kružni-
ce k (tj. je její sečnou) a druhý průsečík N přímky CM
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a kružnice k musí ležet v úhlu <£ACB' neboli uvnitř
oblouku k2. Tím je důkaz tvrzení proveden. Stejně se
dokáže existence bodu P uvnitř oblouku k3.

Nyní dokážeme, že společný bod přímek MCN, AP
je právě bod N.

Důkaz. V trojúhelníku MCB označme <£C = e,
<£В = co, takže je e + co = 180° — 60° neboli

e + co = 120° .

Potom v trojúhelníku ANC je
<$.N = 60°, <£NAC = <$MCA - <£N =

- e + 60° - 60° = e ;

podobně v trojúhelníku ABP je
<£P = 60°, ^PAB = <£ М5Л - <£P =

= co + 60° — 60° = co .

Uvažujme nyní součet я úhlů <£NAC, <$.CAB,
<£BAP, z nichž každé dva po sobě následující jsou styč-
né; protože je <£CAB — 60°, dostaneme vzhledem
к (2), (3), (1)

x = e + 60° + co = 120° + 60° = 180° .

Odtud plyne, že AN, AP jsou dvě opačné polopřímky,
a proto body A, N, P leží v téže přímce. Tím je řešení
úlohy provedeno.

7. Řešte rovnici

(1)

(2)

(3)

1 1 1 1
> (1)

x — p "I- 2 x — p -j- 3 x -J- 2 x “I- 3
kde x je neznámá a p je dané reálné číslo.

Proveďte zkoušku dosazením do dané rovnice a na

základě toho určete všechna čísla p, pro něž daná rovnice
nemá řešení.

Řešení. Nechť reálné číslo x je řešením rovnice (1).
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Sečtěme zlomky na levé i pravé straně rovnice; dosta-
neme vztah

1 1
(!')(x p + 2){x — p 3) (x + 2'){x + 3)

a po znásobení obou stran této rovnice číslem
(x — p + 2'){x — p -f- 3)(# -j- 2)(x -T 3)

obdržíme vztah

(л: + 2)2 + л: + 2 = (x — p + 2)2 + л: — p + 2 .

Odtud postupně dále
x^ -}- 4x —|— 4 —)— лг —f- 2 —

= x2 + p2 + 4 — 2px ф 4x — 4p ф x — /> + 2,
0 = —2px — 5p + p2

neboli
p(2x + 5 — p) — 0 .

Rozeznávejme dvě možnosti:

Případ [1]. Nechť je p = 0. Pak daná rovnice zní

(2)

11 11
x ф2 л; + 3 x Ф 2 # -}- 3

Tato rovnice je zřejmě splněna pro každé reálné čís-
lo x, pro něž mají zlomky v ní obsažené význam, tj.
pokud je jc -f 2 ^ 0, x ф 3 Ф 0 neboli x Ф
x Ф — 3. Tedy pro p — 0 vyhovuje dané rovnici každé
reálné číslo x různé od čísel —2, —3.

Případ [2]. Nechť je p ф 0. Potom ze vztahu (2)
postupně plyne

2,

2x + 5 — p = 0,

|Cř-5). (3)л: =
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Dosaďme tento výsledek do levé strany rovnice (1);
ve jmenovatelích levé strany dostaneme výrazy

11

jíp + d,

\(p-1).
* - p + 2 =y (p - 5) - p + 2 =

x - p + 3 = - 5) - p + 3 =

které musí být různé od nuly (jinak by některý ze zlomků
ztrácel význam). Musí tedy platit p ± 1^0 neboli

P Ф ± 1 •

Levá strana v rovnici (1) po dosazení ze (3) je
— i—^

p+1 p-1
L ’= —

neboli
- 2(p - 1) + 2 (J> + 1) 4

L =

(P - 1)(P + 1) *(P - 1)(P + 1)
kde p Ф ± 1 .

Dosazení výsledku (3) do pravé strany (1) je
111

P =
x +2 x+3 (я + 2)(jc + 3) 5

protože vzhledem ke (3) je

(* + 2)(* + 3) = [|(ř - 5) + 21Г1(р - 5) + З] =
= (P “ !)(P + !) 3

je
4

(ř - i)Cř + i) ‘
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V případě, že je číslo p různé od kteréhokoli z čísel
— 1, 0, 1, je řešení rovnice (1) dáno číslem x ze vztahu
(3), neboť platí L — P.

Poznámka. Všimněme si blíže případů p = 1,
P= -1.

Případ [a]. Nechť je p = 1. Pak ze vztahu (3) plyne
x = —2.

Číslo x — —2 nevyhovuje dané rovnici (1), neboť
první zlomek na její pravé straně ztrácí význam. Pro
p — 1 nemá rovnice (1) řešení.

Případ [b]. Nechť je p = —1. Podle (3) je x — —3
a potom ztrácí druhý zlomek na pravé straně rovnice
(1) význam. Rovnice (1) nemá pro p— — 1 řešení.

Závěr. [1] Jestliže je p = 0, potom je každé reálné
číslo x různé od čísel —2, —3 řešením dané rovnice.

[2] Jestliže je p různé od čísel —1, 0, 1, potom má
rovnice (1) jediné řešení x = —(p — 5).

8. V rovině buďte dány dvě soustředné kružnice kx ==
= (S, ri), k2 = («S, r2), kde r2 > rX3 uvnitř mezikruží
těmito kružnicemi určeného je dán bod M. Dále buď
dáno kladné číslo d.

Sestrojte na kružnici kx bod X a na kružnici k2 bod Y
tak, aby úsečka XY měla délku d a aby bod M ležel
na této úsečce.

(Při řešení lze užít otáčení.)

Řešení (obr. 42). Rozbor. Nechť existuje úsečka
XY — d, která vyhovuje požadavkům úlohy; pak M je
vnitřním bodem této úsečky XY. Otočme kolem bodu 5
úsečku XY i s bodem M do nové polohy X0Y0 (označme
M0 otočenou polohu bodu M)3 takže body X0) У0 leží
pořadě na kružnicích kx, k2\ bod M0 spolu s bodem M
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leží na kružnici m = (S, SM). Dále je X0Y0 = XY —
= d3 leží tedy bod F0 na kružnici k = (X0, d) a je proto
společným bodem kružnic k23 k. Na základě toho prove-
deme konstrukci.

I

Konstrukce (obr. 42). Na kružnici kx zvolme bod X0
a sestrojme kružnice k = (Xq, d), m = (S} SM). Označ-
me F0 společný bod kružnic k, kz (pokud existuje;
existuje-li jich víc, zvolme jeden z nich); dále označme
Mq společný bod kružnice m a úsečky Х0У? (o jeho
existenci pojednáme v důkazu). Rozeznávejme dva
případy:

Případ [1]. Jestliže jě M0 = M, označme X0 = X}
F0 = У; potom úsečka XY vyhovuje požadavkům úlohy.

Případ [2]. Jestliže je М0=^М3 pak existuje jediné
otáčení o středu S3 které převádí bod M0 v bod M (ne-
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záleží nám tu na orientaci otáčení). Označme X, Y obrazy
bodů X0, Y0 v tomto otáčení. Protože M0 leží uvnitř
úsečky X0Y0, leží bod M uvnitř úsečky XY — d} která
zřejmě vyhovuje požadavkům úlohy.

Důkaz konstrukce, pokud jde o otáčení, nebudeme
provádět; správnost konstrukce plyne z vlastností otá-
čení. Zbývá však otázka, zda existuje na kružnici m
bod M0, který padne dovnitř úsečky X0Y0. Takový bod
existuje podle známé vlastnosti kružnice m a úsečky
X0 Y0. Bod X0 leží na kružnici kx a tedy uvnitř kružnice
m, kdežto bod Y0 leží na kružnici k2 a tedy vně kružnice
m; uvnitř takové úsečky X0Y0 podle známé věty z geo-
metrie leží právě jeden bod M0, který je bodem kružnice
m.

Diskuse. Řešitelnost úlohy (a tím existence právě po-
psané konstrukce) závisí na existenci společného bodu
F0 kružnic k, k2. Dokážeme, že kružnice k3 k2 mají:

a) jediný společný bod právě tehdy, je-li r2 — rx = d
nebo je-li r2 + rx = d;

b) dva různé společné body právě tehdy, je-li r2 —
— rx < d nebo je-li rz + rx > d.

Za jiných okolností nemají kružnice k, k^ společné
body a úloha nemá řešení; důkaz: Středná kružnic
k, kz o poloměrech d, r2 je SX? = rx. Kružnice k, k2
mají společné body právě tehdy, jestliže platí

I d — r2| ^ SX0 ^ d + r2
neboli

\d — r2| ^ rx ^ d + r2 .

Jestliže přitom v předchozím vztahu nastane jedna
rovnost, značí to dotyk kružnic k, k2; nastanou-li nerov-
nosti, mají kružnice k, k^ dva různé body společné. Pro-
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tože však je rx <r2, je vždy splněn vztah rx < d + r2.
Zbývá prozkoumat platnost vztahu

Id - r2| ^ rx. (1)

Uvažujme možnosti:
Případ [1]. Nechť je d ^ r2; potom předchozí vztah

(1) lze psát d — r2 ^ rx neboli r2 + rx ^ d\ z posledního
vztahu plyne také vztah (1). Přitom případ rovnosti
ra + ri — d značí vnitřní dotyk kružnic k, k2 a tedy jediný
jejich společný bod [viz druhý případ možnosti a)],
a úloha má jediné řešení; vztah r2 + *4 > d značí,
že kružnice k, k2 mají dva různé společné body a úloha
má dvě řešení.

Případ [2]. Nechť je d < r2; potom z (1) plyne
r2 — rx ^ d; z tohoto vztahu plyne též vztah (1).
Jestliže je r2 — rx = d3 mají kružnice k, k2 vnitřní dotyk
a úloha má jediné řešení. Jestliže je r2 — rx < d, mají
kružnice ^2 dva různé společné body a úloha má dvě
řešení. Tím jsou dokázány oba první případy v bodech
a)> b).

Úloha nemá řešení jen v případech, že je
buď d > rx -f r2 anebo d < r2 — rx; jinak má řešení.

Tím je řešení úlohy provedeno.

9. Riešte sústavu rovnic

(1)2x + py = 3p + 1,
5 — px

У = —2—’ (2)

kde x, у sú neznáme a p je dané reálne číslo.
Riešenie. Nech dvojica (л;, у) reálných čísel je rie-

šením danej sústavy. Dosaďme číslo у dané vzťahom (2)
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do rovnice (1). Dostaneme

2x +|-(5 — px) = 3p + 1
a z toho postupné

4x + 5p — p2x = 6p + 2,
x(4 — p2) = p + 2 ,

*(p H- 2)(2 — p) — P + 2 .

Rozoznávejme tieto možnosti:
(3)

Případ [1]. Nech je {p + 2){p — 2) = 0. To móže
nastat’ buďprep + 2 = 0, t. j. p = — 2, buď prep — 2 =
= Oj t. j. P = 2.

a) Nech je p = — 2. Potom daná sústava znie
2л: — 2j; = — 6 + 1 3

5 + 2л:

alebo po úpravě
20 — y) = — 5 ,

20 — JO = — 5 .

Sústava sa teda redukuje na rovnicu
5

* — у = — 2 5

t. j.

(4)У

Riešením sústavy v tomto případe je zrejme každá dvoji-
ca Oj У) reálných čísel, kde x je 1’ubovol’né číslo а у je
dané vzťahom (4).
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b) Nech p — 2. Potom daná sústava znie
2x + 2y = 7 ,

5 - 2x
y = ^r-

alebo po úpravě
2(x + y) = 7 ,

20 + зО = 5 .

Táto sústava je zrejme sporná, lebo raz sa má x + у
7 5

rovnat’ číslu-y, druhý raz číslu . Sústava nemá tedaZ z

riešenie.

Případ [2]. Nech (p + 2)(p — 2) ^ O, t. j. nech p
je rožne od čísel —2, 2. Znásobme obe strany vztahu
(3) číslom

1
. Dostaneme

(P+ 2)(P - 2)
1

(5)x =

2-p’
Dosaďme tento výsledok do rovnice (2). Dostaneme

postupné
p I 1 10 — 5p — p

2 ~~p\ = 2 ’ 2-P
1 /1Л , N 5 — 3p

2(2 - />)' (1° _ 6/>) “ 2^7’
t.j.

3p - 5
У=Т=2-

Dosaďme do lávej strany rovnice (1) výsledky (5),
(6). Dostaneme

i=_2_
2-P

(6)

p(3p - 5) —2 + 3p2 — 5p
p-2 p-2

15.9



Teda je
(p - 2)L = 3p2-5p-2.

Ak označíme P pravú stranu rovnice (1), je
(p - 2)P = {p- 2){Ър + 1) = Ър? - 5p - 2 .

Je teda L — P.
Dosaďme do právej strany rovnice (2) výsledok (5).

Podl’a predošlého dostaneme
P'=y.

Dvojica (x, y) daná vzťahmi (5), (6) je teda riešením
danej sústavy rovnic (1), (2).

Závěr. Daná sústava:
[1] pre p — 2 nemá riešenie.
[2] pre p = —2 má riešenie (x, у), kde x je 1’ubovol’né
reálne číslo а у je dané vzťahom

= x + ~.

[3] pre p rožne od čísel —2, 2 má jediné riešenie (x,y)3
3p-5

y=J=2-

У

1
kdex

2-P3

7. Úlohy II. kola kategorie C

1. Dva motocyklisté jeli týmž směrem po silnici ve-
doučí podél železniční trati. První jel rychlostí 30 km za
hodinu, druhý rychlostí 45 km za hodinu. Oba jeli
proti směru pohybu nákladního vlaku. První projel podél
celého nákladního vlaku za 16,5 vteřiny, druhý za 14
vteřin.

Z těchto údajů vypočtěte rychlost vlaku i jeho délku.
(Předpokládáme, že vlak i proti němu jedoucí motocy-
klisté jeli stálými rychlostmi.)
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Řešení. Označme x rychlost vlaku (v kilometrech za
hodinu) а у jeho délku (v km). V další úvaze užijeme
známého vzorce pro rovnoměrný pohyb s — ct (5 je
dráha, c rychlost, t doba).

První motocyklista míjí vlak rychlostí (x + 30) km/hod,
druhý motocyklista tak činí rychlostí (x + 45) km/hod.
Každý z motocyklistů urazí takto dráhu у, o níž platí
vztahy

16,5
у = O + 30) *

60.60 9

14
(1)У = (x + 45) *

60.60 '

Porovnáním pravých stran těchto rovnic dostaneme
(x + 30). 16,5

_ (x + 45). 14
60.60 60.60

Odtud postupně obdržíme
(x + 30). 16,5^= (x + 45). 14,

2,5x = 630 - 495,
2,5x = 135 ,

135 . 2
* = —5—>
x = 54 .

Nákladní vlak jede rychlostí 54 km za hodinu.
Dosaďme ze vztahu (2) do (1); dostaneme

14 11.14 11.7 77.5 385
60.60 ” 20.20 ~ 200 ~ 1000 ~ 1000 *

Délka vlaku je 385 m.

Zkouška. Prvnímu motocyklistovi se zdá, že míjí vlak
rychlostí 84 km/hod; dráhu 385 m urazí ve vteřinách za

(2)

У = 99 .

16111 95-0-02



dobu

385 385.60.60( : 84j . 60.60 =1000 1000.84

385.2.6 77.3 33

10.28 “2.7
=

2~ = 16,5 ‘

To odpovídá textu úlohy. Stejně se provede i zkouška
z údajů o druhém motocyklistovi.

Tím je úloha řešena.

2. Je dán lichoběžník ABCD, přičemž je AB || CD,
AB > CD.

Sestrojte přímku p\\ AB, která má s úsečkami AD,
AC, BD, BC pořadě společné body X, Y, Z, U v právě
napsaném pořadí, přičemž platí

XY = YZ = ZU.

Rozhodněte o řešitelnosti úlohy.
Řešeni (viz obr. 43). Rozbor. Nechť přímka p || AB

existuje a na ní příslušné body X, Y, Z, U, jak žádá
text úlohy. Potom je bod Y středem úsečky XZ. Označ-
me O společný bod polopřímky DY a úsečky AB.
Potom trojúhelníky DAO, DXY jsou podobné (podle
věty uu) a rovněž trojúhelníky DOB, DYZ. Z těchto
podobností pořadě plyne

AO DO OB DO
• XY~DY> YZ~ DY*

Porovnáním obou levých stran dostaneme
АО OB

.

XY~ YZ ;

(1)

(2)
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protože však je XY = YZ, plyne odtud
АО = OB

neboli bod O je středem úsečky AB. Podle toho prove-
deme konstrukci přímky p.

(3)

c__и
‘i

\ \

\
■■

X
3 —I

\
\
\ \

A В0

Obr. 43

Konstrukce. Sestrojme střed O úsečky AB a označme
Y společný bod úseček AC, DO. Bodem Y veďme přím-
ku p || AB a označme pořade X3 Z, U společné body
úseček AD, BD, BC. Potom je p hledanou přímkou.

Důkaz. O bodu O podle konstrukce platí (3). Trojúhel-
niky DAO, DXY a dále trojúhelníky DOB, DYZ jsou
podobné, neboť se shodují ve všech úhlech; platí tedy
vztahy (1), z nichž plyne (2). Protože zlomky ve vztahu
(2) mají stejné čitatele [viz (3)], mají i stejné jmenova-
tele, tj. platí XY = YZ .

Z podobností trojúhelníků AXY, ADC plyne
XY

DC

kde v, и jsou výšky těchto trojúhelníků příslušné vrcho-
lu A.

Z podobností trojúhelníků BZU, BDC plyne obdobně
ZU

v

(3)
и 5

v

(4)DC и
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Ze vztahů (3), (4) plyne
ZU = XY}

takže vzhledem ke (2) plyne
XY = YZ = ZU,

což jsme měli dokázat.
Diskuse. Protože body D, O leží v opačných poloro-

vinách vyťatých přímkou AC, bod Y existuje. Z konstruk-
ce plyne, že takový bod je jediný.

Tím je řešení úlohy provedeno.

3. Řešte rovnici

1 /? * = 2 H x .

р-ж 2 — *
Zkoušku proveďte dosazením do obou stran dané

rovnice.

Řešení. Jestliže číslo % je řešením rovnice (1), potom,
. umocníme-li obě strany rovnice (1), dostaneme rovnici

2 - x
= (2 + %)2

5 — x (2 — %)2 5

neboli postupně
(2 — %)3 = (5 — %)(2 + %)2,

8 — I2x + 6x2 — x3 = (5 — я)(4 + 4x -\- x2),
— x3 + 6x2 — 12% + 8 =

= 20 — 4% + 20% — 4%2 + 5%2 — %3,
5%2 - 28% - 12 == 0 . (2)

Diskriminant této rovnice je
D = 282 + 4.12.5 = 42.72 + 42.3.5 =

= 42(49 + 15) = 42.82;
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řešení rovnice (2) jsou:
28 + 32

10

Provedeme zkoušku dosazením do obou stran rovni-
се (1).

r 28 - 32-6; *2 - 10

4 2

5 ‘10

Případ [1]. Dosaďme x = 6 do pravé strany rovnice
(1). Dostaneme

2 + 6_ 8
2-6“ -4

Odtud plyne, že číslo x — 6 není řešením rovnice (1),
neboť levá strana rovnice (1) je odmocnina a tedy nezá-
porné číslo, kdežto dosazení do levé strany je číslo zá-
porné.

= -2.

2
Případ [2]. Dosaďme x — — do obou stran rov-

nice (1); dosazení označme L, P. Je

122+! VI г5
L =

3 527
5 + f 5

2 1
5 5 8___2

12 3

2 —

P -
2 12

2+5 T
2

Platí tedy L — P a číslo я — — у je řešením rovnice (1).
2

Závěr. Daná rovnice (1) má jediné řešení x = — у .
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4. Nech je daná kružnica k == (S,r) a jej tětiva AB;
dálej nech je dané kladné číslo t < AB.

Zostrojte tětivu XY — t kružnice k, takú, aby ju priam-
ka АВ rozpolbvala.

Zistite, kolko má úloha riešení a odóvodnite svoj výsle-
dok.

Riešenie. .Použijeme pomocnú vetu V: „Ak je O
střed tětivy XY <2r, kde r je velkost’ poloměru kružnice
so jstredom S, potom je 0^5 a platí SO J_ XY.“

Ďalej použijeme ešte vetu P (obr. 44): „Množinou
stredov O všetkých tětiv kružnice k = (S, r), ktoré majú
velkost’ t <2r, je kružnica m, sústredná s kružnicou
k.“ (Dokaž vyplývá napr. z Pythagorovej vety; z obr.
44 napr. vyplývá SO'2 — SC2 — OC2 = r2 — ~ t2,
takže 5О0 = konšt.) ^

Rozbor danej úlohy (obr. 44). Označme XY híadanú
tětivu a O jej střed. Zostrojme podlá vety P kružnicu
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m = (S, q), kde £ je vzdialenosť bodu 5 od jednej z te-
tív velkosti t kružnice k. Střed O musí ležať jednak
na priamke AB a ďalej na kružnici m. Z toho vyplývá
konštrukcia.

Konitrukcia (obr. 44). Opišme okolo bodu A kružnicu
/ s polomerom t a označme C jeden zo spoločných bodov
kružnic k, /. Střed O0 tětivy AC leží na pomocnej kruž-
nici m = (č>, SOq). Označme O, O' oba rožne spoločné
body kružnice m a priamky AB. Ďalej zostrojme v bo-
doch O, O' dotyčnice ku kružnici m a označme po radě
XY, X'Y' tětivy, ktoré na týchto dotyčniciach vytína
kružnica k. Potom XY — X'Y' = t sú právě všetky
tětivy, ktoré vyhovujú požiadavkám úlohy.

Dokaž konštrukcie vyplývá z predošlého a z oboch po-
mocných viet.

Diskusia. Dokážeme, že úloha má vždy právě dve rie-
šenia.

Známa je veta: „Nech XY < AB sú dve tětivy tej
istej kružnice a d, ď (v tomto poradí) nech sú vzdiale-
nosti bodu 5 od priamok XY, AB. Potom platí d > ď.“

V našom případe je t — XY < AB (podlá textu úlohy
a konštrukcie) a preto o číslach d = SO0, ď platí d > ď.
Preto je priamka АВ sečnicou kružnice m a existujú dva
rožne body O, O', spoločné priamke AB a kružnici m.
Preto existujú aj dve rožne tětivy XY, X'Y', ktoré sú
riešením úlohy.

Tým je riešenie ukončené.
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8. Úlohy I. kola kategorie D
1. Na chmelové brigádě soutěžily dvě třídy v česání

chmelu. Jedna třída, ve které bylo 39 žáků, pracovala
9 dní a natrhala 2282 věrtele. Druhá třída, která měla
jen 31 žáků, pracovala 8 dní a natrhala 1959 věrtelů;
přitom jeden ze žáků této třídy onemocněl, takže čtyři
dny nepracoval. Která třída zvítězila (se zřetelem к prů-
měrnému dennímu pracovnímu výkonu)?

Řešení. Vypočteme průměrný počet věrtelů, které
připadají na jednoho žáka a den v každé třídě.

а) V první třídě je denní průměr na jednoho žáka
2282

= 2282 : 351 |6,539.9 1760
5,

b) V druhé třídě je denní průměr na jednoho žáka
1959

- 1959 : 244 |8,031.4 + 30.4 70

Zvítězila druhá třída.

Podobná řešení vypracovali Zlata
Honzičková, 8. tř. 2. osš, Olomouc-
— Na hradě, a Petr Wolf, 8.c tř.
osš, Uherský Brod.

Jiné řešení. Označme a průměrný výkon jednoho
žáka první třídy za jeden den a b průměrný denní výkon
žáka druhé třídy; a, b jsou tedy počty věrtelů načesa-
ných za jeden den. Platí

2282 2282 1959 1959

39.9 351 ; ^a =
244 '31.8-4.1
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Společným násobkem čísel 351, 244 je číslo 351.244 =
= 85 644; první zlomek rozšíříme číslem 244, druhý
číslem 351. Dostaneme tak čísla

2282.244 556 808
a =

85 644 5315.244

1959.351 687 609
244.351 ” 85 644 '

b =

Z toho je vidět, že je a < b, takže průměrný denní
výkon žáka druhé třídy je větší. Zvítězila tedy druhá
třída.

Podle řešení Michala Kretschme-
ra, žáka 8.c tř. 87. osš, Praha 13-
- Spořilov

2. Pole tvaru obdížnika má rozměry AB = 810 m,
AD = 180 m. Toto pole třeba rozdeliť na štyri obdíž-
niky s obsahmi P15 P2, P3, P4 ako na obrázku 45. Přitom
má byť P4 — 2,03 ha, P4 = 3,19 ha.

Vypočítajte:
a) Obsahy P2, P3.
b) Obvody všetkých obdížnikov.
Riešenie. Aby sme úlohu rozriešili, musíme určiť

velkosti úsečiek AM, AK. Pomocou nich 1’ahko vypo-
čítáme rozměry všetkých obdížnikov P13 P2, P3, P4
(tieto písmeny značia zároveň obsahy týchto obdížnikov).

Obsah obdížnika AMND je Pj + P4J jeden jeho roz-
mer je AD — 180 m; druhý rozměr AM vypočítáme
tak, že obsah obdížnika delíme rozmerom AD. Velkosti
úsečiek uvádzame v metroch a obsahy v plošných me-
troch. Je teda Px = 20 300 m2, P4 = 31 900 m2.
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Výpočet.
Px + P4 = 20 300

31900
52 200

52 200: 180 = 5220: 18 = 290.
162

Je teda
(1)AM 290

a

(2)MB = AB - AM = 810 - 290 = 520 .

ND

Ie

i к \p—f.— L
R ii

A Я 810m

Obr. 45

Teraz vypočítáme velkost’ úsečky AK, t. j. jeden roz-
mer obdížnika Px. Jeho obsah je Px = 20 300, druhý roz-
mer je ЛМ = 290.

Výpočet.
20 300 : 290 = 2030 : 29 = 70

00

Je teda
(3)AK — 70,

takže
(4)KD = AD — AK = 180 - 70 = 110.

Výsledky (1) až (4) sú rozměry našich obdížnikov
Px až P4.

a) Je
P3 = MB ,KD .P2 = MB .AK,
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Výpočet.
P2 = 520.70 = 36 400,

P3 = 520.110
520
5200

P3 - 57200
Urobíme hrubú skúšku, či sme dobré počítali. Sčítáme

obsahy P15 P2, P3, P4. Tento súčet sa musí rovnať obsa-
hu P obdížnika ABCD.

Výpočet.
Pi 20 300

36 400
57 200
31 900

^3

145 800

P= AB.AD = 810.180
6480
810

145 800
Výsledky sú teda správné.

Odpoved. Je P2 — 3,64 ha, P3 — 5,72 ha.
b) Označme pls p2i p3) p4 (v tomto poradí) obvody

obdížnikov Pj, P2, P3, P4. Platí
/>! = 2(AM + ЛК),
7>3 = 2(MB + KD),

Výpočet.

p2 = 2{MB + ЛК),
p, = 2(AM + KD).

4M MPAÍP 520 520 AM
110 KD

290 290
AK AK 70 KZ)70 110

590 630360 400
1260 pA 800Pi I 720 1180P‘2, Рз
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Urobíme hrubú skúšku našich výsledkov. Eahkousú-
dime, že súčet px + p2 + Рз + P\ = 2p, kde p je ob-
vod obdížnika ABCD. Avšak p = 2(AB + AD) =
= 2(810 + 180) = 2.990 = 1980. A ďalej je px + p2 +
+ p3 + pA= 720 + 1180 + 1260 + 800 = 3960. Ďalej
je 2p = 1980.2 = 3960, čo súhlasí s predošlým vý-
sledkom.

Výpočty sme teda urobili správné.
Odpoved. Obvody sú px = 720 m, p2 = 1180 m, p3 =

= 1260 m, />4 = 800 m.
Pěkná řešení této úlohy podali
Jan Tejzr, 8.a tř. osš, Bojkovice
(okres Uherský Brod), a Ludmila
Boháčová, 8. b tř. osš, Olomouc
(třída Spojenců).

3. Je dán zlomek
a3 — 2a2 — a -f 2
a3 + 2a2 — a — 2

a) Rozhodněte, pro která čísla a ztrácí tento zlomek
význam. Potom daný zlomek zkraťte.

b) Rozhodněte, pro která čísla a se daný zlomek rovná
nule.

c) Odůvodněte, že pro čísla a větší než 2 je daný zlomek
kladný.

(1)z =

Řešení, a) Upravme daný zlomek z tak, že jeho či-
tatele i jmenovatele rozložíme v činitele; dostaneme
postupně

a2(a — 2) — (a — 2)
_

a2(a + 2) - (a + 2) ~
a3 — 2a2 — a + 2

z —

a3 + 2a2 — a — 2

(a - 2) (a2 - 1)
“

(a + 2) (a2 - 1) ’
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^ (a - 2)0 - l)(a + 1)
(а + 2){a — 1)(<2 + 1)

takže
(2)

Zlomek ztrácí tedy význam, jestliže některý ze tří či-
nitelů ve jmenovateli posledního zlomku je roven nule.
Jsou tu tři možnosti:

[1] Je a + 2 = O neboli a — — 2.
[2] Je a + 1 = O neboli a — — 1.
[3] Je a — 1 = O neboli a = 1.
V každém z těchto tří případů je jmenovatel zlomku

(1) skutečně roven nule, jak se snadno přesvědčíme do-
sazením, a zlomek ztrácí význam.

Pokud je číslo a různé od čísel 1 a —1 (a ovšem i od
čísla —2), je součin (a — l)(a -j- 1) ^Oa můžeme čita-
tele i jmenovatele zlomku (2) dělit tímto číslem; po zkrá-
cení dostaneme

a — 2
cl 2 (3)Z —

Pro všechna čísla a různá od čísel 1, —1, —2 má zlomek
(1) význam a platí

a — 2a3 — 2a2 — a + 2
_

a3 + 2a2 — a —2 a + 2 *
b) Zlomek je roven nule, jestliže je jeho čitatel roven

nule. V našem případě použijeme upraveného zlomku z
ze vztahu (3). Musí tedy být číslo a — 2 rovno nule, tj.
a — 2 = 0; odtud dostaneme a — 2.

Pro číslo a — 2 je skutečně čitatel daného zlomku (1)
roven nule, jak se snadno přesvědčíme dosazením.

Odpověd. Daný zlomek (1) je roven nule pro a — 2.
c) Nechť je a > 2. Máme dokázat, že v tomto případě

je zlomek z kladné číslo. To dokážeme pomocí zlomku
ve tvaru (3).
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Tu je a — 2 číslo kladné. Rovněž číslo a + 2 je klad-
né. Je tedy čitatel i jmenovatel zlomku (3) číslo kladné
a tím i zlomek z.

Tím je úloha rozřešena.
Takto zevrubné řešení této úlohy
podal Michal Kretschmer, 8.c
tř. 87. jsš, Praha—Spořilov.

4. Kolko metrov drótu s prierezom 1 mm2 sa vyrobí
z jednej tuny médi, ak 1 dm3 médi váži 8,93 kg.

(Objem valca vypočítáme tak, že obsah podstavy zná-
sobíme výškou valca.)

Riešenie. Všetky výpočty budeme robiť tak, že díž-
kové údaje budú v decimetroch, obsahy v dm2 a objemy
v dm3.

Riešenie urobíme tak, že určíme objem 1 tuny médi
a potom sa budeme pýtať na velkost’ výšky valca, ktorého
podstava má obsah 1 mm2

1
dm2.

10 000

Pretože váhu telesa vypočítáme tak, že znásobíme špe-
cifickú váhu objemom, objem 1 tuny = 1000 kg médi
rovná sa číslu 1000 : 8,93.

Výpočet.
1000:8,93 = 100000:893 |111,9 = 112

1070
1770
8770

733

Objem 1 tuny médi je teda asi 112 dm3.
Z objemu a obsahu podstavy valca vypočítáme jeho

výšku tak, že velkost’ objemu delíme velkosťou podstavy.
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Výpočet.
1

112.10 000 = 1 120000.112:
10 000

Ale 1 120 000 dm = 112 km.

Namiesto skúšky správnosti urobíme odhad výsled-
ku. Pýtajme sa, kolko asi váži měděný drót dížky 112 km,
ak je jeho prierez 1 mm2 a ak váži 1 dm3 médi asi 8,93 kg.

Objem V rotačného valca, ktorý nám představuje drót,
je (v dm3)

1
V = . 1 120 000 = 112 .

10000

Pretože 1 dm3 médi váži 8,93 kg, 112 dm3 médi váži
8,93 kg. 112.

Výpočet.
8,93.1 12

17 86
89 3

893

1000,16 = 1000

Ale 1000 kg je 1 tuna; teda je náš výpočet přibližné
správný.

Odpoved. Z jednej tuny médi sa vyrobí asi 112 km drótu
s priemerom 1 mm2.

Podobné úlohu riešili Jiří Hudský,
8.b tr. jsš, Uherský Brod, a Věra
Broncová, 8.a tr. jsš, Olomouc-
- Hejčin.
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5. Plechová podložka má tvar čtverce o straně 8 dm.
Při každém vrcholu tohoto čtverce máme odříznout stej-
nou část tvaru pravoúhlého rovnoramenného trojúhelní-
ka tak, aby se hmota podložky zmenšila

a) o 18%;
b) o 72%.
Vypočtěte velikost odvěsen odříznutých trojúhelní-

ků. Dále rozhodněte, zda je možné obojí odříznutí pro-
vést.

Řešení. Čtvercová podložka má čtvercovou stěnu
o straně 8 dm; tato stěna má obsah 64 dm2. Rovnoramen-
ný pravoúhlý trojúhelník, který odřízneme, má odvěsnu
velikosti x dm a jeho obsah je \-x2. Čtyři tyto trojúhel-

1 2
niky mají obsah 4 . x2 = 2x2. V našem případě musí
být x 4; jinak by se odříznutí nedalo provést.

Protože tloušťka podložky i měrná hmota jejího ma-
teriálu je všude stejná, stačí, když místo hmoty uvažujeme
jen o obsahu čtvercové stěny podložky.

a) 18% ze 64 dm2 je 64.0,18; toto číslo má být
rovno 2x2, tj. má platit <

2x2 = 64.0,18
neboli

x2 = 64.0,09 .

Je tedy
x = 8.0,3 ,

tj.
x = 2,4 .

Protože je 2,4 < 4, lze odříznutí provést (obr. 46).
Zkouškou bychom se přesvědčili o správnosti výpočtu.

Odpověd. Abychom hmotu podložky zmenšili o 18 %3
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je nutno v každém rohu podložky odříznout pravoúhlý
rovnoramenný trojúhelník s odvěsnou 2,4 dm.

b) 72% ze 64 dm2 je 64.0,72. Má platit
2x2 = 64.0,72

neboli
x2 = 64.0,36 .

Je tedy
x — 8.0,6 ,

tj.
x — 4,8 .

8 dm8 dm
ř*

Г
ГТ

\

\

v
/ \I

co
I
co V /

/\ /

Obr. 46 Obr. 48

Protože je 4,8 > 4, nelze odříznutí provést (obr. 47).
Odpověd. Požadavky úlohy nelze tedy v případě b)

splnit a úloha je neřešitelná.
Podle řešení Jaroslava Vilímka,
žáka 8.a tř. 85. oss, Praha 13,
a Michala Kretschmera, žáka 8. tř.
87. osŠ, Praha—Spořilov.

6. Vlnitý plech (viz obrázek 48ab) má za průřez vl-
novku, která se skládá ze shodných polokružnic o polo-
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měru r. Kolik běžných metrů rovného plechu téže šířky,
jako má vlnitý plech (v obrázku je šířka označena pís-
mem b), je třeba к vyrobení 10 běžných metrů vlnitého
plechu, jestliže je

a) r = 5 cm; b) r = 2 cm .

Porovnejte výsledky obou výpočtů v případech a) a b).

rovný plech-O

b)

xm

Obr. 48

Řešení (obr. 48ab). Je 10 m = 100 cm . 10 — 1000 cm;
další délky počítáme v centimetrech.

a) Průměr polokružnice, která je tu polovinou vlnov-
ky (půlvlna) je 10. Bude tolik půlvln, kolik je 1000 : 10 =
= 100; je tedy 50 vln, z nichž každá má na svém obvodu
délku jako je obvod kružnice o poloměru r = 5 neboli
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2 тс. 5. Délka obvodů těchto 50 vln je
2 7Г. 5 . 50 = 500л: =

22
500. у

11000
-1571 (cm).7

3
což je asi 15-r m.4

b) Průměr polokružnice, která tvoří půlvlnu je 4.
Půlvln bude 1000 : 4 = 250 neboli 125 celých vln. Jed-
na vlna má na obvodu délku jako obvod kružnice o po-
loměru 2, tj. 2tt . 2. Délka obvodů 125 vln je

2л:. 2 . 125 = 500тг,
což je totéž číslo jako v případě a).

Výsledek. К vyrobení 10 běžných metrů vlnitého plechu
3

je třeba asi 15-^- m rovného plechu.
Poznámka. Z obou výsledků jsme vedeni к domněnce,

že asi nezáleží na tom, jak velké jsou poloměry polokruž-
nice, z nichž se vlny skládají. Správnost této domněnky
si ověříme výpočtem. Nechť poloměr polokružnice půl-
vlny je r a nechť na 10 běžných metrů vlnitého plechu
připadne n vln, kde n je přirozené číslo.

Délka jedné vlny je 2izr, délka n vln je 2nrn. Tu platí
4r . n — 10, takže je

10
(1)n = -г- .

4r

Délka obvodu n vln je p — 2nr . n\ dosadíme-li sem za~_n
ze vztahu (1), dostaneme

10
p — 2nr . —4r

4*
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neboli
3

p = 5л == 15— (metru) .

Toto číslo skutečně nezávisí na poloměru r; tím jsme
správnost domněnky dokázali.

Podle řešení Ivana Novotného,
žáka 8.a tř. jss, Kadaň, a Jana
Novotného, žáka 8.a tř. 5. osš,
Olomouc - Nové Hodolany.

7. Zostrojte rovnoramenný lichoběžník ABCD (v kto-
rom AB, CD sú základné), ak je dané rameno BC =
= 52 mm, súčet s = 128 mm jeho základní a uhol
<£ADC = 112^° .

Po urobení konštrukcie dokážte, že úsečky AD, BC
nemajú žiadny spoločný bod.

Riešenie (obr. 49). Rozbor. Predpokladajme, že sme
zostrojili lichoběžník ABCD, ktorý má vlastnosti,
požadované v úlohe. V ňom je AD = BC. Označme MN
jeho strednú priečku ako v obr. 49. Na polpriamke
AB zostrojme úsečku AE — AB -f CD — s, t. j. BE —
= CD. Potom trojuholník AED má úsečku MN tiež
za strednú priečku. Ďalej si připomeňme, že rovnoramen-
ný lichoběžník má os p súmernosti. Priamka p je osou
úsečiek AB, CD a MN. Podlá právě připomenutých vlast-
ností lichoběžníka urobíme konstrukciu.

1 0
Konštrukcia. Zostrojme uhol -QXDY = 112^ •

Na polpriamke DX zostrojme úsečku DA = 52 mm.
Potom zostrojme střed M tejto úsečky a bodmi A, M
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veďme po řade priamky и || DY, v || DY. Na priamke
и v polrovine ADY zostrojme úsečku AE =128 mm.
Priamka v přetne priamku DE v bode N.

Zostrojme ďalej os p úsečky MN a v súmernosti podlá
priamky p zostrojme body В, C súmerne združené s bod-
mi (v tomto poradí) A, D. Potom je ABCD hladaný
lichoběžník.

P
iD

rsriĚFX -Я-Щ- t.
■

К
A В E:

/

tx
Obr. 49

Dokaž. Je známe, že středná priečka lichoběžníka so

základňami a = AB, c — CD má velkost’ (a-f c).
Podlá konštrukcie je ABCD rovnoramenný lichobež-

nik, ako vyplývá zo súmernosti podia osi p. V ňom je
podlá konštrukcie AD = BC = 52 mm, uhol <£ADC =

1 °
= 112-2 .V súmernosti s osou p obrazom středu M
úsečky AD je bod N, lebo p je os úsečky MN. Preto musí
obraz N bodu M byť stredom úsečky BC, ktorá je obra-
zom úsečky AD v tejto súmernosti. Je teda MN střednou
priečkou lichoběžníka ABCD a platí MN = (a + c).
Avšak podlá konštrukcie je MN střednou priečkou

181



trojuholníka AED a preto je AE = 2.MN, čiže AE —
= a + c. Avšak podl’a konštrukcie bodu E je AE = s
a preto je a + c = s, t. j. súčet základní zostrojeného li-
chobežníka sa rovná číslu $, ako vyžaduje text úlohy.

Správnost’ predchádzajúceho dokážu závisí od toho,
či skutočne oba rožne body A, D ležia vnútri tej istej
polroviny vyťatej priamkou p. Dokážeme, že v našom
případe to skutočne tak je.

Označme po radě a, <5, cp uhly trojuholníka MDN.
Platí a - 180° - <£MDY = 180° - 112-i° = 67^°
(uhly a, <pMDY sú uhly prílahlé pri rovnoběžkách
MN, DY); je teda

1°
(1)* = 67^ •

Ďalej je podlá konštrukcie MD — 26, MN = 64, teda
MD < MN a preto o uhloch <p, <5 trojuholníka MDN

1°
platí (p < <5; přitom je <p -f- <5 = 180° — a = 112^
(súčet uhlov a, cp3 d je 180°). Z toho vyplývá, že uhol

1°
<p je nevyhnutné menší než polovica zo 112^ 5 číže
je

1°
(2)f < 56 a ■

Porovnáním výsledkov (1), (2) dostáváme <p < a;
preto o stranách protilehlých к týmto uhlom v trojuhol-
niku MDN platí

MD <ND.

Zostrojme uhol <$.NMZ = <p (v obrázku je označený
9/) v polrovine MND. Pretože je cp < a, je aj <p' < a
a polpriamka MZ leží v uhle <£DMN; preto má s úseč-
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kou ND spoločný bod P, ktorý padne dovnútra tejto
úsečky. Avšak bod P je bodom osi súmernosti p rovno-
ramenného trojuholníka PMN. Preto aj priamka p od-
del’uje body N, D, takže bod D padne nevyhnutné do
polroviny pM. Z toho 1’ahko usúdime, že celá polpriam-
ka DM a s ňou aj bod A leží vnútri polroviny pM (je
totiž <£ YDM > 90°). Tým je dokaž ukončený a tým
aj riešenie úlohy.

Podrobné riešenia podali Jitka
Kolářová, 8.b tr. jsš, Šternberk,
a Jana Pospíšilová, 8.b tr. jsš
Komenium, Olomouc.

8. Zvolte rovnoběžník ABCD a označte S jeho střed.
Veďte přímku p || AB tak, aby s úsečkami AD, AS,

BS, BC měla pořadě společné body M, K, L, N a aby
platilo MK = KL — LN.

Odůvodněte správnost provedené konstrukce.
Řešení (obr. 50). Rozbor. Mysleme si, že jsme našli

přímku p || AB, která splňuje požadavky vyslovené v tex-
tu úlohy, takže platí

MK = KL = LN = x . (1)
Sestrojme rovnoběžníky AK2KM, K2KLK4, K4LNB,

kde K2, K± jsou body úsečky AB; tyto rovnoběžníky
dostaneme tak, že vedeme body K, L přímky rovnoběžné
s přímkou AD. Platí pak

AK2 = MK, K2KA = KL, KAB = LN,
takže platí

AK2 - K2Ki = K,B = * .

Body K2, K4 dělí tedy úsečku AB na tři shodné úsečky.
Podle toho provedeme konstrukci.
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Konstrukce (obr. 50). Sestrojíme polopřímku AX,
která neleží v přímce AB a na ní zvolíme bod Ax =á A;
pak sestrojíme úsečky AA2 — 2 . AAV AA3 = 3 . AAl3
AA4 = 4 . AA13 AA5 = 5 . AA13 AA6 = 6 . AAX. Dále
veďme body A13 A23 . . ., A5 rovnoběžky к přímce A6B;
jejich průsečíky s přímkou AB označme pořadě K13
K23 . . ., Къ. Podle známé konstrukce platí

AK, = KtK2 = K2K3 =... = K5B= y.

’CD,
X

V
X

NП

/ / ; /

—/>'

^3 /

Obr. 50

Bodem /č2 veďme přímku £ || a označme /č spo-
léčný bod přímek AS, k’, bodem veďme přímku p /2В
a označme M, L, iV její společné body s přímkami /ID,
BS, BC. Potom je p hledaná přímka.

Důkaz (viz obr. 50). Mysleme si, že máme úsečku AS
rozdělit na tři stejné díly; tu podle známé konstrukce
vedeme body K}3 K2 rovnoběžky s přímkou SK3 a ob-
držíme body К', K, takže je AK' = K'K = KŠ.

Stejným způsobem sestrojíme body L', L, které dělí
úsečku BS na tři stejné díly, takže platí BL' = L'L =
= LS. Tuto druhou konstrukci bychom však mohli
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provést též tak, že bychom body К', К sestrojili rovno-
běžky s přímkou AB, čímž bychom také dospěli к bodům
L', L. Odtud plyne, že je nutně KL || AB, takže K2K4LK
je rovnoběžník a tedy

(3)KL = K2K4 = 2у .

Také AKoKM, K4BNL jsou rovnoběžníky, přičemž je
AK2 = 2y = K4B; proto je též MK = 2y, LN — 2у
a vzhledem ke (3) je

MK = LN= KL.
Konstrukce je tedy správná. Tím je řešení úlohy prove-
děno.

Zevrubné řešení podal Antonín
Lukš, 8.d tř. jsš Komenium,
Olomouc, a Dušan Kovařík, 8.c
tř. osš, Luhačovice.

9. Je dán výraz
V = x +

1 2x

1 + px'1 — px

Do tohoto výrazu dosaďte za p číslo
*+ 1

. Dále
x{x — 1)

rozhodněte, pro která čísla x ztrácí daný výraz V smysl,
a pak ho zjednodušte.

Potom určete číslo x tak, aby se daný výraz V rovnal
1

číslu ; proveďte zkoušku svého výpočtu.

Řešení. Nejprve vypočteme oba jmenovatele zlomků
výrazu V po dosazení za p. Platí

1 — px — 1 —
x(x + 1)
x(x — 1)5
x(x + 1)
x(x — 1) '

(1)

(2)1 px — 1 +
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Zlomky na pravých stranách rovností (1), (2) ztrácejí
význam v případě, že je x(x — 1) = 0 neboli je-li x = 0
nebo x — 1 = 0, tj. pro x — 0 anebo pro x = 1.

V dalším předpokládáme, že je x Ф 0, x ф 1. Potom
zlomky v (1), (2) můžeme zkrátit číslem x\ dostaneme

x + 1
* -1 ’

1 — px — 1 —

X + 1
1 + px = 1 +

x — l

neboli postupně
1 — px —

x — 1 — {x + 1) - 2
(П

x - 1 5л: — 1

x — 1 -)- (x -f- 1) 2x
x — 1 (2')1 + px =

x — 1

Nyní vypočteme oba zlomky v daném výrazu V; platí
postupně

- 2 11 V1’= 1 :
1 — px x — 1 - 2

— 1 2x(x 1)2 jc2x
= 2x.~= 2x :

x- 1 2x 2x1 + px
(2")= X — 1,

neboť lze krátit číslem 2x ф 0.
Výsledky (1"), (2") pak dosadíme do daného výrazu V;

obdržíme postupně
2x — (jc — 1) — 2(jc — 1)x — 1

O - i) =V = x-
22

3 — x2x — лг —|— 1 —2x -j- 2
22
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neboli 3 — x

(3)V =
2

Tím jsme daný výraz V zjednodušili; výsledek (3)
platí pro všechna čísla x různá od čísel 0, 1.

Nyní máme najít takové číslo x, aby nám po dosazení
do výrazu V vyšlo V = — , tj. aby podle výsledku (3)
platilo ^

13 — x

2 '2

Jsou-li si tyto zlomky rovny, musí být
3 - * = 1

neboli
x = 2.

Zkouška. Má-li úloha řešení, pak je to možné jedině
pro x = 2. V tomto případě je

2+1
‘ p 2 . (2 - 1) 2 *

3
Do daného výrazu V nyní dosaďme x = 2, p = y;
dostaneme postupně

F = 2 +

3

1 2.2
3 3

2-2 1 + 2-2
1 4

= 2 +
1 - 3 1 + 3

1 1
1= 2 —

2 52

1
tj. platí F = -y, jak požadovala daná úloha.
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1
Odpověd. Výraz V je roven číslu — jedině, když je

x = 2. 2
Takto zevrubná řešení podali žáci:
Jitka Kolářová, 8.b tř. jsš, Stern-
berk, a Michal Mareček, 8.a tř.
jsš, Olomouc - Na hradě 5.

9. Úlohy II. kola kategorie D

1. Jsou dány dva výrazy
1 1

P — 3 p + 3 p + 3и =

p 311

P — 3 p + 3
11

p2—9 p2+ 9 p2 + 9
J*~3

V =
11

p2-9^p2+9
kde p je dané číslo.

a) Zjednodušte tyto výrazy a přesvědčte se o tom, že
platí U = V.

b) Rozhodněte, pro která čísla p ztrácejí dané výrazy
význam.

Řešení, a) Upravíme výrazy U, V. Platí
P + 3 — (p — 3)
(p - 3)(p + 3)

1 1

p — 3 /> + 3 p + 3ř/ =
1 1 p + 3 + j> - 3p

p — 3 p + 3 (P - 3)(p + 3)
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6

p + 3 p2 — 9 p + 3
_ 6(p2 — 9) p + 3

2p p 2p(j)2 — 9) p
p2 - 9

_ 3 p+3

p

p pp

11

p2 - 9 p2 + 9 p2 + 9V =

p21 1

p2 — 9 p2 + 9
P2 + 9 - (p2 - 9)

(p2 - 9)(p2 + 9) p2 + 9
p2 + 9 + f)2 - 9 p2
(p2 - 9)(p2 + 9)

18

p4 _ 81 p2 + 9
2p2

p4 - 81
18(p4 - 81) p2 + 9

“

2p2(j>* — 81)
9 p2 -f 9 p2

~

p2

P2

p2

- 1 .

Zjistili jsme, že výrazy £/, V jsou rovny — 1, a proto
je U= V.

b) Výraz U nebo V ztrácí význam, když je jmenovatel
některého zlomku, který se v něm vyskytuje, roven nule.
Pro výraz U jsou to tyto případy:
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/> — 3 = 0 neboli p = 3;
/> + 3 = 0 neboli p = — 3;
P = 0;
/>2 — 9 = 0 neboli (/> — 3)(/> + 3) = 0 a tedy

buď /> = 3 nebo /> = — 3.
Pro výraz F jsou to tyto případy:
/>2 — 9 = 0 neboli (viz předchozí případ) buď /> = 3

nebo /> = — 3;
p2 — 0 neboli p = 0,
/>4 — 81 = 0 neboli (/> — 3)(/> + 3)(/>2 + 9) = 0 a tedy

buď /> = 3 nebo p — — 3.
Výraz />2 + 9 je součet nezáporného čísla a čísla klad-

ného; proto je vždy kladný.
Závěr. Výrazy £7, F ztrácejí tedy význam proto tato

čísla:
/> = — 3,/> = 0, /> = 3;

pro ostatní čísla p mají tyto výrazy význam a platí
£7 = F = — 1.

Podle řešení Michala Kretschme-
ra, žáka 8. tř. 87. osš, Praha 13 -

Spořilov. Podobné řešení podala
Věra Broncová, 8.a tř. jsš, Olo-
mouč - Hejčin.

2. Narýsujte dvě soustředné kružnice kly k2 o středu
5 a o poloměrech rx = 8 cm, r2 = 1 ~~ cm. Na menší
kružnici k2 zvolte bod Tav něm sestrojte tečnu t této
kružnice.

Sestrojte všechny kružnice, které se dotýkají zároveň
obou daných kružnic kly k2 i přímky t. Vyšetřte přesně
dotykové body a popište postup konstrukce.
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Řešeni. Užijeme pomocné věty P: Společný doty-
kovy bod dvou dotýkajících se kružnic o středech S13
S2 leží na přímce SXS2, jejich středné.

Rozbor (obr. 51). Velikosti úseček budeme udávat
v milimetrech. Přímku ST označme p; stojí kolmo
к přímce taje osou souměrnosti kružnic k13 k2 i přímky t.
Označme PQ průměr kružnice kl3 který leží v přímce p3
přičemž Q leží v polorovině tS.

Z názoru je patrné, že lze sestrojit čtyři kružnice
*1 = (*i, {?)} — (X2, *3 = №, q)} %4 — (-^4> í?)>
které vyhovují požadavkům úlohy (viz obr. 51). Všechny
se musí dotýkat kružnice kx uvnitř, neboť se dotýkají
kružnice k23 která leží celá uvnitř kx. Kružnice x1} x23 *3
se dotýkají kružnice k2 vně, kdežto kružnice x4 má s k2
vnitřní dotyk. Podle toho budeme nejprve hledat kruž-
nice x13 x23 x3.

Případ [1]. Kružnice xx o středu Xx na obr. 51 je
příkladem kružnice, která se dotýká kx uvnitř, kdežto
kružnice k2 vně. Dotykový bod Yx kružnic k1} % musí
ležet na přímce SX13 dotykový bod Zx kružnic k23 xx
musí také ležet na přímce SXx (viz větu P); proto veli-
kost úsečky YXZX je

2o = YXZX = 80 - 15 = 65
a udává velikost průměru kružnice xx.

Vzdálenost

r = SX, - SZ1 + Z, Z, = 15 + Ц = 95
Leží tedy střed každé kružnice, která se dotýká kružnice

kx uvnitř a k2 vně, na kružnici x

Protože se kružnice xx dotýká přímky ř, má bod Xx
od přímky t vzdálenost o. Každý bod, který má od přím-

2 *

- (s> sx>=4) ■
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ky t vzdálenost e, leží na jedné z přímek tx || ř, t2 IIt
(kde t2 leží v polorovině tS, tx v polorovině opačné),
z nichž každá má od přímky t vzdálenost q. Odtud kon-
strukce:

Sestrojíme střed Xx úsečky PT, takže je
1 1 65

ť? = TXx = -TP = ~{80- 15) = у ;
dále sestrojíme kružnici x = (S, r = SXx), kde

(i)

95
r = —

2 '

Pak na polopřímce TS sestrojíme úsečku
65

(2)TT = Q = 2̂ 3

body X19 T' veďme pořadě přímky tx [| ř, ř2 || t (viz
obr. 51).

Čáry x, tx mají společný jediný bod Xx, což plyne
z konstrukce; příslušná kružnice xx = (Xx, q = r^).
Dotykové body kružnice xx s ^ 13 k2) t jsou pořadě bo-
dy Yx = Py Zx = T, T.

Čáry x, ř2 mají společné dva různé body X2*X33 jak
dokážeme v diskusi. Příslušné kružnice jsou x2 = (.X2i
q = TXx), д:3 = (X3> q = TXx). Dotykové body kruž-
nice x2 s kXi k2) t pořadě jsou Y2) Z2, T2\ první dva leží
na přímce SX23 bod T2 na kolmici vedené bodem X2
к přímce t. Dotykové body kružnice x3 dostaneme
obdobně anebo sestrojíme obrazy bodů X2) Z2, T2 v sou-
měrnosti o ose p.

Důkaz konstrukce provádět nebudeme, neboť je
celkem obsažen v předchozím.

Diskuse. Dokážeme, že t2 je sečnou kružnice x: Je
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65
TS = 15, TT' — —, a proto 5* leží uvnitř úsečky 7T';
proto je vzdálenost bodu S od přímky t2 rovna ST =

65 35
= TT - ST = у - 15 = Ц-.

^ kružnice x je větší než ST', mají čáry x, ř2 dva
různé společné body X2, X3. Tím je důkaz proveden.
Dospějeme tedy к dvěma kružnicím x2, x3 vyhovujícím
úloze.

Protože poloměr

r =

Případ [2]. Kružnice лг4 o středu X4 na obr. 51 je
příkladem kružnice, která má s oběma kružnicemi kXi
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k2 vnitřní dotyk. Dotykový bod Y4 kružnic k19 x4 leží
na přímce SX4; dotykový bod Z4 kružnic k2, x4 leží
rovněž na přímce SX4 (viz větu P); proto je úsečka
Y4Z4 = 80 + 15 = 95 průměrem kružnice x4. Je tedy

95
Q' = Y4X4 = 2 a

95 65
r' = SX4 = rx - Y4X4 = 80 - ^

Leží tedy střed každé kružnice, která má s kružnicemi
k4i ko vnitřní dotyk na kružnici x'

2 *

- 5X4
95

poloměr takové kružnice je q' = X4Y4 = — .

Protože se kružnice x4 dotýká přímky ř, leží bod X4
na jedné z přímek ťx || t, ť2 || t (ť2 leží v polorovině
tS, t[ v polorovině opačné), z nichž každá má od t vzdá-
lenost q’. Odtud konstrukce.

Konstrukce (obr. 51). Sestrojme střed X4 úsečky TQ;
je

95
Q' = x*Q = f-

Dále sestrojme kružnici x' = (S’, r'), kde
r' = SJíT4=^.

Konečně sestrojíme obě přímky t[ || ř, ť2 || t (kde ť2
leží v polorovině tS, kdežto t[ v polorovině opačné),
které mají od přímky t vzdálenost q' = X4Q.

Z přímek ť4, ť2 jen přímka ť2 má s kružnicí я' společný
bod X4‘} je tečnou kružnice x' a dotykový bod X4 je stře-
dem hledané kružnice x4 o poloměru q\ Kružnice x4

(3)
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se dotýká kružnic k1} k2 pořadě v bodech У4 = Q,
Г = Z4 a přímky ř rovněž v bodě T. Tím jsou všechna
řešení zjištěna.

Důkaz konstrukce vyplývá z předchozího.
Diskuse. Kružnice x' leží v polorovině tXS} kdežto

přímka ťx leží celá uvnitř poloroviny opačné; proto ne-
mají žádný společný bod. Přímka ť2 JL SX4 prochází
bodem Xi3 kterým podle (3) prochází i kružnice x\
a proto se čáry x\ ť2 dotýkají; čáry ť23 x' mají tedy spo-
léčný pouze bod X4. Je tedy л;4 jediná kružnice, která
odpovídá případu [2].

Závěr. Existují čtyři kružnice, které splňují požadavky
úlohy.

Po grafické stránce pěkné řešení
podala Věra Broncová, 8.a tř. jsš,
Olomouc—Hejčin.

3. Dvaja priatelia z tej istej obce sa majú dostaviť
do nedalekého města. Prvý ide peši a cesta mu obvykle
trvá jednu hodinu. Druhý ide na bicykli a cesta mu vždy
trvá 20 minút.

Za akú dobu dohoní bicyklista chodců, ktorý vyšiel
před ním o Štvrť hodiny skór?

Riešenie. Vzdialenosť do města označme d (km).
Rýchlosť chodců je teda ^ (km/min), rýchlosť bicy-
klistu^r (km/min). Označme я hladanú dobu (v mi-

d
nutách). Za štvrť hodiny přejde chodec km, za x
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dx
minút přejde (km). Bicyklista za я minut přejde

^ (km). Platí
dx dx d_
20 “ 60 4 *

Pretože je d ф 0, vyplývá z toho ^ ^ + -i- a ďalej
Зх = л: + 15 ,

2x = 15,
Л

x = 72-
Odpoved. Bicyklista dohoní chodca za 7^- minút,

ak snadno zistíme skúškou.

V • V

cize

Podlá riešenia Olgy Kratové, 8.a
tr. 2. jsš, Olomouc - St. Hodo-
lany. Graficky túto úlohu riešil
Michael Drobný,\8. tr. 2. osš,
Hodonín.

Jiné řešeni. Můžeme předpokládat, že vzdálenost
obou míst je rovna číslu 1.

Rychlost chodce za 1 hodinu je 1 jednotka, rychlost
cyklisty je třikrát větší, tedy 3 jednotky. Chodec ujde
za — hodiny -r jednotky. Jakmile vyjede cyklista, vy-

padá vzájemná situace stejně, jakoby chodec stál a cy-
klista se к němu blížil rychlostí, která je rovna rozdílu
rychlosti cyklisty a rychlosti chodce, tj. 2 jednotky za ho-
dinu. Protože chodec ve chvíli, kdy cyklista vyjíždí,
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1
je od něho vzdálen -r jednotky, máme vypočítat, za4 1
jakou dobu ujede cyklista-^-jednotky, jestliže jede rych-
lostí 2 jednotky; tu musíme dráhu dělit rychlostí, tj.

!•? = ! I = i
4 4*2 8 5

tedy za i hodiny neboli za 7-^- minuty.8 2

1 13
Cyklista ujede za hodiny 3 ■ g- = -g- jednotky, cho-

dec za -7- + 4" neboli za-^- hodiny ujde 1 • -§• = ~ jed-4 8 o 00

notky, což navzájem souhlasí.

Odpověd. Cyklista dohoní chodce za 7y minuty.
Podle řešení Ivana Šverdy, 8. tř.
osš, Nové Město pod Smrkem.

4. Park tvaru obdížnika ABCD má rozměry АВ —
= 240 m, AD = 232 m. Cez park vedú dve rovnako ši-
roké navzájom kolmé hlavné cesty, ako je naznačené
na obrázku 52.

Vypočítajte obsah oboch ciest dohromady a zistite,
kol’ko percent (s presnosťou na desatiny) z celého parku
připadá na obe cesty dohromady.

Riešenie. (Velkost’ úsečiek budeme udávat’ v metroch
a obsahy v m2.) Použijeme označenie zavedené v obr.
52. Celý útvar je súmerný podlá osí p J_ AB, q J_ BC,
vedených stredom S obdížnika ABCD. Preto ležia
body M, P na priamke p a body N3 O na priamke q.
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Zo súmernosti podlá osi q vyplývá, že platí NB — NC
a v pravouhlom trojuholníku BCN (<£iV = 90°) sú
uhly <£Б, <£C zhodné a každý sa rovná 45°. Preto je
trojuholník CBXB, vktorom je <p.B — 90°, tiež rovno-
ramenný (lebo <jcC — ^:BX — 45°); preto je BB1 =
= BC = 232. Je teda ABX = AB - BBX 8.

D

vj/_ js_\(v
' \ Г /

í ' ’

se v 'Qp‘

"9A

Štvoruholník ABXCDX je teda rovnoběžník so stranou
ABl = 8 a výškou BC = 232. Jeho obsah je 232.8 =
= 1856. Obe cesty dohromady majú teda obsah

x = 1856.2 — у ,

kde у je obsah štvoruholníka MNPQ. Tento štvoruhol-
nik má všetky uhly pravé a strany zhodné, lebo zo sú-
mernosti podlá priamky p vyplývá MQ — MN, PN =
= PQ a zo súmernosti podlá priamky q vyplývá PQ —
= MQ, PN = MN, čiže MN = PN = PQ = MQ.
Je teda MNPQ štvorec. Jeho obsah dostaneme tak, že

(1)
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obsah z trojuholníka MQS znásobíme štyrmi, lebo
uhlopriečky ÁÍP, NQ delia tento čtvorec na štyri zhodné
trojuholníky. Ale QN = AB^ — Ъ, číže QS — 4 a z =

= 7Г-. 4.4 = 8. Obsah štvorca MNPQ je teda
у = 8.4 = 32.

Po dosadení z (2) do (1) dostáváme
x = 1856.2 - 32 = 3712 - 32 - 3680.

Obsah celého pozemku ABCD je 232.240. Platí
232.240

(2)

464
928

55680
Máme vypočítat’, kol’ko percent je 3680 zo základu
55 680. Toto percento je

3680
100-

55 680 *

Úpravou dostaneme (krátíme postupné číslami 10,
8 a 2 )

100.368 100.46 100.23 2300
348 '3485568 696

Platí
2300: 348 |6,60
2120

32
Obe cesty majú dohromady obsah 3680 m2 = 36,8a

a zaujímajú asi 6,6% celkovej výměry pozemku ABCD.
Podlá riešenia Antonína Luksa,
žiaka 8Д tr. osš Komenium,
Olomouc. Podobné riešenie podal
Michael Mareček, 8. a tr. osŠ, Olo-
mouč—Na hradě.
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