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PŘEDMLUVA. 

Snažil jsem se napsati stručnou a jasnou knížku o měřic­
kých chybách a o vyrovnání podle methody nejmenších čtver­
ců a objasniti výklad na příkladech. - Chtěl bych, aby se čte­
nář z ní naučil nejen vyrovnávat podle methody nejmenších 
čtverců, ale také vyšetřovat charakter měřických chyb a od­
chylek, protože to může poskytnouti směrnici, jak hodnotiti 
výsledky vyrovnání: Jsou-li to hodnoty nejpravděpodob­
něj~í nebo mají-li největší váhu nebo jsou-li to jen jakési 
střední hodnoty. - Pozorný čtenář, který knížku prostuduje, 
může rozuměti většině spisů, týkajících se methody nejmen­
ších čtverců. 

Knížka je určena především pro absolventy zeměměřič­
ského inženýrství, dále pro ty, kteří provádějí zeměměřictví 
v praxi, ale také pro astronomy a pro fysiky, krátce pro vše­
chny, kteří se zabývají nebo se chtějí zabývati některou mě­
fickou vědou ať theoreticky nebo prakticky. 

Ze všech učebnic o methodě nejmenších čtvercú uvádím 
dvě, z nichž jsem nejvíc získal: F. R. Helmert: Die Ausglei­
chungsrechnung nach der Methode der kleinsten Quadrate, 
3. vyd., I~ipzig-BerIin, 1924, a E. T. Whittaker- G. Ro­
binson: The Calculus of Observations, 2. vyd., London and 
Glasgow, 1929. 

B. Kladivo. 

P. S. Poněvadž autor Prof. Dr. B. Kladivo (* 24.6. 1888) 
zemřel R. února 1943, provedli uprav u rukopisu této poslední 
jeho práce a tiskové korektury jeho přátelé. 



I. 

ÚVOD. 

1. laké drohy chyb zatěžuji měfické výsledky 1 Všechna 
měření jsou zatížena chybami. Naučíme se je rozlišovati na 
jednoduchém příkladě měření vodorovných vzdáleností in­
varovými dráty. 

Dráty u nás· obvyklé mají délku přibližně 24 m. Na kon­
cích jsou k nim připojeny stupnice asi 8 cm dlouhé, dělené po 
luilimetréch. Měřená délka D se rozdělf na úseky dlouhé při­
bližně po 24 m. V konCoV)TCh bodech úseků se postaví třínohé 
stojany, nesoucí vodorovnou rysku, jež se urovná kolmo ke 
svislé roviJl,ě T, vedené měřenou délkou. Dráty se napínají 
dvěma závažími po 5 kg a urovnávají se do roviny r tak, že 
každá stupnice jest proti zmíněné rysce (obr. 1). 

Při měření odhadujeme polohu rysek vůči děleným stup­
. nicím (obr. 2). 

Označíme vodorovnou vzdálenost mezi počátky obou 
stupnic písmenem L a čtení u rysky na počáteční (koncové) 
stupnici písmenem lp (lz). Pak bude vodorovná vzdálenost d 
mezi oběma uvažovanými ryskami rovna . 

(1) 

Kromě čtení lz, Ip musíme určiti ještě teplotu drátu, proto­
že jak délka L, tak délky na stupnicích závisí na teplotě. 
Dále nutno změřiti výškový rozdíl mezi oběma ryskami a 
opraviti délku d vzhledem k tomuto rozdílu. 

A nyní uvažujme o chybách, které mohou zatěžovati délky 
d, počítané podle vzorce (1). Předně se mluvívá o hrubých 
chybách. Odhadujeme-li pozorně polohu rysky vůči mili­
metrovým stupnicím, je chyba, které se při tom dopustíme, 
jistě menší než t mm. Dopustíme-li se v tomto případě chyby 
rovné 1 mm nebo 1 cm, je to zaviněno nezkušeností nebo ne­
pozorností. Takové chybě říkáme hrubá chyba. Hrubé chyby 
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obr. 1 

Stojany pro.napfnání invarových drátů .• ) 

r;;;Zz 1 · I , • ~ • J ,~ 
(v-""I""I""'''!fI...I,,,,,I'~II''''II.''''~!lI.''''!I!'t.,,,,,,,,I..,,,,,,,~ --..\ . r-=J:::== 

• 
06r.2 

Ryska stojanu a dělet;lá stupnice: 

*) _Seznam vieoh obrazců je na str. 180. 



musíme včas odkrýti nejčastěji tím, že měříme několikrát 
a měření zatížená hrubou chybou škrtneme. 
Délkyp~čítané podle vzorce (1) budou jistě zatíženy chy­

bami, kterým se říká pravidelné nebo soustavné nebo 
systematické. Délka L, určená srovnáním drátu s normál­
ním měřítkem, je zatížená chybou t:1 z tohoto srovnám, t. zv. 
chybou z etalonování. Správná délka je pak L + El. Chyba El 

je stálá, protože každý úsek jí bude zatížen stejně. 
Jiné stálé chyby, které mohou zatěžovat.i délky (1) jsou: 

Chyba vyvolaná změnou napínací síly (na př. není-li některé 
závaží přesně 5 kg). - Nebo chyba vyvolaná tím, že zrych­
lení tíže v místě, kde měříme, je jiné než v místě, kde byly 
dráty etalonovány - nevezmeme-li změnu tíže v úvahu. 

Na přechodu mezi chybami stálými a proměnlivými mů­
žeme uvésti t. zv. oso bní chy bu pozorovatele. Pozorova­
telé odhadují polohu rysky vůči dělení nepřesně. Příslušná 
chyba má dvě části. Jedna z nich bývá u pečlivého a zkuše .. 

\ 

ného pozorovatele po delší dobu stálá. Právě této části se říka 
osobní chyba pozorovatele. 

Přejdeme nyní k proměnlivým chybám systematickým. 
Označí~e-li koeficient roztažnosti invarového drátu písme­
nem <X a určíme-Ji teplot.u drátu s chybou E2' bude její vliv 
na hodnoty vypočtené podle vzorce (I) roven přibližně 
24<XE2 m. Protože E2 se může od úseku k úseku měniti, 
čítáme tuto chybu k proměnlivým chybám systematickým. 

Jinou takovou chybou je chyba z vybočení drátu z ro­
viny r. Svírá .. li rovina, v níž je drát napjat, s rovinou r úhel 
l3, je správná vodorovná vzdálenost rysek, promítnutých 
do roviny r, rovna d cos {3, tedy chyba - d + d cos {3 = 
= d (cosfJ -1). Tato chyba nabývá různých hodnot, podle 
toho, jaký je úhel {J. Při tom zůstává stále záporná. 

Jiná proměnlivá systematická chyba vznikne, změní-li se 
váha délkové jednotky drátu, na pře orosením, přebytečnou 
vaselinou, znečištěním a pod. - Nebo změní .. ~ se ,napínací 
síla tím, že se změní tření napínacfho provazce. '- Nebo 
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chyba, která pochází z toho, že ryRh:y na stupnicích nebyly I 

správně vyneseny. - Ještě jinou takovou chybu vyvolá 
chyba Es v koeficientu roztažnosti. Její vliv na délku d je 
přibližně rovný 24E3t m, kde t je teplota drátu. - Nebo 
konečně t. zv. chyba theorie, která vzniká tím, že vzorec 
užitý k výpočtu délky invarového pásma není přesný. 

Při každém měření se musíme snažit poznati příčiny všech 
systematických chyb, které by mohly snížiti přesnost výsled­
ku pod žádanou mez, a musíme snížit jejich vliv tak, aby ani 
všechny dohromady nerušily žádanou přesnost výsledku. 
Děje se to všelijak. Vynález invaru znamenal po(J.tjtatné sní­
ženi vlivu chyb, pocházejících z nesprávného určení teploty 
drát.u (241'\:E2 m). Kqeficient roztažnosti platiny je totiž 
9,0 . 10-6, invaru až 1,0. 10-7• - Zvolíme-li dva dráty, 
z nichž jeden má kladný koeficient roztažno3ti a druhý zá­
porný a přibližně stejně velk)r, bude v aritmetickém prů­
měl-u z obou měření vliv chyby E2 zase snížen, protože je 
roven 24E2 • t(C\ + ~ ') m. 
Nemůžeme-li vliv systematických chyb takto nebo jinak 

snížit, musíme jej určiti z pomocných pozorování a měřické 
výsledky podle toho opravíme. Na pře určíme novým, př~s­
nějším měřením koeficient roztažnosti, ~. j. jeho chybu Ea 

nebo aspoň její podstatnou část a přičteme k měřickým vý­
sledkům chybu 24E~t m. - Nebo zjistíme zvážením, oč se liší 
napínací závaží od 5 kg, a vypočteme, jaký vliv to má na 
délku napjatého drátu, ft, podle toho opravíme měření. 
Konečně se mluvívá v úvahách o t. zv. chybách na­

hodilých. Budeme tak jmenovati chyhy, které mají tyto 
vlastnosti: 

a) Stejně velké kladné a záporné chyby se vyskytují stejně 
často, tedy kladná ft, stejně velká záporná chyba jsou stejně 
pra vděpodo bné. J 

b) Chyby s menší absolutní hudnotou se vyskytují častěji 
než chyby s větší absolutní hodnotou, je tedy pravděpodob­
nějěí, že se dopustíme malé chyby než velké. 
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c) Chyby, jejichž abSolutní hodnota je blízká nule, se vy­
skytují nejčastěji, čili je nejpravděpodobnější, že naměříme 
hodnotu bez chyby. 

V případě měření délek invarovými dráty považuje se za 
nahodilou chybu na pře část chyby v odhadu polohy rysky 
vůči dělení, která se zmíněnou již osobní chybou tvoří celou 
chybu v odhadu polohy rysky. - Stejně se považuje za na­
hodilou chybu chyba v určení výškového rozdílu mezi rys­
kami. 

Jak patrno z uvedeného příkladu měření délek, je každý 
výsledek měření zatížen řadou chyb. Naučili jsme se, co jsou 
to hrubé chyby a naučili jsme se rozlišovati chyby systema­
tické (stálé a proměnlivé) od chyb nahodilých. Při všech dal­
ších úvahách budeme předpokládati, že výsledky měření 
jsou zatíženy jen nahodilými chybami. To tedy znamená.: 
a) Pozorným opakováním měření jsme se přesvědčili, že vý­
sledky měření nejsou zatíženy hrubými chybami. b) V pečli­
vém rozboru možností chyb jsme uvážili všechny myslitelné 
prameny systematických chyb a jejich vliv na výsledky jsme 
snížili na pře pod desetinu vlivu chyb nahodilých (srovn. kap. 
VI, odst. I). 

Abychom některé systeJ;Ilatické chyby nevynechali, je 
dobře uvažovati je po skupinách, podle příčin, které je vy­
volaly. První, obyčejně početnou skupinu tvoří ch Y bys t r 0-

jové (na pře chyby vzniklé nesprávným vynesením rysek na 
stupnicích) a chyby teorie, dále jsou chyby z nespráv­
ného ustavení měřických zařízení (na pře chyba z vy­
bočení drátu z roviny r), pak jsou chy by vyvolané vněj­
šími vlivy (na pře chyba z nesprávného určeIÚ teploty 
drátu) a konečně chyby zaviněné pozorovatelem (na 
pře osobIÚ i nahodilá chyba v odečtem). 

2. Četnost chyb podle velikosti. Funkce a zákon ěet­
nosti. Křivka ěetnosti. Souvislost s pravděpodobností 
chyb. Předpokládejme, že jsme n-krát změřili určitou veli­
činu (na př. délku nebo úhel), jejíž správná hodnota je a, a že 
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výsledky měření ai (i = 1, 2, ... , n), jsou prosté hrubých a 
systematických chyb. Hodnoty 8i, které musíme k výsled­
kům mčřeIÚ algebraicky přičísti, abychom došli k správné 
hodnotě a, se jmenují skutečné chyby měřických výsled­
ků. Tedy: 

(2) 

Uvažujme skupinu chyb, které jsou mezi e a e + de, kde 
interval de je dostatečně ma1ý. Předpokládáme, že počet 
chyb v této skupině je přibližně úměrný de. To jest, zvětší-li 
se několikrát interval de, zvětší se přibližně stejněkrát i počet 
chyb ve skupině. Podobně předpokládáme, že počet chyb 
v každé skupině je také přibližně úměrný počtu 1l všech 
chyb. To jest, zvětší-li se několikrát počet všech měření, 
zvětší se přibližně stejněkrát i počet chyb v každé skupině. 

Za uvedených předpokladů můžeme tedy psáti pro počet 
členů v jednotlivých skupinách yn de, kde y je závislé na e. 
Klademe y = 9'(8), tedy počet chyb v intervalu od e do 
e + de jest n 9'(e) de. Známe-li funkci 9'(e), známe rozdělení 
chyb podle jejich velikosti čili známe četnost chyb podle 
velikosti. Funkci q:>( 8) se říká fu n k ce čet n o s t i. 

Nanášíme-li v nějakém měi·ítku na osu úseček velikost 
chyb E, kolmo k ní příslušnou hodnotu y == 9'(e) a spojíme.li 

· koncové body pořadnic, vznikne křivka y == 9'(e), které se 
říká křiv ka četnosti. 

Podle toho, co bylo řečeno o vlastnostech nahodilých chyb, 
pIa tí pro ně: 

9'( + e) = 9'(- e), (3) 

pro I e2 I > I e1 I jest 

9'( I 82 I ) < 9'( I 81 I ); (3') 

9'(8) nabývá maxima pro 8 = O a minima, pro největší 
možnou chybu 8 = ± E. Pro 181 > + E jest q:>(e) = o. 

Ze vzorce (3) je patrno, že pro nahodilé chyby je křivka 
četnosti souměrná vzhledem k ose y.ové; ze vzorce (3') 

• 
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a z okolllo~ti, že tp(O) je maximální, vyplývá, že pro na-h()­
dilé chyhy má křivka četnosti tvar zvonovitý. 

Pravděpodobnost, že nahodile vybraná chyba 
z množství n chyb jest mezi e a e + de, je rovna 
fP(e) de == y de; je tedy rovna elementu plochy omezené 
křivkou četnosti a osou x. Pravděpodobnost, že chyba je 
v mezích od e1 do e2 , jest rovna 

(4) 

Z podmínky, že pro I e I > E jest tp(e) == 0, plyne 
-f 00 +E 

f (p(e) de == J tp(e) de == 1. (5) 
-00 -E 

3. Ja,k se posuzuje přesnost m~řenf. Stfední chyba a 
prtl1uěrná chyba. *) Uvažujule o dvou řa.dách měření téže 
veličiny a označnle chyby pro první řadu 

(6) 

a I)ro druhou řadu 
(6') 

Předpokládejnle, že příslušné funkce četnosti tpl(e) pro řadu 
(6) a tp2(f:) pro řadu (6') jsou sudé funkce, t. j. splňují pod­
mínku (3), a že obě křivky četnosti se protínají jen v jednom 
bodě ha každé straně osy y-ové (obr. 3). Příslušnou úsečku 

" '~J "" t h b {menŠích d b oznacmc :L: e. e patrno, ze poce c y větších co o a 80-

'lutllÍ hodnoty než é, je více v řadě n:}r Proto považujeme 

první řadu' měření za přesnější. 
Abychom nemusili sestrojovati křivky četnosti a přece 

mohli rozhodnouti, která z řad měření je přesnější, uvažu­
jeme takto: Z obr. 3 p]yn~, že pro I e I < É jest tpl(e) > tp2(e), 

*) F. R. Helmert, 1. c. str. 18-20. 
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pro I E I > é jest fPl(E) < fP2(E). Pro jakékoli E bude 

[tpl(E) - fl'2(e)] (tq - I e Iq) > O, (7) 

kde q > o. Pro 1 e 1 < é jsou totiž oba faktory 
[fI'l(e) ~ rp2(e)] i (Iq -I e Ifl) kladné, pro I e I > i jsou oba 
faktory záporné a pro I e I == É jsou oba faktory rovné O. 

\' 

/ 

.h 
06r. J 

Násobíme-li levou stranu vzorce (7) de a integrujeme-li 
v mezích od -00 do + 00, hude 

00 . 

f[rpl(e) - fP2(E)] . (étt -I e Iq) de > O 
-00 

čiji 
00 00 00 00 

éq [f tpl(e) de - f fP2(e) de] - fl e Iq fPt(e) de + fl.EI'I qJ2(e) de > o. 
-00 -00 -00 

Podle vzorce (5) vymizí člen s éfJ a 
00 00 

fl E IfJtpl(e) de < fl e l(lrp2(e) de. 
-00 

Pro přesnější řadu měření je tedy výraz 
00 

S,l == fl e I' rp(e) de (9) 
-eX) 

II 

J 



menší. Proto můžeme přesnost řady měření posuzovati podle 
toho, jaké hodnoty nabývá veličina Sq. Je-li Sq pro ně­
jakou řadu měření menší než pro jinou řadu, je 
první řada měření přesněj ŠÍ. 

Jaký je význam veličiny Sf/. ~ Protože n tp(e) de je počet 
chyb v mezích od e do e + de, je součin I e \f/..ntp(e) de roven 
součtu absolutních hodnot q-tých mocnin chyb, jež jsou 
v mezích cae + de. Pak součin nSq je roven součtu abso­
lutních hodnot q-tých mocnin všech chyb a Sq je aritmetický 
průměr absolutních hodnot q.tých mocnin všech chyb, 
tedy na př. pro řadu n chyb je 

Sq=[lelfi]:n, (9') 

kde lomená závorka [] značí součet pro i = 1, 2, ... , 'n. 

Nejčastěji se volí q === 1 a q == 2. Pro q == 1 jest 
(.() 

Sl = fl E I cp(E) dE = [I E I] : n= s, (10) 
-(.() 

kde II je t. zv. průměrná chyba nebo prů měrná hod­
nota chy by E. 

Pro q == 2 jest 
00 

82 == f e2 q;(e) de ,~ [e2] : n == m2, (10') 
-(.() 

kde m je t. zv. střední chy ba nebo střední hodnota 
chyby E. 

Je-li tedy průměrná nebo střední chyba pro nějakou řadu 
měření menší, přisuzujeme této řadě větší přesnost. 

Opakujeme: úvaha v tomto odstavci předpokládá, že uva­
žované funkce četnosti jsou sudé funke~ a že se křivky čet­
nosti protínají jen ·v jednom bodě. 

4. Stl'ednf chyba funkce f několika ve1iěin '1' 12, 13, ••• , 

urěených na sobě nezávisle. a) Nechť je I = tXIZ1, kde Zl je 
měřená veličina a tXl konstanta. Je-li skutečná chyba veličiny 
~ rovna ev jest skutečná chyba veličiny I rovna CI = tXIEl· 

Podle definice (10') je tedy střední chyba m, dána vzorcem 
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tJ; 

ml = f ťX12B12 q;(Bl ) del • 
-00 

A je-li ml střední hodnota chyby Bl' t. j. je-li 
00 

ml
2 == f el

2 qJ(el ) dEv 
-XI 

je patrno, že 
ml = tX12m12. (ll) 

K stejnému výsledku dojdeme, užijeme-li vzorce m 2' = 
== [e2] : n. Mysleme si, že opakujeme měření veličiny ~ ne­
konečně krát a že vypočteme vždycky skutečnou chybu Bl 

a e; = ťXlBl a pak aritmetický průměr ml = [el] : n = 
== !X1

2 [e1
2] : n. Protože Te1

2] : 'n == m1
2, je zase ml' = tX12'""t2. 

b) Nechť I == ('(,lll + ťX,]2 + !Xala + ... + ťX",ln, kde lv l2' 
Za, ... , 1", jsou nezávisle měřené veličiny a lX1 ' !X2 , lXa, ••• kon­
stanty. Označíme Bi skutečnou chybu veličiny li a střední 
hodnotu chyby Bi označíme mi, (i = 1, 2, 3, ... n). Skutečná 
chyba výrazu 1 jest 

Ef = C(lEI + ''X2E2 + IXsEa + ... + tXnEn· (12) 
Její čtverec jest 

11. 

E/2 = lX1
2

E1
2 + C(.22E2

2 + {\32ea
2 + ... + 2LťX itXkEiEk' (12') 

i,k=l 

Mysleme si, že opakujeme měření každé z veličin ll' lIJ, Za, ... 
nekoneěněkrát a že vypočteme vždy skutečné chyby EI' B2' 

es, ... , dále Ef a aritmetický průměr veličin er. Podle vzorce 
(10') ml' = [ef2] : n vypočetli jsme tak čtverec střední chyby 
výrazu I. 

Dosadíme-li za el ze vzorce (12'), plyne jiný výraz prn 
ml. Především půjde o členy tvaru [<):i2ei2] : n, k~eré jsou 
podle předchozího rovny ~i2mi2. 

Dále jd~ o aritmetický průměr výrazu 2ťXiC:X1,.t:iek' Chyby 
i,k ~ 

ei, e" nabývají při tom nezávisle na sobě všech nekonečně 
mnoho hodnot. 
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Předpokládáme, že ke každé kladné chybě'E existuje stejně 
velká záporná chyba -E. Všechny možné součiny E,E/& dosta­
neme tak, že zvoHme určité Ek a dáme probíhati chybě E, 

všechny hodnoty. Součet těchto součinů je Bi Eei. Pak zvo­
líme další ETc a dáme probíhati Ei zase všechny hodnoty atd., až 
vyčerpáme i všechny chyby Ek. Protože věak ke ka.ždé chybě 

Ei existuje chyba -Ei, bude Iei == O, tedy i součet ~ ~iCXkEiEk 
i,i 

bude roven O a rovněž příslušný aritmetický průměr. Bude 
tedy celkem 

ml == !'\12m1
2 + L'X2

2m 2
2 + ~a2ma2 + ... + ~ft2mn2. (12") 

c) Nechť I = I(Zl' Z2' l3' ... , ZfI,), kde ll' l2' la, ... , ln jsou zase 
nezávisle měřené veličiny. Jsou-li Ei skutečné chyby veJic'5in 
liJ jest skutečná hodnota funkce I rovna 

l(ll + Ev Zt + E2' 13 + es, ... , l" + en) a její skutečná chyba 
I(Zl + El' Z2 + E2' l3 + Ea, ... ) -/(~, Z2' Za, ... ). O funkci I 
předpokládáme, že ji můžeme rozvinouti v řadu Taylorovu 
podle rostoucích mocnin chyb ei, a že při malých hodno-
tách chyb stačí podržeti členy lineární, že tedy • 

I(ll + El' l2 + E2' la + Ea, ••• , ln + EIt ) • . /(11' Z2' la, ... , ln) + 
81 81 81 81 ,.. + oll el + 01

2 
E2 + 8l

a 
Ea + ... + ol" En· ) 

Parciální derivace jsou vypočteny pro bod (ll'~' l!i' ... , ln)· 
Skutečná chyba funkce I se tedy rovná 

81 ol 81 81 
oll El + 81

2 
E2 + 8l

a 
Ea + ... + 8lft F'/f,. (13) 

Srovnáme-li s případem b), plyne ihned, že čtverec střední 
chyby funkce I jest • 

*) J. V o i tě ch: Základy ma,tenlstiky, 5. vydání, Praha. 1939, 
I, str. 280-286, 398-401. - K. Petr: Počet diferenciální, 
Praha 1923, str. 198 a 325. 
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( 
ol )~ ( ol )2 ( ol )2 ( ol )2 

tnI ~ Oll m,.2 + ol2 m 22 + ola ""s2 + ... + ol" m,,,2. 

(13') 
Znovu připomínáme předpoklady, za kterých byl odvozen 

-vzorec (12") (a ovšem i (13')): Veličiny ll' l2' la, ... jsou veli­
činy na 80 bě nezávisle měřené. Funkce četnosti pro 
chyby každé z těchto veličin j sou sudé funkce. 

ó. Přfklady na výpoěet stl'ednfch chyb. 1. Pro veli­
činu 1 jsme naměřili hodnoty ll' l2' ... , l",. Je-li střední chyba 
každé z nich rovna m, jaká je střední chyba m' aritmetic­
kého prů měru [Z] : n? 

Jsou~li skutečné chyby naměřených hodnot Ev c2' ... , En, je 
skutečná chyba aritmetického středu (cl + c2 + ... + cn) : n. 
Srovnáním se vzorcem (12) plyne, že v uvažovaném případě 
je !Xi = 1 : n, i = 1, 2, ... , n, tedy ze vzorce (12") je pro arit­
metick)? střed m'2 = m 2 : n čili 

, m 
m = Vn. (14) 

2. Pro veličinu 1 jsme vypočetli z jedné řady měření hod­
notu II se střední chybou m'l a z druhé řady měření hodnot.u 
12 se střední chybou m2• Jaká je střední chy ba md, roz­
d í1 u d = II - l2 ? 

Jsou-li Cl a C2 skutečné chyby hodnot II a l2' je skutečná 
chyba rozdílu Zl -l2 rovna cl - E2. Srovnáním se vzorcem 
(12) plyne (Xl == 1, ~2 = - 1, tedy ze vzorce (12") hude 

md, == Vml
2 + m2

2
• (15) 

3. tTe-li střední chyba veličiny x rovna mz , jaká je střední 
chyba ml veličiny I == c log x, kde c je konstanta? 

Je-li c skutečná. chyba veličiny x, je skutečná c~yba veli-

činy I přibližně rovna c/~ ~I E, kde 81 = cM, (M...:.. 0,43429 
uX ox x 

je nlodul hriggických logaritmi'l). Pak plyne ze vzorce (13') 
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, cM 
mf= -mz · 

x 

4. Střední chyba v určení denního chodu hodin s vteři­
novým kyvadlem je m = ± 0,028 • Jaká je střední chyba 
ve výpočtu jedné periody1 . 

Den je přibližně roven 86 400 dob kyvu (vteřin), t. j. 
43 200 period. Je-li skutečná chyba denního chodu E, je sku-

tečná chyba jedné periody e a příslušná střední 
. 4,3~.IO' 

h b odl . m 0,028 4,68 

c y a p e vzorce (ll) Je 4,32 . 10' - 4,32 . lOt--=-- 107 ' 

jj. V čase tl byla určena oprava chronometru 01 se 
střední chybou ml a v čase t2 = tl + t oprava 02 se střední 
chybou m2 • Jaká je střední chyba denního chodu chrono­
metru a střední chyba opravy 0, vypočtené interpolací pro 
čas T? 

D ' hod h °2-°1 d I V 2 2 enru c t = , te y mela = - ml + m 2 • t - t 
Oprava ° v čase T je rovna, ° = 01 + ch (T - tl) = 

02-01 t2-T T-tl = 0l + (T - tl) = 0l + 02 . Odtud ply-t t t 

ne, že mo = -.!...v(t2 - T)2 ml
2 + (T - t1 )2 m2

2. 
t 

, 

6. Dány jsou tyto výsledky astronomického určení roz­
dílů zeměpisných délek a příslušné pravděpodobné 
chyby: Cambridge záp.· Greenwiche: 4h 440l 30,998 ± 0,238 , 

Omaha západně Cambridge: lb 39m 15,048 ± 0,068 , Spring­
field vých. Omahy: 25m 08,698 ± 0,118 • Jaký je délkový 
rozdíl Springfieldu záp. Greenwiche a jeho střední chyba 1*) 

Hledaný délkový rozdíl je 411 44m 30,998 + lb 39m 15,048-

- Oh 25m 08,698 = 5h 58m 37,348 • 

lf) Wright-Ha,yford: The Adjustment of Observations, 
New York, 1906, str. 68. 

16 



,Označíme-li .skutečné chyby v uvedených rozdílech země­
pisných délek po řadě 81, 82, 8a, bude skutečná chyba rozdílu 
Springfield záp. Greenwiche rovna 81 + E2 - Ea, tedy 
příslušná střední chyba 1,483. VO,232 + 0,062 + 0,11 2 = 
= 1,483 . VO,0686 = ± 0,39B, neboť, je-li r pravděpodobná 
chyba a m střední chyba, je m = r . 1,483 [srovn. I, (29)].·) 

7. Je-li střední chyba veličin a, b rovna m, ja.ká je střední 
chyba veličiny e = Va2 + b2 1 

Jsou-li Ea, Eb, Ec skutečné chyby veličina, b, e, jest podle 
. (13 8e 8e Př. 8e a a 
vzorce ) Ec= ~ Ea + ~b Eb· 1 tom "'- = V . 

ua u uu a2+b2 C 

& b b , 
-b = V = -. Tedy podle vzorce (13 ) 
8 a2 + b2 C 

Va2 b2 
mc = 2 m 2 + 2 m 2 = m. e e 

8. Je-li střední chyba veličin a, b rovna m, jaká je střed-

ní chyba m~ úhlu lX, plynoucího z rovnice tg ct = ~ ? 
. a 

(m cX = m: Va 2 + b2
.) 

9. Úhly BaC rovinného trojúhelníka .ABC byly změřeny 
se stejnou střední chybou m. Jaká je střední chyba mb 
strany"b, je-li strana e dána bez chyby? 

Ze sinové věty je b = . C C sin B. Jsou-li EB. EC skutečné 
SIn 

chyby úhlů BaC, plyne ze vzorce (13), že skutečná chyba Et 

strany b je 'přibližně rovna 

8b '8b 
fb ...:...- 8B ER + 8C 8C, 

d (b e 8b b O 
k e - = ---- cos B = b cotg B, ~C = - cotg · 

oB sin C u 

*) Značí: Iii kapitola, vzorec (29). 
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Tedy podle vzorce (13') je mb = bm Vcotg2 B + cotg2 é. 
10. Úhly A a O trojúhelníka ABO byly změřeny se střed­

ními chybami mA resp. mc. Jaká je střední chyba mG 
strany a, je-li strana b dána bez chyby? 

Jde-li o rovinný trojúhelník, je úhel B == 1800-A - O 

b sin A P dl 13· k.1." , h a strana a == sin (A + C)· o e vzorce ( ) Je s Ul/eena c y-

o oa Oa 
ba strany a rovna EG== aA EA +. 00 Ea, kde EA, Ea jsou sku-

tečné chyby úhlů A a C. Pi·i tom je 

fu b cos A b sin A 
aA == sin (A + C) sin2 (A + C) cos (A + C) === 

o Oa 
== a [cotg A - cotg (A + C)] a 8C == - a cotg (A + C). 

Tedy podle vzorce (13') je 

ma == a Vm..4,2(cotg A - cotg (A + 0))2 + ma2 cotg2 (A + O). 

6. V áha m~fené veliěiny. Váha funkce nezávisle měfe­
ných veli~in. Přesnost měřené veličiny se posuzuje často 
také podle t. zv. váhy (váha lat. pondus, odtud značka p), 
která je definována podmínkou, že váhy dvou měřených ve­
·ličin se mají k sobě jako převrácené hodnoty čtverců střed­
ruch chyb obou veličin. Značíme-li váhy Pl' P2 a přťslu§né 
střední chyby mv m2, jest 

1 1 
Pl : P2 = --;: : 2"" 

1'nt m2 • 

Zvolíme-li za jednotku váhy (Po = I) váhu nlěřellP veli­
činy, jejíž střední chyba je mo, můžeme psáti 

1 1 
P . I - . . - 2 .~, 

m mo 

čili 
a naopak (16') 
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To jsou základní vzorce, které umožňují přejíti od střední 
chyby měřené veličiny k příslušné váze a naopak od váhy 
ke střední chybě. Za jednotku váhy se volí často váha 
jednou měřené veličiny. Ale neIÚ to tak vždy (srovnej na 
pře II, odst. 5b). Proč byla veličina m02: m2 nazvaná vahou, 
uvidíme později (srovn. II, odst. 3). 
Označíme váhy měřených veličin ~, l2' Za, ... , ln po i'adě Pl' 

P2' P3' ••• , Pn a váhu veličiny 1 = X I Z1 + cx,,j2 + ''\3l3 + ... + 
+ O<.n1n písmenem P. Pak můžeme do vzorce (12"), děle­
ného mn 

2 , dosaditi váhy, čímž dostaneme vzorec 

I 2 2 .. 2 2 
_ = eX} +~!... + ~ + ... + cx,n . (17) 
1:> Pl P2 P3 Pn 

To je vzorec pro váh u lineární funkce nezávhde mě­
řených veličin . . 

Je-li 1 = I(ll' l2' 13 , ••• , 'n), užijeme vzorce (13'), z něhož 
plyne 

~= ~(01)2 + ~(01)2 + _~ .. (0/)2+ ... + ~(Ol): (17') 
P Pl oll P2 ol2 P3 ol3 Pn 8ln 

vzorec pro váh u funkce nezávisle měřených veličin li. 
"- Předpeklady, za kterých byly odvozeny vzorce (17) a (17') 
jsou tytéž, jako v odstavci 4, totiž: Ve1ičiny lv l2' la·, ... jsou 
na sobě nezávisle měřené. Funkce četnoAti pro chyby každé 
z těchto veličin jsou sudé funkce. 

7. Přfldady na výpo~et váhy. 1. Je-li váha jednoho mě­
ření rovna jednotce, jaká je váha aritmetického průměru 
z n měření? 

Z úměry P : I = ~2 : ~ plyne podle V7.orce (14), že 
m m 

m2 

P = ml2 = n. (18) 

V áha aritmetického průměru z několika měření je 
rovna počtu měření .. 
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2. Váhy nezávisle měřených úhlů BAC, CAD, DAE jsou 
po řadě Pl == 3, P2 == 3, Pa == I. S jakou vahou je určen úhel 
BAE?·) 

Jsou-li skutečné chyby měřených úhlů po řadě El' E2' E3' je 
skutečná chyba úhlu BAE rovna EI + E2 + Ea' Označíme-li 
váhu úhlu BAE písmenem P, bude podle vzorce (17) 

1 1 1 1 3 - == - + - + - a se zvláštními čísly P == 5"-
P Pl P2 Pa 

3. Váhy nezávisle měřených veličin Xl' X 2, ••• , x" jsou po 
řadě Pl' P2' ... , p",. S jakou vahou P je určena veličina X = 
. eXlxl + ťX2X2 + ... + eXnx'h jsou-li koeficienty ('Xl"." iX" 

rovny buď + 1 nebo -11*·) 
1 ", G\.2 

Podle vzorce (17) jest p == 2 ~, a protože 
. .;, :.-,1 P, 

1 n 1 
-'\,. 2 - N 2 - -- N 2 - 1 J·est - == "'" _. (19) ·'''1 - l"'2 - ••• - LAn - , ~ 

P i=l Pi 

4. Jsou-li váhy veličin Xl a X 2 rovny p, jaká je váha 
součtu nebo rozdílu obou veličin? 

Podle vzorce (19) je hledaná váha v· obou případech -tP' 
5. Jsou-li úhly eX, f3 rovinného trojúhelníka změřeny s va­

hami Po" Pp, s jakou vahou vypočteme úhel y ze vzorce 
'Y == 1800 

- (); - f3? 
(py == PfXPIJ : (ptX + PIJ)·) 

6. Je-li váha veličiny X rovna Px, jaká je váha PI veličiny 
1== c log X? 

Z '''. 1 1 I mz
2 

~ umery PI: pz == 2 : -2 p yne PI == pz -. A pro-
m, m,z m,2 

t v cM (...l_ v x 2 

(lze ml == mx - VIZ oUHt. 5, l)r. 3), bude p - P 
X I - x 2 )12' 

20 

*) Wright-Hayford, 1. c. str. 71. 
**) Wrigh t -Hayf ord, 1. c. str. 71. 

C .i..U 



7. Jsou-li váhy veličin a., b rovn)' p, jaká je váha Pc veličiny 

c = Va2 + b2 ? 
(Pc = p, viz odst. 5, pře 7.) 
8. Váhy veličin a., b jsou rovny p; jaká je váha lJex úhlu lX, 

plynoucího ze vzorce tg lX = b:a.? 
(Pex =-= p (a2 + b2 ), viz odst. 5, př. 8.) 
9. Je-Ii'váha veličiny x rovna p, jaká je váha veličiny c: x? 
(px' : c2 .) 

10. Je-li váha úhlu ex rovna p, jaká je váha veličin sin C\, 

log sin lX, log cotg lX? 

( 
PP. P . 2 2 .) 

2 'M2 2' M2 SIn ~ cos ťX cos lX cotg ex 

s. N ormálnf zákon četnosti. Míra přesnosti. Funkce 
chyb. Pravděpodobná chyba. Extrémnf možná' chyba,. 
Nejdůležitější zákon četnosti, kterému se říká normální zá­
kon četnosti, nebo také Gaussův zákon, jest 

q?(e) = ce-h'e' . 

Veličiny c a h nejsou nezávislé,. protože z rovnice (5) plyne 
00 

c f e-h's' de = I. 
-00 

(20) 

Integrál J e-h's' de převedeme na Laplaceů v integrál 
00 -IX) 

J e-z'dx = Vn. Bude 
-00 

00 00 

Je-h'" dE = {Je-<ha). d(hl') = ! Vno (21) 

-IX) -00 

Ze vzorce (20) plyne pak c =C~ Vhn0 Tedy normÚnÍ zákon 

četnosti je ( ) _ h -hl 6;' 

cp e - V n e o (22) 
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Veličina h, která se vyskytuje v normálním zákoně četnosti 
se jmenuje míra přesnosti. Uvidíme ihned, jaký je smysl 
tohoto názvu. Vyhledáme si vztahy mezi h a průměrnou nebo 
střední chybou. 

Podle vzorce (10) bude v případě normálního zákona čet­
nosti ' 

a protože 
aJ 00 

2fE e--hlel de = - _1_ fe-hlBz d( _ h2e2 ) = _1_ 
h2 h2 ' 

o o 
bude 

~ I . 
.sl = 8 = kVn' (23) 

Podobně podle vzorce (10') jest 

n. protože 
00 W 00 JE d(e-""') = [e , e-I .... ] -J e-h,,1 dE == - ~, 

u o o 

bude 

S - 2 _ 1 k' _ 1 () 
2 - m - -- a ta e m - v-. ~4) 

2",2 .", 2 

Čím menší je průměrná nebo střední chyba pro nějaké mě-
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· 
ření, tím větší přesnost mu pi'i~oUlzujelne (viz odst. 3). Defi-
nujeme-li přesnost měření jako veličinu nepHmo úměrnou 
průměrné nebo střední chybě, bude pro dvě řady měřeIÚ po­
měr přesností roven 

I 1 1 I 
-- : - -- = - : - = kl : "'2· 
'ml m 2 81 82 • 

V případě normú.I.úho zákona čet.nosti je tedy poměr přes­
llo~tí roven kl : k2 a veličina h se proto j ruenuje měrou přes-
nosti měřenÍ. . 

Podobně lze odvoditi i další ,·zorce pro 8 3 a 8". 
00 <x,., 

2kf 1 f S3 = Vn e3 
e-1,t

s
= de = - h Vn e2 d(e-

ltfS2
), [viz (23)] 

o o 

a protože 
00 00 00 f e~ d(e-I.·.·) = [e2 e-I"E

'] - 2 f e e-lť~6'J de == - ~2 ' 

o o o 

bude 

Konečně 

I 
8a = + V' ha n 

00 fX.J 

2h f.jl J 2 2 cl 1 f' I J 2 2 S, = Vn e·e-,I' e ~~ -- h Vn e3 ( (e-I' 6 ), 

() I) 

a, protože 

bude 8 3 
t = + 4h" 

(25) 

(26) 
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. 
Hodnoty Sl' S2' S3' S, mají tedy splňovati řadu podmínek. 

S12 = 2 S2' S13 = ..!.. S3' Sl' = ~ S,. (27) 
n n 3n2 

Pravděpodobnost, že chyba e 1e mezi x a -x je v případě 
normálního zákona četnosti rovna 

• 
+z z hz 

y: J e-h
'.' de = V~ J e-h

'.· de = V:n; Je-tl dto 

~ o o 
z 

Zavedeme-li označení y2:n;J e-tl dt = (l)(x), je pravděpodob-
o 

nost, že chyba je mezi x a -x, rovna (/J(hx). Funkce (/J(x) se 
jmenuje funkce chyb. 

Výpočet funkce (/J(x). 

t2 t4 t8 

a) Protože e-tl = 1 - TI + 2T - 3! + ... , plyne in-

tegrací 

(Jj(x) = V:n; { x -l~~ + 2~~ - 3~77 + ··l (28) 

Tato řada konverguje pro každé x. Ale pro velká x (na př. 
pro x = 5) konverguje pravá strana B počátku pomalu. 

z 

b) Píšeme-li fe-tl dt=e-;J;ly, bude, derivujeme-li podle x, 

o 

čili dd
y = I + 2xy. x . 

Funkce y začíná členem lineánúm v x. Píěeme 

y = ťXx + px3 + yx6 + dx' + ... , 
dosadíme a srovnáme koeficienty. Jest 
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lX + 3f3x2 + 5yX· + 7dxl + ... = 
= 1 + 2cXx2 + 2f3x' + 2yx' +" 2dx8 + ... , 

tedy 

lX = 1, P = t, y = t . "§-, ~ = t . t . -1-, ... , 

čili 

2 {" 1 1 4>(x) = -=e-z1x 1 + - (2x2) + - (2X2)2 + Vn 3 3.5 
I 

+ a.!.7 (2x2)3 + o o o }o (29) 

Tato řada konverguje rovněž pro každé x, ale pro veliká x je 
k výpočtu rovněž málo vhodná. 

c) Asymptotický rozvoj pro funkci (I>(x). 
z 

Integrál je-tl dt lze psáti takto: 

o 
(» co co 

Je-I' dt -Je-I' dt = V2;7!; -Je-tl dto 
o z z . 

Integrací per partes plyne z posledního integrálu 

(» 00 00 

Je-t' o d2~2 = - [e 2;'] - -~ Je t2'" dt = 
z x x 

co _ e-x' 1 je--t l dt2 ___ e-xl 1 e-zl 

- 2x - 2"" 2t3 - 2x - 22 x3 + 
I 

x 
co 

I .3Je-tl 

+ 22 t4 dt = 

x 
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a.J 

-X 3 ( 1 1 1 . 3) I. 3 . 5fe- t
• 

= e 2x - 22X3 + 23X5 ---23-- -tl dt = 

x 
00 

2 ( 1 I 1 . '3" 1. 3 . 5) 1 . 3 .5 . 7fe-tl cl 
== e-

X 

2x - 22X3 + 23 xó - 2'x7 + 2' ta t 
, 

I X 

atd. 
Tedy 

l/J I e-x1
{ 1 1 .·3 I . 3 . 5 } 

(x) == I -V 71: ---;- I - (2X2) + (2X2)2 -. (2X2)3 + .... (30) 

Podržíme-li prvmch n členů v závorce, dává nám příslušný 
výraz hodnotu funkce f/J(x) s chybou, jejíž absolutní hodnota 
je menší než absolutlú hodnota (n + 1) -ho členu násobeného 

I e-xl • 

V 71:--;-' *) 

Připojujeme tabulku funkce f/J(x) upravenou z podrob­
nější tabulky C1zuberovy**) tak, že je možno považovat druhé 
diference Ll2 za stálé a počítati funkční hoqnoty na pře podle 

'. LI (x - a) Ll2j(a - h) (x - a)2 
vzorce j(x) == j(a) + k I! + h2 --2! -, kde 

.' 

a je tabulková hodnota argumentu nejblíže nižší než hodno­
ta. x, h je tabulkový interval, Llj(a) == j(a + h) -j(a), 
/Jj(a - h) = j(a) -j(a - h), LI = -~- [Llj(a) + Llj(a. - h)], 
Ll2/(a - h) == LI/(a) - Llj(a - h). 

Přesnost měření bývá charakterisována také tak z v. 
pravděpodobnou chybou. Nazývá se tak hodnota. x == r, 
pro kterou je pravděpodobnost t1J(hr) rovna. 1. To značí: Je 
stejně pravděpodobné, že uvažovaná chyba je co do absolutní 
hodnoty menší než r, jako že je větší než r. 

*) K. Petr: Počet integrální, Pra.ha, 1915, str. 299. 
**) E. Czu ber: Theorie der Beob~htungsfehler, Leipzig, 

1891, str. 411-413. , 
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Tabulka I. Funkce ~(x). 
-- -------. 

x O I 2 I 4 6 8 
I ---

4>(x) LI~ 
~(x) 

L1<P ~(x) ILI: <P(x) L1<P (f>(x) A<P 
+ + + + 

0,0 0,0000 226 0,0226 225 0,0451 225 0,0676 225 0,0901 224 
0,1 1125 223 I 1348 221 1569 221 1790 219 2009 218 
0,2 2227 216 2443 214 2657 212 2869 210 3079 207 
0,3 3286 205 3491 203 3694 199 3893 197 4090 194 
0,4 4284 191 4475 187 4662 185 4847 180 5027 178 
0,5 5205 174 5379 170 5549 167 5716 163 5879 160 
0,6 6039 155 6194 152 6346 148 6494 144 6638 140 
0,7 6778 136 6914 133 7047 128 7175 125 7300 121 
0,8 7421 117 7538 113 7651 110 7761 106 7867 102 
0,9 7969 99 8068 95 8163 91 '8254 88 8342 85 
1,0 8427 81 8508 78 8586 75 8661 72 8733 69 
1,1 8802 66 8868 63 8931 60 I 8991 57 9048 55 
1,2 9103 52 9155 50 9205 47 9252 45 9297 43 
1,3 9340 41 9381 38 9419 37 I 9456 34 9490 33 
1,4 9523 31 9554 29 9583 28 9611 26 9637 24 
1,5 9661 23 9684 22 9706 20 9726 19 9745 18 
1,6 9763 17 9780 16 9796 15 9811 14 9825 13 
1,7 9838 12 9850 II 9861 II 9872 10 9882 9 
1,8 9891 8 9899 8 9907 8 9915 7 9922 6 
1,9 9928 6 9934 5 9939 5 9944 5 9949 4 
2,0 9953 

x ~(x) A~ x ~(x) A4J 
- --
2,00 0,9953 +10 2,50 0,99959 +10 

05 63 7 55 69 7 
10 70 6 60 76 ti 
15 76 5 65 82 5 
20 81 4 70 87 3 
25 85 4 I 75 90 2 
30 89 2 
35 91 2 
40 93 2 

, 80 92 2 ; 
85 94 2 I 

I 
I 90 96 1 

45 95 1 ! 95 97 1 
50 96 i3,00 98 

I 
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Z tabulky funkce <P(x) je patrno, že hodnota y, pro kterou 
tP(y) = l, je mezi 0,46 a 0,48. Lineární interpolací vypočteme 
přibližnou hodnotu 0,477. Pak hledané y = 0,477 + 'fl, 
a při tom 

0,'77+'; 

At. 2 f -ta d _ I ,.,,(0,477) + V:1I: e 1-2". 
0,'77 

Ze vzorce (28), užijeme-li prvních šest členů rozvoje, plyne 

tP(0,477) = 0,5000572 a tedy z předcházející rovnice 
. 

O,'77+v v:f e-ta dt = - 0,0000572 . /:11: 'li . e-O
,477

z
• 

0,477 

Odtud fl ~ - 0,000064, tedy hledané y ~ 0,476936 a 

hr ~ 0,476936. 

Píšeme·li sem h = V (vzorec (24)), bude 
m 2 

r = mV2 . 0,476936 = m . 0,6744~ 
a 

m = r . 1,4826. (31) 

Podobně plynou vztahy mezi r a 8, užijeme-li vzorce (23): 

r = sVn . 0,476936 -.:. 8 .0,84535 
a . ~ 

8 = r . 1,1829. 
Při bližně se píše 

. -, 1 5 r == !"m, m ~ , T. 

(32) 

(33) 

Pravděpodobná chyba je tedy (v případě normáhúho zá­
kona četnosti) přibližně rovna dvěma třetinám střední chyby. 

Extrémní možná chyba. Podle d~finice funkce <P je 
pravděpodobnost, že c~yba je v mezích - km· a + km, 
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rovna (I)(hkm). Protože pak mezi m a h je vztah mh = V2 

[srovn. (24)], je hledaná pravděpodobnost rovna (I){yk2). 

Pro k . 2,~, 4 jest (1)( y~) rovno po řadě 0,9545, 0,9973, 

0,999937, tedy pravděpodobnost. že absolutní hodnota chyby 
je větší než· 2m, 3m, 4m jest rovna 

455 27 63 
1-0,9545 = 104 ' resp. 104 ' resp. 106 • 

Bylo-li měření opakováno 10krát, je počet chyb, jejichž 
absolutní hodnota je větší než 2m, roven 0,455, tedy přibliž­
ně l. Lze tedy při 10 měřenícl) považovati přibližně ::I- 2m 

.za extrémní možnou chybu. 
Podobně, bylo-li měření opakováno 200krát, je počet 

chyb, jejichž absolutní hodnota je větší než 3m, roven 0,54, 
lze tedy při 200 měřeních považovat přibližně ± 3m za 
extrémní možnou chybu. . 
Konečně při 800 měřeních lze považovati přjbližně ± 4m 

z~ extrémní možnou chybu. 
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II. 

VYII,OVN ÁNl IJŘ1MÝCH M~Ř.ENf. 

1. Různé druhy vyrovnáni. V této kapitole si nejprve 
uvědomíme, o jaké úkoly v t. zv. vyrovnávacím počtu jde. 

a) Vyrovnání přímých měření. Pro danou veličinu x 
jsme naměřili hodnoty Xl' X2, ••• , Xn. Podle jakého pravidla 
vypočteme z měřených hodnot výslednou neboli vyrovnanou 
hodnotu? JakJmůžeme posouditi přesnost provedených mě­
ření a přesnost vyrovnané hodnoty? 

b) Vyrovnání zprostředkuj ících měření. Mezi dél­
kou L kovového měřítka .JI a teplotou t předpokládejme jed­
noduchý vztah 

L=A'+Bt. 

~lěřítko M bylo srovnáno při různých teplotách tl' t2, ... , tn. 
s jiným nlěřítkem ~J', jehož délku při každé teplotě umíme 
vypočísti, a ze srovnání byly určeny délky Li srovnávaného 
měřítka AI pro teplotu ti, ,i = I, 2, ... , n, takže má býti 

Li = A + Bti, ,i = 1, 2, ... , 'n. (1) 
Hledan~ veličiny jsou v tomto případě A a, B. Nejsou měřeny 
přímo, provedená měření veličin Li a 'i, i = I, 2, ... , n . 
zprostředkují výpočet hledaných veličin. 

Obyčejně je počet rovnic (I) vět.ší než počet hledaných ve­
ličin, tedy n. > 2, a vliv měřických chyb působí, že nemohou 
býti v8cchny rovnice (I) splněny přesně. 

Jaké hodnoty v tomto případě zvolíme za výsledné (vy­
rovnané) hodnoty A a B, aby rovnice (1) byly splněny ale­
spoň "co nejlépe"? A jak zde posoudíme přesnost provede­
ných měření a přesnost vyrovnaných hodnot? 

c) Vyrovnání závislých měření. V trojúhelníku ABC 
byly měřeny všechny tři vnitřní úhly. Označíme naměřené 
hodnoty .4, B, C a jejich hledané opravy X, y, z. Jde-li o ro­
vinný trojúhelník, musí součet jeho vnitřních úhlů býti roven 
180°,t.j. 
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~ + y + z + A + B + O - 1800 = O. (2) 
&vnice (2), které se říká podmínka t:tebo rovnice závislosti, 
musí býti splněna přesně. 4~e k určení tří neznámých nestačí. 

Jak určíme v takovém případě hledané vyrovnané veli­
činy? A můžeme i v takových případech posouditi nějak 
přesnost měření a přesnost vyrovnaných hodnot? 

V dalších odstavcích uvidíme, že vyrovnání přímých i zá­
vislých měření se dá převésti na vyrovnání měření zprostřed­
kujících (srovn. III, odst. 7b a IV, odst. I). Proto začneme 
s úvahou o tomto vyrovnání. 

Máme určiti neznámé x, y, z, ... tak, aby byly "co nejlépe" 
splněny rovnice 

a,x + biy + CiZ + ... == li, i == 1, 2, ... , n, (3) 

tX) je-li počet neznámých menší než počet rovnic n a 
f3) nedaj í-li se všechny rovnice přesně splniti žá4ným sy­

stémem hodnot x, y, z, .... 
Podobné úlohy jsou dosti časté, a to nejen v měřických 

vědách (na př. fysice, astronomii, geodesii). Hledá se na př. 
přímka či křivka, která se "co nejlépe přimyká" nebo "co 
nejlépe nahrazuje" řadu daných bodů. Nebo hledá se vzt.ah 
mezi proměnnými, který "co nejlépe vyhovuje" daným, sta­
tisticky zjištěným, hodnotám atd. 

Ve všech takových a podobných případech musíme vyjas­
niti, jaký je přesný smysl matematicky neurčitých slovních 
obratů "co nejlépe splniti", "co nejlépe nahraditi", "co nej­
lépe se přimykati", "co nejlépe vyhovovati" . 

... L\ť zvolíme jakýkoli systém hodnot x = X, Y == Y, 
z == Z, ... budou - podle podmínky {J) - aspoň některé 
z hodnot 

(4) 

tůzné od nuly. 
Hodnotám Vi se říká. odchy I ky, rovnicím (4) odchy 1-

kové rovnice . 
.. :\bychom mohli posouditi, který ze dvou libo~olně zvole-
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ných systémů hodnot x, y, z, ... "lépe(' splňuje rovnice (3), 
musíme srovnávati v obou případech zbývající odchylky Vi. 
Ale jak je máme srovnávati? Uvedu tři různé způsoby tako­
vého srovnávání. 

~) Ve své Mécanique céleste*) navrhuje Laplace určo­
vati vyrovnané hodnoty x, y, z, ... tak, aby absolutní hod­
nota největší z odchylek Vi byla menšfnež pro jakékoli jiné 
hodnoty neznámých. 

Objasníme tento předpis na jednoduchém příkladě pří­
mých měření. Naměřili jsme pro danou veličinu x hodnoty 
Xl' X2, •• o, Xt,o Předpokládejme, že jsme je -uspořádali podle 
velikosti, takže 

Xl < X2 < o •• < Xn. 

V tomto případě má býti 

x - Xi == 0, 

ale vlivem měřických chyb bude 

x-x,== Vi, i== 1,2, ... ;n; 

kde odchylky Vi jsou obyčejně malé hodnoty. 

(3') 

(4') 

Snadno se nahlédne, že vyrovnaná hodnota x', vyhledaná 
podle uvedeného předpisu Laplaceova, musí býti uprostřed 
mezi·největší a nejmenší naměřenou hodnotou, t. j. musí 
x' == t (Xt + x,,). V tomto případě bude totiž největší od­
chylka . + ! (Xl + X,,) - Xl == t (X" - Xl)' a nejmenší od­
chylka .+ t (Xl + X,,) - Xn ·== t (Xl -, x,,), absolutní hod­
noty obou těchto extrémních odchylek jsou stejné. A je 
ihned patrno, že pro jakékoli x', různé od ! (Xl + x,,), by­
chom došli k většíin odchylkám než je t (xn - Xl). 

tTak viděti, nezávisí v tomto případě výsledná hodnota x' 
vÍlbec na tom, jaké hodnoty byly naměřeny mezi Xl a Xn. 

Ten, kdo se postaví na stanovisko, že je nesprávné, nedbati 
takto - mnohdy - většiny naměioených hodnot, musí tento 
návrh Laplaceův pro případ přímých měřeni odmítnoutL 

*) Livre III, § 39. 
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p) Uvedu jiný vyrovnávací předpis, který navrhl Edge­
worth:*) Určiti vyrovnané hodnoty neznámých x, y, z, ... 
tak, aby součet absolutních hodnot odchylek byl co nej­
menší. Má tedy býti minimem součet 

ft 

S == 21 aiX + biy + CiZ + ... -' li I· (5) 
i=l 

Ukážeme na je<Jnoduchém příkladě, že tento předpis nevede 
vždy k určité vyrovnané hodnotě. 

Mysleme si, že jsme veličinu x změřili dvakrát, s výsledky 
Xl a x2, a nechť Xl < x2• Pak jest 8 = 1 Xl - X I + I x2 - X I. 

Pro X < Xl hude S = Xl - X + x2 - X, minimum nastane . , 
PJ;'o x = Xl a Je rovne x2 - Xl' 

Pro X ~ x2 bude S = x - Xl + X - X 2' minimum nastane . , 
pro X = X 2 a Je rovne X 2 - Xl' 

Pro Xl < X < X 2 bude 8 = X - Xl + X 2 - X = X 2 - Xl' 

ať je X kdekoli mezi ;Cl a x2• 

Určili jsme tedy minimum součtu S, ale toto minimum ne­
nastává pro jedinou hodnotu X, nýbrž pro všechny hodnoty 
v celém intervalu <xl' x2 ), t. j. i včetně mezí. 

Jak vidět. i , Edgeworthův vyrovnávací předpis nevede 
v tomto případě k cíli. 

y) Roku 1806 uveřejnil Legendre vyrovnávací způsob, 
který nazval methodou nej menších čt verců. Již před 
mm užíval však methody nejmenších čtverců C. F. Gauss. 

Podle této methody se určují vyrovnané hodnoty nezná­
mých x, y, z, ... tak, aby součet čtverců odchylek hyl co 
nejmenší. Má tedy býti minimem součet 

ft 

S = 2 (aiX + b,y + CiZ + ... -li)2~ (6) 
1=1 

Aby součet (6) nabyl pro určitý bod x', y', z', ... maxima 
nebo minima, musí se jeho první parciábú derivace podle 

*) Phil. MBg. 24 (1887), str. 222, a 25 (1888), str. 184. Cituji 
podle Whittaker-Robinson: 1. c. str. 259. 
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. b d" , , I . a 1.) M } d b J a X, y, z, ... voe x , y , Z , ••• rovna.tI nu e. U~I te y ytl 

. . . . . . . . . . . . . . . . . . . . . . . . . . .. ....................... . 
kde odchylka Vi = a.,x' + b,y' + eiz' + ... -li' Zde a v dal­
ším rozumíme odchy lkami vždy odchylky vypočtené z hod­
not x', y', z', ... plynoucích podle methody neimenšťch čtver­
ců. Na rozdíl od odchylek Vi vypočtených z libovolných 
hodnot X, Y, Z, .... označujeme je v,. 

Zavedeme-li označení ~ai = [a2], "'2a,b, = [ab], La~i = 
i . i i 

= [ae] , 2a;,l" = [al] atd., kde všude i probíhá celá číMla 
i 

od 1 do n, můžeme místo předcházej.ících rovnic napsat: 

[a 2] x' + [ab] y' + [ae] z' + ... = [al], 
[ab] x' + [b2] y' + [bel z' + ... = [bl], (7) 
[ac] x' + [bc] y' + [c 2] z' + ... = [cl]. 
. . . . . . . . . . . . . . . . . . . . . . . . . . ~ . . . . . 

Rovnicím (7) se říká normální rovnice. Z nich můžeme 
určiti vyrovnané hodnoty x', y', z', ... jednoznačně, pokud 
determinant soustavy (7) není roven O. Prozatím.to budeme 
předpokládati. Později ukážeme, co značí pro koeficienty 
0i, bi , Ci, když je determinant soustavy (7) roven O (viz III, 
od~t. 4). . 

Legendre methodu nejmenších čtverců nedoka.zoval. Jen 
upozornil na její výhody. 
-----

*) J. Voj těch: Zá.klady matematiky ke studiu věd přírod­
ních a technických, I. díl, ó. vyd., Praha 1939, str. 408-410. -
K. Petr: Počet diferenciální, Praha 1923, str. 390-394. 
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Pro přímé měření veličiny x, při kterém jsme naměřili hod­
noty Xl' X2, .• ', xn,má býti minimem součet ~(x - X,)2. , 
Podmínka minima je ~)x' - Xi) == O čili nx' - ~Xi == O, 

i i 

tedy x' == [X] : n. 
V případě přímých měřeIÚ vede tedy methoda nej menších 

čtverců k vyrovnané hodnotě rovné aritmetickému průměru 
všech naměřených hodnot. Legendre upozorňuje na tuto 
přednost methody nejmenších čtverců. Všechny naměřené 
hodnoty vstupují do výsledku stejně, nejmenší a největší 
naměřená hodnota nemá přednostní postavení, jako měla 
v návrhu Laplaceově. 

Jak jsme viděli, vede methoda nejmenších čtverců k jed­
noznačným výsledkům, ať jde o vyrovnám měření přímých 
nebo zprostředkujících. Uvidíme později, že vede k jedno­
značným výsledkům i při vyrovnání závislých měření (srovn. 
IV, odst. I). Je to tédy methoda obecnější než předpis Lapla­
ceův nebo Edgeworthův. - Její užití je také mnohem s~d­
nější než užití způsobů právě jmenovaných. Snadno se lze 
o tom přesvědčiti, pokusíme-li se vyhledati vyrovnané hod­
noty všemi třemi" způsoby pro případ, že zbývající odchylky 
mají tvar a,x -li = Vi' 

2. Prvnf (Gaussovo) zdůvodněni methody nejmenšfch 
čtverců: Postulát aritmetického průměru vede k methodě 
nejmenš(ch ětverců. Označíme skutečnou hodnotu měi'ené 
veličiny písmenem x, naměřené hodnoty Xl' X2, "', X"'. Pak 
skutečné chyby jsou e, == X - X(, i == I, 2, . o., n. Pravdě­
podobnost, že skutečná chyba e, je v mezích od e( do e, + de, 
nechť jest q>(8,) de, i == I, 2, .'., n. Pravděpodobnost, že 
skutečné chyby při n měřeních, provedených po sobě, jsou 
v mezích (el , el + de), (e2, 82 + de), ... , (8", eft + de), jest 
podle pravidla o součinu pravděpodobností rovna 

(de)l' cp(e1) cp(e2) • o. q>(en)o (8) 
Kdy je pravděpodobnost (8) při daných Xl' .. o, Zn největší, 
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t. j. pro které x nabude součin cp(E1) cp(E2) ... rp(E,,) maxima, 
nebo jinak řečeno, který předpoklad o správné hodnotě x 

bude nej pra vděpudo bněj ší? Je-li p(EI) ťp(E2 ) ••. rp(E,,) 
ft. 

maximální, jest i 11g tp(e,) IIlaximální. Aby tento výraz byl 
~ i=1 

maximální, musí derivace podle x býti rovna O, tedy 

i d 19 cp(Ej) = O. (9) 
i=l df'i 

Tu je podmínka pro maximum pravděpodobnosti (8). Táže­
me se, lze-li určiti funkci rp tak, aby maximální hodnota 
pravděpodobnosti (8) nastala vždy pro 

x == [xl: n? "(10) 
Jinak řečeno, aby nejpravděpodobnější hodnotou byl vždy 
aritmetick~" průměr (postulát aritmetického p~ů­
měru). 

Rovnice (10) se dá. psáti 
fl. 2: Ei . O. (10') 

i=1 

Podmínka (9) přechází v (10'), je-li 'na př. 

d 19 tp(Ei) = kE i, , 
dEi 

kde k je nějaká konstanta,. Odtud 

19 q;(Ei) == tk Ei2 + kl' tp(Ei) == eTc, • e1ksi' • 

Protože pak funkce cp klesá s rostoucím E, musí býti konstan­
ta k zá.porná. Píšeme tk == - h2 a ek1 = c. Tedy 

tp(Ei) = c . e-h'si'. (ll) 

Aby při naměřených hodnotách Xl' X 2, ••• , X n hyl nejprav­
děpodobnější hodnotou aritmetický průmpr, musí se chyby 
zatěžující měření nutně říditi normálním zákonem četnosti, 
ovšem za předpokladu, že funkce četnosti pro chybu Ei má. 
tvar tp(Ei) (srovn. J, odst. 8). 
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Pakjepravděpodobnost (8) rovna cn(de)n e-hl(Bľ+ell+ ... +.,.I). 
Požadavek, aby pravděpodobnost (8) byla maximální, je 
v tom případě totožný s požadavkem, aby El2 + E22 + ... + 
+ En.2, (t. j. součet čtverců chyb) byl minimální; tento poža­
da vek vede tedy k met hodě nej menších čtverců. 

Jak patrno, nutnost vyrovnávati podle methody nejmen­
ších čtverců plyne z toho, že se chyby zatěžující měření j'ídí 
normá,lním zákonem četnosti. A dále z postulátu aritp1etic­
kého průměru plyne, že se chyby zatěžující výsledky, měření 
řídí normálním zákonem četnosti, arci za předpokladu, že 
funkce četnosti pro chybu E, má tvar cp(e,). 

Tedy za uvedeného předpokladu postulát aritmetického 
průměru vede k vyrovnání podle methody nejmenších 
čtverců (srovn. VII, odst. 2a). 

3. Vyrovnání přímých lllěření o nestejné váze-. Ozna­
číme zase skutečnou hodnotu měřené veličiny písmenem x, 
hodnoty plynoucí z měření Xl' X2' "', XfI, a skutečné chyby 
Ei = X - Xi, i = I, 2, ... , n. 

Předpokládejme, že se tyto chyby řídí normábúm záko­
nem četnosti a že hodnoty Xl"'" xfI, nemají stejnou váhu. 
Nejsou tedy stejně přesné. Označíme příslušné míry přes­
nosti kl' k2, •• " kn a váhy Pl' P2' .. " Pn· 

Pravděpodobnost, že chyba E, je v intervalu (Ei, Ei + dei), 

. t hi h I I d d'" od b .., k .." h b Jes V; e- i Bi Ei a prav ep o nost, ze s utec ne . c y y 

Ev E2' "', e-n jsou po řadě v intervalech. <Ev Cl + del ), 

<82, 82 + d82), ••• , <8", 8n + de,,), jest 

kl k2 ... k" de...1- de e-(h-11611-f-hIIBII+ ... +h .. IB .. I) (12) ( V n)fI, 1 ~2 • • • fl, .11 .11 • 

Který předpoklad o správné hodnotě X bude nejpravděpo­
dobnější 1 Ten, pro nějž' je pravděpodobnost (12) největší, 
tedy pro nějž je součet h1

281
2 + h2

282
2 + ... + hn

28f1,2 nej­
menší. 
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Mezi měrou přesnosti hi, střední chybou mo pro jednotku 
váhy a vahou Pi jsou vztahy Pi = mo2 : m,2, a při' nor­
málním rozdělení četnosti mis = 1 : 2hi

2, tedy 

1 V-h,== - Pi 
mo 2 

[srovn. I, (16) a I, (24)]. Předcházející výraz pro pravdě­
podobnost bude tedy roven . 

d ..l- ..l __ V~~~ - 2~ I (Pl'll+P.B.t+ ... +p"B"I) 
1:1 Uť2 • • • \..I..l;"n - - V e o • (12') 

( 271)n mo" 

KterS' předpoklad o vyrovnané hodnotě x' bude nejpravdě­
podobnější? Ten, pro nějž je pravděpodobnost (12') největší, 
tedy pro nějž je součet 

S = PlEt2 + P2E2
2 + ... + p",2en2 == 

== Pl (x - x1)2 + P2 (x - X2 )2 + 00, + p,. (x - xn)2 (13) 

nejmenší.. Aby byl nejmenší, musí derivace podle x býti 
rovna 0, t. j. 

Pl (x' - Xl) + P2 (X' - X2) + 00' + Pn (x' - Xtt) = 0, 

čili 

,. PIZt + P2X2 + 00. + PIIXn 
X= . 

Pl + P2+ ... + Pn 
(14) 

Vzorec (14), dávající t. zv. obecný aritmetický prů­
měr, je týž jako vzorec pro výpočet těžiště hmotných bodů 
o vahách Pl' Pi' ... , Pti· Tato obdoba vedla k tomu, že veličiny 
p = mo2 : ml byly nazvány vahami (viz I, odst. 1, 5). 

V áhy Pl' "', p,,, příslušné hodnotám Xl' . 00, XII' klademe 
obyčejně - podle vzorce I, (18) - rovny počtu j ednotli­
vých měření, z nichž jako aritmetický průměr byly vy­
počteny. To ovšem za předpokladu, že o jednotlivých měře­
ních můžeme důvodně souditi, že nemají různou váhu. 

Jestliže nestejná. přesnost jednotlivých měření je charak­
terisována ne vahami, ale příslušnými středními chybami 
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ml' m2, o o o, m" [vypočtenými podle vzorce II, (16~)], užijelue 
k výpočtu vyrovnané hodnoty vzorce, který plyne ze (14), 

2 

když tam dosadíme Pi == 1no20 Krátíme-li v čitateli a jme­
mi 

Xl X 2 x" 
m 2 + m 2 + + m,,2 

x' == I 2 (14') 
1 1 1 . 
-+-+ ... +--'""t2 m2

2 mn
2 

Jde-li o dvě měření, přej~e vzorec (14') ve 

, . m2
2
x1 + '""t2X

2 (14") 
x == 2 2 o 

ml+mS· 
Že nastane pro x == x' minimum součtu S, je patrno z toho, 
že druhá derivace výrazu (13) podle x jest rovna [p], tedy 
kladná.·) 

Ke stejnému výsledku 'přijdeme také touto úvahou: 
Má-li měřená veličina x váhu p, pak má veličina kx váhu 

p == ; o ~ebot' je-li m střední chyba veličiny x, je středtú 
chyba veličiny kx rovna km a 

1 I 
P : p == -_.- : -

Jc2m2 m2 
"il· P P c 1 == k 2• 

I 

Zvolíme-li k == Vp, bude P == 1. To znamená: Místo aby­
chom uvažovali měření různých vah, stačí násobiti každou 
odchylkovou rovnici odmocninou příslušné váhy a přisou­
diti všem měřelÚm (a tedy i novým.odchylkovým rovnicím) 
stejné váhy, rovné 1. V uva!ovaném případě přímých mě­
ření o nestejné váze jsou odchylkové rovnice v, == x - Xi, 

váhy Pi, i == 1, 2, o o o, n. Místo nich uvažujeme odc~ylk()vé 
rovlŮce v' i == (x - x,)V Pi o stejné váze, rovné 1. 

*) J. Vojtěch, 1. c. str. 268-270. 
a! 274. 

K. Petr, 1. c. str. 272 



Podle piedcházejícího odstavce má býti minimem součet 
čtverců odchylek . 

v' 12 + '0'22 + ... + v' 16
2 = P1V12 + PaV22 + ... + Pnvn2. 

A z toho plyne zase vzorec (14). 

4. Středni chyba pro jednotku váhy. Stfednf chyba vý­
sledku. Označíme střední chybu pro jednotklLváhy 
písmenem mo' Protože váha veličiny Xi je Pi, bude střední 

hodnota chyby Ei rovna Vm~, kde i = I, 2, "', n (viz I, (16')). 
Pi 

Ze vzorců Vi = x' - Xi, Ei = X - Xi, plyne, násobíme-li Pi 
a sečteme: 

[pv] = [pl x' - [px], [pE] = [pl x - [px] 

a protože [pv] = O [viz (14)], jest [ť:l = x - x'. 

Odtud 
, [pe] 

Vi = x - x + x - Xi = Ei - [p] = 

= ~]{-Plel-P'lfi2-'" + ([P]-Pi)Ei- ... -p"e,,}. (15) 

Podle vzorce I, (12") vypočteme odtud čtverec střední hod­
noty Vi2, který označíme Vi2• Bude 

. I {mo2 mo2 mo2 
Vi2 = -2 P12- + P22 - + ... + ([Pi] - Pi)2- + 

[pl Pl P2 Pi 

+ ... + Pn2;::} = [';j: {([Pl - pd + ([P] - Pi)2 . ;i} = 
_ mo~ [pl -Pi _-o " 

[pl Pi 
a součet 

m 2 

[piJ2] = [;] [pl (n - 1) = mo2 (n - 1), 
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[pV2] 
m 2 -o - - . 

n-l 
čili 

Správnou hodnotu součtu [ptj2] nemůžeme vypočísti, protože 
neznáme střední hodnoty vl'. J srna proto nuceni dosaditi za 
[pV2] přibližnou hodnotu, t. j. součet čtverců odchylek, náso­
bených příslušnými vahami [pv2], jak plyne z uvažované 
řady DlěřenÍ. Bude tedy přibližně 

., m 2 _. [pv
2 

J (15') 
o-n-I' 

Protože skutečp.á· chyba vyrovnané hodn.oty x' = ~~] jest 

[t:l, bude čtverec její 8tře~í hodnoty [viz I, (12")] 

1 { 2 mo2 2 mo2 2 mo2l_ mo2 

[p]2 Pl Pl + '1/2 P2 + ... + PA Pn J - [pf 

Tedy střední chyba vyrovnané hodnoty x' = [pX] jest 
[pl 

přibližně 

V [pv2]. 

± (n-l)[pT 
(16) 

Podobně střední chybu vyrovnané hodnoty (14') můžeme 
psáti 

1 

VIII' 2+2+"'+-2 ml m2 mA 

A střední chyba ve vzorci (14") bude rovna 

(16') 
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1 m"m" 

Vll - V~I + ma"e 
~I+ mgl 

( 16") 

Jde-li o přímá měření stejných vah {Pi = 1), bude střední 
chyba pro jednotku váhy rovna . 

"-

mo = ± V [tJl] , 
n-l 

(15") 

a střední chyba vyrovnané hodnoty, t. j. aritmetického 
středu x' = [~] : n jest , 

(16') 

,.-

Abychom mohli počítati 8 malými čísly, píšeme x, = d + Xi, 
kde d je vhodně zvolená přibližná. hodnota. Pak jest 

, 
x' = [px] = [p (d + t)] = d + [pt]. 

[p] [pl [pl 
(17) 

Dále bude . 

Vi = x' - x( = d+ [pi] -d -ti, = [pi] - ii. (18) 
[pl [Pl 

Pak 

tedy 

[pv2] = [pl [PiJ2 _ 2 [pij. [pi] + [pil] = [Pi"]- (PiJI. (19) 
[p]2 [pl [Pl 

Pro přímá měření stejných vah (Pl ~ 1), bude 
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X' = d + [t] : n, 
Vi = [i] : n - ii, 
[Vl] = [i'2] - [i]2 : n. 

(17') 

(18') 

(19') 



/ 

ó. Dvojice měřeni. a) Délky stran v polygonální 
síti se měří obyčejně dvaJirát, jednou při postupu vpřed (p) 
a po druhé při postupu zpět (z). Předpokládáme, že jsou 
přibližně stejné, a označíme délku naměřenou pro i-tou 
stranu písmenem lip resp. liz. 

Takovým a podobným měřením (na pře výškových rozdílů 
mezi dvěma sousedními výškovými značkami) se říká d vo-
• • y v , 

J lce merenl. 

Označíme-li liz -lip = d, (rozdíl, diferenci měření zpět 
a měření vpřed), budou vyrovnané hodnoty li' = t (lú + lip) 
a odchylky 

V • - 1 (l~- - l· ) - 1 d· v· - 1 (l· l. ) -- J rl . U - T W" Ip -""2" I' '2 -- ~ Ip - &Z - - yu',. 

Podle vzorce (15') bude střední chyba jednoho měření 

±~ (20) 

a podle vzorce (16') středlÚ chyba aritmetického průměru 
obou měření 

\ ± tdi~ (20') 

U važuj ~e nyní o rozdílech lu - lip = di pro i = 1, 2, ... , n. 

Označíme-li skutečné chyby veličin liz a lip písmeny' Eiz 

a ei", musí býti liz + Eiz = lip + eip, čili llz, -lip + (eů­
- eip) = o. Rozdíly eiz - Eip = - dú i = 1, 2, ... , n jsou 
tedy skutečné chyby rozdílů měření zpět a vpřed. 

Protože jsme předpokládali, že délky stran byly přibližně 
stejné, můžeme všem naměřeným délkám přisuzovati stejné 
váhy. Tedy i rozdíly di mají stejné váhy, jež volíme za 1. 
Pak střední hodnota těchto rozdílí., právě protože je můžeme 
považovati za skutečné chyby o váze rovné 1, je podle 
vzorce I, (10') rovna 

(21) 

Protože se váhy mají k sobě jako převrácené hodnoty čtverců 
středních chyb, budou podle vzorců (20) a (20') váhy jednot-



livých měření rovny 2 a váhy aritmetických středů rovny 4, 
takže příslušné střední chyby pro "fednotlivá měření jsou 

± V[d2
] : 2n (21') 

a pro aritmetické středy • 

± t V[d2
] : n. (21") 

b) Liší-li se značně délky stran (tratí), musíme předpoklá­
dati, že naměřené rozdíly mají nestejné váhy. Označíme 
váhu rozdílu di písmenem Pi, Při nivelacích na pře se klade 
váha rozdílu di rovna 1 : Si, kde Si je délka trati v km. To 
značÍ, že váhu rovnou jednotce přisuzujeme rozdílu d pro 
trať rovnou· 1 km. 

Abychom vypočetli v tomto případě střední hodnotu d' 
rozdílu pro váhu rovnou 1, musíme nejprve naměřené roz­
díly d převésti na rozdíly o váze rovné 1. To se stane tím, že je 
rtásobíme V Pi (viz II, odst. 3). Pak užijeme zase vzorce 
I, (10'), takže 

d' = ± V [pd2] : n . (22) 

Stejně jako v případě a) bude střední chyba; pro jedno měření 
a váhu rovnou 1 nebo střední kilometrová chyba pro 
jedno měření 

-t- V [pd2] : 2n . (22') 

A střední kilometrová chyba pro střed ze dvou mě-
řeníjest .-

(22") 

6. Příklady na vyrovnáni p'fmých měřelÚ. 1. Pro 
dobu kyvu kyvadla č. 5 bylo naměřeno 

0,50862228 soo, 
245,(188;217;305;278;247;328;211;159;316; 307). 

Jest vypočísti výslednou hodnotu, dále střední chybu pro 
jednotku váhy (t. j. střední chybu jednoho měření) a střední 
chybu výsledku. 
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Položíme d == 0,50862. Pak v jednotkách Io-a bude 

x,,== 228,(245; 188;217;305;278; 247;328: 211; 159; 316; 307); 

odtud [x] = 3029 a 11~[i] == 252, tedy výsledná hodnota 
0,50862252 sec. Pak zase v jednotkách 10-8 ~ude 

Vi == [x] : n -Xi == +24, (+7, +64, +35, -53, -26, +5, 
-76, +41, +93, -64, -55), 

Vi2 == 576, (49; 4096; 1225; 2809; 676; 25; 5776; 1681; 8649; 
4096; 3025). Odtud dostaneme [v2] == 32683 . 10-18• 

Podle vzorce ('15") bude 

mo == ± V2971 . 10-8 = ± 5,45 . 10-7 sec. 

A střední chyba výsledku podle vzorce (16') jest 

± V3~::3 .10-8 = + V247,6. 10-8 = ± ],6.10-7 sec. 

t1žijeme-li vzorce (19'), bude [X2].= 797251 . 10-18, 

[i]2 = 30292 • 10-18 = 9174841 . 10-18, tedy 
}~[i]2 == 764570 . 10-16 a konečně [v2] == 32681 . 10-16• 

Rozdíl mezi hodnotou [v2] vypočtenou podle vzorce (19') 
a hodnotou vypočtenou přímo z odchylek V ú je zaviněn za­
okrouhlováním při výpočtu vi resp. x'. Hodnota 32681 . 10-18 

je přesnější. 
Označíme-li chyl;>u ve výsledku, pocházející ze zaokrouhle­

ní, písmenem 8, budou správné hodnoty odchylek rovny 
Vi + 2, správné hodnoty jejich čtverců Vi2 + 2evi + e2 

a správná hodnota součtu čtverců odchylek . 

[v2
] + 2e [v] + ne2

• 

V uvažovaném případě je e == 0,42 .10-8, [v] = 
= - 5 .10-8, tedy 28 [v] = - 4,20 . 10-18• A protože 
n . e2 = 12 . 0,1764. lo-16-!.- 2,12 .10-16, je 28 [v]+ n82 == 
= - 2,08. 10-16• Proto byl součet čtverců odchylek, vy­
počtený přímo z odchylek Vi, o 2 jednotky řádu 10-18 větší 
než správnější hodnota vypočtená podle vzorce (19'). Oby­
čejně se omezujeme na přímý výpočet [v2] z odchylek t'i. 
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Aby byl při výpočtu přehled, je dobře prováděti výpočet 
·v tabulce, která. počítajícího sama nutí k 'pořádku. 

Předešlý příklad sestavený v tabulce bude: 

Tabulka ll. 

. [x] . 
Vi2 xi Vi=--Xi 

n 

228 +24 576 
245 + 7 49 
188 +64 4096 
217 +35 1225 
305 -53 2809 
278 -26 676 
247 + li 25 
328 -76 5776 
211 +41 1681 
159 +93 8649 
316 -64 4096 
307 -55 3025 

[xl = 3029 [vl = - 5 [Vl] = 32683 
lt"fx] = 252 

mo = ± VS2683: II = ± 5,45 . 10-7 seo; 

mo: Vn = ± 1,6 . 10-7 seo. 

Výsledek 0,50862252 ± 1,6 . 10-7 sec. 

• 

2 . .základna na české ,technice v Brně byla měřena po 
sobě čtyřmi různými invarovými měřítky (dráty a pásmy). 
Výsledky měření·) byly 

12004 cm + 0,755 cm, (0,684; 0,659; 0,703). 

Vypočísti výslednou hO,dnotu, střední chybu pro jednotku 
, 

*) A. Semerád: Podrol;»ná délková měřeni dráty a pásmy 
invarovými, Techn. Obzor 1916, tab. V. 
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váhy (t. j. pro měfenf jedním měřítkem) a střední chybu 
výsledku. 

(Výsledek 12004,100 cm ± 0,020 cm, m" = ± 0,041 cm.) 

3. Na stanici Trenk byly naměřeny pro úhel Mednicken-
Fuchsberg tyto hodnoty*) . 

83° 30' 36 25" , 
7,50, (6,00; 4,77; 3,75; 0,25; 3,70; 6,14; 4,04; 

6,96; 3,16; 4,57; 4,75; 6,50; 5,00; 4,75; 
4,25; 5,25). 

Vypočísti výslednou hodnotu, střední chybu pro jednotku 
váhy (t. j. pro jedno měření) a střední chybu výsledku. 

(Výsledek 83° 30' 34,87" ± 0,39", mo = ± 1,66".) 

4. Při ni velaci byly zjištěny tyto rozdíly dvojic měření 
v mm: d = - 0,6; +0,4; -0,6; -1,2; +2,4.**) Příslušné 
délky tratí v km byly 0,72; 0,42; 0,47; 0,48; 0,51. Jaká plyne 
odtud střední kilometrová chyba pro jedno měření a pro 
střed z obou měření? 

K výpočtu užijeme vzorce (22') a (22"), při čemž vá.hy p 
jsou rovny převráceným hodnotám délek tratí. 

Bude [pd2] = 15,94 a odtud střední kilometrová chyba 
pro jedno měření + V to [pd2] = + 1,26 mm a středIÚ l;tilo­
metrová chyba pro střed obou měření ± t Vt[pd2] == 
= ± 0,89 mm. 

5. Při určování času byly odvozeny tyto opravy chrono­
metru z pozorování 21 hvězd: 

-8788 , 
76, (85; 78;51; 64; 68; 63; 58; 80; 75; 78; 96; 64; 

65; 83; 70; 64; 79; 90; 93). 

*) Jordan: HandbuchderVermessungskmlde, I, Stuttgart, 
1904 (5. AufI.), str. 22. 

* *) J o r d a n, 1. c. str. 37. 
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Za předpokladu, že váha všech měření byla stejná, vypočtěte 
vyrovnanou hodnotu opravy chronometru, její střední 
chybu a střední chybu jtdnoho mťlření (střed~ chybu pro 
jednotku váhy) !*) 

(Výsledek - 8,748 ± 0,038 , mo == + 0,1178 .) 

6. Gravitační konstanta lc byla určena několikrát různými 
badateli: 

Cornu a Baille (1873) ........ . 
Poynting (1894) ............ . 
Boys (1894) ................ . 
Richarz a Krigar-Menzel (1896) 
Braun (1897) ............... . 

.. 

určili k = 6668 . IO-u 
6698 . 10-:-11 

6657 . 10--11 

6685 . 10-11 

6658 . 10--11 

Předpokládáme, že váhy těchto jednotlivých měření jsou 
stejné. Vypočtěte výslednou hodnotu pro gravitační kon-
stantu a její střední chybu! . 

(Výsledek: 6673,2 . 10-U ± 8,0 . 1{)-11.) 

7 . Pro určitou délku byly naměřeny tyto hodnoty: 

5000,7 mm při 6 měřeních, 5007,9 mm při 15 měřeních, 

4~97,1 mm při 6 měřeních, 5002,1 mm při 8 měřeních, 
;')001,9 mm při 15 měřeních, 5001,1 mm při 8 měřeních. 

Vypočtěte vyrovnanou hodnotu a její střední chybu i středIú 
chybu pro jednotku váhy za předpokladu, že váhy jsou rovny 
počtu měření! 

Zvolíme d == 4997,1 a počítáme v připojené tabulce po­
stupně ve sloupcích: Xi; Pi, [p]; PiXi, [px], [px]: [p]; 
Vi == [px] : [p] - Xi; Vi2 ; P,Vi2, [pv2]; mo' mo: V[p]. 

*) 'Wright-Hayford, 1. c. str. 37 a 43. 
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Tabulka m. 
• . V,2 pi1J,2 Zi Pi, Pix, v· , 

+ 3,6 6 21,6 +2,05 4,2025 25,2150 
+ 0,0 6 0,0 +5,65 31,9225 ·191,5350 
+ 4,8 15 72,0 +0,85 0,7225 10,8375 
+10,8 15 162,0 -5,15 26,5225 397,8375 
+ 5,0 8 40,0 +0,65 0,4225 3,3800 
+ 4,0 8 32,0 +1,65 2,7225 21,7800 

[Pl = 58 [px]=327,6 [PV1] = 650,5850 

[pi] : [p] = 5,65 

mo = ± V650,5S-50-:-5 = ± V130,1170 = ± 11,4 mm, 

mo: V[p] = ± VI30,1170:58 = ± 1,50 mm. 
Tedy výsledek z' = 5002,75 mm ± 1,50 mm. 

8. Na české technice v Brně byla změřena dvakrát tíže. 
V roce 1926 bylo naměřeno 980,9618 dyn, při čemž středru 
chyba byla ± 1,39 . 10-3 dyn. V r. 1928 bylo naměřeno 
980,9606 dyn se 'střední chybou ± 1,26 . 10-3 dyn. Určete 
výslednou hodnotu z obou měření (s ohledem na jejich váhy) 
a střední chybu výsledku. 

m 2Z +m 2Z 
Podle vzorce (14") bude z' = d + 2 : + 1 2 2. 

ml m2 
Zvolíme d = 980,96 dyn. Pak Xl = 0,0018, x2 = 0,0006; 
m1

2 = 1,9321, mo2
2 = 1,5876. TEdy 

x' = 980~ 96 + 0,004
2
°17 = 980,96 + 0,0011 = 980,9611 dyn. 

3,5 

Střední chyba výsledku je podle vzorce (16") rovna 

~_m_lm2 I'V39 . 1,26 . 10-3 = ± 0,93 . 10-3 dyn. Vm 1
2 ~- m2'l. - 3,52 
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Tedy výsledek 
980,9611 '- 0,93 . 10--3 dyn. 

9. Výsledky měření rozdílu zeměpisné délky mezi Washing­
tonem a Key West a příslušné pravděpodobné chyby byly 

. 
1873, prosinec 24 19m 1,42" 

26 1,37 
30 1,38 
31 1,45 

1874, leden 9 1,60 
10 1,55 
II 1,57 

±0,0448 

37 
36 
36 
46 
45 
47 

Určete výslednou hodnotu s ohledem na váhy a příslušnou 
střední chybu.*) . 

Ve vzorci (14') se vyskytují v čitateli i jmenovateli čísla 

1 o " d' . h klá . , v , hod 1 -2' muzeme te y mlsto IBC stl umerne noty 2' 
mi ~ 

neboť mi = 1,483Ti, [I, (31)]. 
, 

Pro Ti = 3,6 . 10-2 (3,7 . 10--2; 4,4 .10-2; 4,5 .10-2 ; 

4,6 . 10---2 ; 4,7 . 10-2) 

bude ; ~ 772, (730; 517; 494; 473; 453). 
Ti 

Klademe-li d = 19m 1,38 , bude Xi = + 0,12", (+ 0,07tJ ; 

+ 0,088
; + 0,158

; + 0,308
; + 0,258

; + 0,27~). 

Tedy podle vzorce (14') je [r~]: [r~ ] = 6!:i~1 = + 0,161, 

čili x' = 19m 1,4618 • 

A podle vzorce (16) hude střední chyba hodnoty x' rovna 

*) Wright-Hayford, 1. c. str. 72. 
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± 1,483 = ± 1,483 sec = ± 0,2288 • V[ rl.] V4211 

Tedy výsledek 19m 1,4618 ± 0,2288 • ' 

10. Rychlost,světla byla určena Fizeauem a jinými takto: 

298000 km ± 1500 km; 300 100 km ± 1500 km; 
298 500 km ± 1500 km; 299 930 km ± 150 km. 
299990 km ± 300 km; 

Jsou-li čísla uvedená na druhém místě pravděpodobné chy­
by, určete vyrovnanou hodnotu a její střední chybu.·) 

Zvolíme d = 299 900 km a za jednotku váhy zvolíme 
váhu měření s největší pravděpodobnou chybou (+ 1500km). 

2 2 

Podle vzorce p = :;2 = 1,4;; •. r 2 budou váhy příslušné 
pravděpodobn~'m chybá,m ± 300 km a ± 150 km rovny 

25 a 100. Při tom I = 1,483~~5001' čili 
mo = ± 1500 km .1,483. 

Bude tedy Xi = -1900, -1400, +90, +200, +30 
a příslušná Pi = I, I, 25, I, 100, [p] = 128. 

Tedy PiXt = -1900, -1400, +2250, +200, +3000, 
[pi] = + 2150. 

Od d [px] 2150 17 Vil· '2 k 
tu [p] =+ 128-=+ ,c 1 X = 99917 m. 

Středn1 ~hyba podle vzorce mo: V[p] bude 
1500 km ± V . 1,483 = ± 197 km. 

128 
Tedy výsledek 299917 km + 197 km . 

• ) Wright-Hayford, 1. c. str. 57-58. 
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III. 

VYROVNÁNI ZPROSTŘEDKUJ1ClCH M:EŘEN1. 

lt. V yrovnánf zprostfedknjfcfch m~l'enf. (Omezíme se 
na tři neznámé x, y, z.) Hledané veličiny x, y, z mají býti 

y • 

urcenv z rovmc .. 
a,x + b,y + CiZ == li, i == 1, 2, ... , n, (1) 

kde li, jsou výsledky měření; o skutečných chybách těchto 
rovnic předpokládáme, že ~e řídí normálním zákonem čet­
nosti a že nemají stejnou váhu. Pak pravděpodobnost, že 
v rovnici i-té nastane chyba v mezích <8i, 8i + de,), jest 

lt, h' I..J - dě d h v I rovna Vn e- i 'i ~i, a prav po o nost, ze nastanou 

chyby, které hudou po řadě v int.erva~ech <81,81 + de1), 

<~, 81 + ~>, ... , <EA' E. + de.), bude zase rovna součinu 
pravděpodobností [II, (12)] resp. výrazu [II, (12')]. 

Při tom jest a-ix + b,y + aiz == li + Ei, čili 

8i = a,x + b,y + CiZ -li· 

Který předpoklad o vyrovnaných hodnotách x, y, z, ... bude 
nejpravděpodobnější 1 Ten, pro nějž je pravděpodobnost 
[II, (12')] největší, tedy pro nějž je součet 

(2) 
nejmenší. 

Aby nastalo mjnjmum součtu (2), musí býti první parci­
ální derivace podle x, y, z rovny nule, t. j. musí býti 

I 88 A 
--= 2 piE".a, 

, 2 OX i=1 

, -, , O d pro x = x, y = y ,. z == z rovno ,te y 
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= [paa] x' + [pab] y' + [pac] z' - [pal] == o 
• a podobně I oS ft 

20y ==?pie,.b, 
1=1 

pro x == x', y = y', z == z' musí býti rovno 0, tedy 

[pb v ] == [pab] x' + [pbb] y' + [pbc] z' - [pbl] == O, 

a stejně (3) 

[pcv] == [pac] x' + [pbc] 1/' + [pec] z' - [pel] == O. 

Při tom 
t'i == a,x' + b;,Y' + CiZ' -li. (I') 

Váhu P. příslušnou i-té odchylkové rovnice odha­
dujeme podle toho, jaké jsou chyby měřených veličin, na 
nichž i-tá rovnice závisí, a jaký je jejich vliv na e,. Jestliže 
jediná měřená veličina v i-té rovnici byla veličina ll, bude Pi 
její váha. Někdy se však stává, že váhu rovnice určuje jiná 
měřená veličina než li, jestliže její vliv na e, převažuje nad 
vlivem chyby v li (viz pře 2 v odst. 9). 

Chceme-li ukázati, zda nastane pro x == 'X', Y == y', z == z' 
maximum nebo minimum, uvažujeme, jak se mění součet S 
v okolí bodu IX == x', Y == y', z == z'. 

Pro x == x' + E, y == y' +~, z == z' + C bude 

" 
S == ~Pi{ai (x' + E) + bi (11' + 1]) + Ci (z' + C) -ldl = 

;'<:31 

ft 

== ~ Pi {a,x' + biy' + c,z' - li + a,E + bVJ + CiC}2 == 
i=l == [paa] X'2 + 2 [pab] x'y' + [pbb] y'2 + 

+ 2 [pac] z'z' + 2 [pbc] y'z' + [pec] Z'I­

- 2 [pal] x' - 2 [pbl] y' - 2 [pel] z' + [Pll] + 
+ 2E {[paa] x' + [pab] y' + [pac] z' - [pal]} + 
+ 2'YJ {[pab] x' + [pbb] y' + [pbo] z' - [pbl]} + 
+ 2' {[pac] x' + [pbc] y' + [poo] 'z' - [pel]} + 
+ [paa] E2 + 2 [pab] E17 + [pbb] 172 + 2 [pac] EC + 
+ 2 [pbc] f}C + [pec] C2

• 
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Podle rovnic (3) jsou koeficienty u 2E, 21} a, 2C rovny 0, takže 

S == [paa] X/2 + 2 [pab] x'y' + [pbb] y/l + 2 [pac] z'z' + 
+ 2 [pbc] y' z' + [pec] Z/2 - 2 [pal] x' - 2 [pbl] y' - 2 [pel] z' + 

" + [pll] + ~Pi (ař~2 + 2acbi~1} + břrJ2 + 2aiei~C + 2b,-c(f}C + 
i=l + C,2C2). 

První část výrazu na pravé straně je hodnota součtu 8 pro 
ft 

x = x', y = y', Z = z'. Druhá část je rovna LPi (ai~ +. 
i=l + bítI + eiC)2, je tedy vždy kladná. Z toho je patrno, že 

součet S je v bodě x = x', y = y', Z = z' menší než pro 
všechny body v okolí; je tedy v bodě x', y', z' minimum. 

2. Řešeni nor1flálnich rovnic postupem Gaussovým. 
Souětové kontroly. Nechť jd~ o řeěení t.ří normálních 
rovnic o třech neznámých x', y', z'" Rovnice jsou 

[paa] x' + [pab] y' + [pac] z' = [pal], 
[pab] x' + [pbb] y' + [pbc] z' = [pbl], (3) 
[pac] x' + [pbe] y' + [pec] z' == [pel]. 

I 

Jak patrno, mají souměrný tvar vzhledem k úhlopříčce, 
jdoucí členy [paa], [pbb], [pec]. 

Řešení soustavy (3) se často provádí t. zv. postupem 
Gaussovým. Násobíme prm z rovnic (3) po řadě čísly 
{[pab] : [paa]} , {[pac] : [paa]} a odečteme od druhé resp. třetí 
z rovnic (3). Tak vyloučíme neznámou x' a dojdeme k sou­
sta vě redukovaných rovnic: 

{ [pbb] - [pab] . [pabJ} y' + {[pbe] - [paeJ[pabJ} z' == 
[paa] [paa] 

= {[pill] - [pal] =n, 
{ [pbeJ - [pab] . [paCl} y' + {[pec] _ [pac] [paC]} z' == 

[paa] [paa] 

(4) 
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= {o [pel] _ [pal] [pac]}. 
[paa] 

Zavedeme obvyklé zkratky a píšeme rovnice (4) ve tvaru 

[pbb . 1] y' + [pbc . 1] z' == [pbl . 1], 
[pbc . 1] y' + [pcc . 1] z' =-: [pcl . 1]. 

Význam zkratek je patrný ze srovnání rovp.ic (4'l a (4). 

(4') 

Podobně vyloučíme z rovnic (4') neznámou y'. Výsledná 
redukovaná rovnice jest 

{[pec . 1] - [pbc . 1] . ~~: : ! n z' = 

{ 
[pbe . 1 J} 

== [pell] - [pbl lJ ----- - -. .. [pbb . 1 J ' 
(5) 

a zavedeme-li obvyklé zkratky 

[pcc . 2] z' =. [pcl .. 2]. (5') 

Význam zkratek je zase patrný ze srovnání rovlůce (5') a (5). 
Docela podobně se postupuje pH libdvolném počtu nezná­
mých. 

Aby výpočty byly krok za krokem kontrolovány, prová­
dějí se t. zv. součtové kontroly. K čÍslúm ai, bi, Ci, li při­
pojíme součty 

ai + bi + Ci + li = si· 

Počítáme součty součinů 

[paa], [pab J, [pac], [pal], [pas], 
[pbb], [pbc], [pbl], [pbs] , 
. [pcc], [pel], [pes]. 

(6) 

Násobíme-li každou z.rovnic (6) součinem PiQ.i a sečteme pro 
i == 1, ... , n, dostaneme 

[paa] + [pab] + (pac] + [pal] = [pas]. 

Podobně 
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[pab] + [pbb] + [pbc] + [pbl] = [pb8], 
[pac] + [pbC] + [pec] + [pel] = [pcB], (6') 
[pal] + [pbl] + [pel] + [PUl = [PlB]. 

Znásobíme-li prVIÚ z rovnic (6') číslem [pab]: [paa], odečte­
me-li od druhé a zavedeme-li obvyklé zkratky, dostaneme 

kde 
[~b . 1] + [pbc. 1] + [pbl. 1] = [PbB. 1], (6" 1) 

• 

[pab] 
[pb8 .1] = [pb8] - [pa8] . [paar 

Podobně jest 

[piJe . 1] + [pec . 1] + [pel . 1] = [PcB . 1], (6" I) 

Ude [pac] 
[pcB . 1] = [pcB] - [paB] . [paa] . 

[paa] I 

[pab] 

- [pab] 

[1'00] 

- [pac] 
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[pab] 

[pbb] 

_ rh'VIJ..] ~pab] 
~ • [paa] 

[pbb. 1] 

[pbc] 
[pac] 

- [pab] . [pciá j 

[pbc • 1] 

[pbc. 1] 

- [pbc. 1] 

I 

Tabulka 

[pac] 

[pbc] 

- [pac] • ~::~ 
[pbc • 1] 

[pec] 
[pac] 

- [pac] • [paaj 

[pec • 1] 

[pec • 1] 
. [pbc 1] 

- [pbc • 1] [pbb 1] 

[pec. 2] 



Znásobíme-li první z rovnic (6") číslem [pbb . l]:[pbc. 1] a 
odečteme-li od druhé, plyne (zavedeme-li obvyklé zkratky): 

[pec . 2] + [pel. 2] = [pc8 . 2], (6,n) 

kde 
~ 

. [pbc. 1] 
[pes · 2] = [pc8 · 1] -. [pb8 · 1] . [pbb . 1] . 

Výpočet normálních rovnio se pro přehlednost provádí 
obyčejně ve formuláři. (Viz tabulku IV.) 

Součet čísel v prvních čtyřech sloupcích má býti v každém 
řádku formuláře roven číslu v tomtéž řádku a v předposled­
ním sloupci - ovAem až na chyby plynoucí ze zaokrouhlo­
vání. 

IV. 

[pal] I [pa8] I Zkouška 
I 

[Pbl] [pb8] 
. 

" 
-[pal] .~~ - [pas] [pab] 

• [paa} " 
[pbl • 1] [pbs. 1] 

" 
.-

[pel] I [pes] 
" 

- [pal] [pac] 
• [paa] 

- [pa8] [pac] 
. [paa] " 

[pel • 1] [pes . 1] " -
(pc .. 1] [pes . 1] 

" I 

[pbe .1] [pbe .1] 
- [pbl . 1] [pbb-.1] - [pb8 . 1] [pbb. 1] " 

[pel. 2] I [pes . 2] I 
" . I 
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Popsanou red ukcí došli jsme k těmto rovnicím pro ne-
známé x' y' z': 

[paa] x' + [pab] y' + [pac] z' = [pal] (71 ) 

[pab] x' + [pbb] y' + [pbc] Z' = [pbl] (72 ) 

[pac] X' + [pbc] y' + [pec] z' == [pel] (73) 

[pbb. 1] y' + [pbc. 1] z' == [pbl. 1] ,(7'1) 
[pbc . 1] y' + [pcc . 1] z' == [pel. 1] (7'2) 

[pec. 2] z' == [pel. 2]. (7") 
Z rovnice (7") vypočteme z' a dosadíme do předcházejících. 
Z rovnice (7 ' 1) vypočteme y' a kontrolujeme výpočtem z ro~­
nice (7 /

2), Dosadíme do předcházejících rovmc, vypočteme 
ze (71 ) neznámou x' a kontrolujeme výpočtem z rovnice (72) 

nebo (73), 

V dalším výkladu užijeme jiného postupu, který je výhod­
ný při zvláštIÚch hodnotách prostých členů rovnic (3).' Píše­
me rovnice (71), (72 ) a (73 ) ve tvaru 

x' + [pab] y' + [-~] z' = [~~, 
[paa] [paa] [paa] 

, [pbc . 1], [pbl . 1] 
Y + [pbb . 1] z == [pbb~' (H) 

I [pel . 2] 
z == -- . 

[pec . 2] 

K první rovnici přičtěme druhou, násobeno u číslem Al 
a třetí, násobenou číslem A 2• Dostaneme 

, ([pab] ), ([paC] A [pbc. 1] ) I 

X + [paa] + .A l Y + [paa] + 1 [pbb . 1] + A 2 Z == 
_ [pal] + A [pbl. 1] A [pc~_~~ 
- [paa] 1 [pbb . I] + 2 [pec . 2] . 

Zvolíme čísla Al' A 2 tak, že koeficienty u y' a z' v této rovnici 
jsou rovny nule, t. j. vypočteme Al' A 2 z rovnic 

[pabJ [pa.c] [pbc . 1] 
[paa] + Al = 0, [paa] + Al [pbb . lJ + A 2 == O. (9) 
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Pak hude 
, _ [pal] + A [pbl. I] A [pel. 2] 

x - [paa] 1 [pbb'. I] + 2 [pec. 2] . (10) 

Přičtěme ke druhé z rovnic (8) třetí, násobenou číslem Bl. 
Určíme-li Bl tak, že 

[pbc . I] 
[pbb . I] + Bl == O, (9') 

bude [pbl . I] [pel . 2] 
Y == [pbb . I] + Bl [Pec ~ 2-j . ( 10') 

Třetí neznámá plyne z 'rovnice 

, [pel. 2] z == . -... 
[pec. 2] 

(10") 

. 
3. Sti'ednf chyby neználných x', y', z' a střednf chyba 

lineárnfho výrazu rp == fo + fIX' + f2Y' + f3z'. Řešíme-li 
normální rovnice (3) pomocí det.,.minantů, dostaneme 

. [pal], [pab], [pac]' 
x' == [pbl], [pbb], [pbc]! 

~ [pel], [pbc], [pec]: 
I . , 

a podobně y', z'. 

'[paa], [pab], [pac] 
,[pab], [pbb], [pbc] 
[pac], ~c], [~] 

(.11 ) 

Uvažme, že [pal] == Plal~ + PCPJ2 + ... + p"a"l" a stejně 
pro ostatIÚ čísla z prvního sloupce v prvním determinantu. 
Tento determinant můžeme tedy rozložiti v n determinantů, 
z nichž prvm bude míti jako násobitele~, druhý l2 a poslední 
lJ&. Je tedy patrno, že x', y', z' se dají psáti ve tvaru 

x' == lX1l1 + Jl,2l2 + ... + lX "1,,, 
y' == {Jl~ + {J,j,'I,' + ... + {J"l", (ll') 
z' == Yl~ + yJ2 + ... + Ynl"" 

kde !Xl' •.• ,y" nezávisí na li, (i== 1, ... , n). 

Jsou-li skutečné chyby veličin ll' ... , ln po řadě Cl' ... , E'Ih 

jest skutečná chyba na př. veličiny x' rovna lX1cI + ... + <XnCn. 
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Přisuzujeme-li veličinánl ll' ... , 'fl, po řadě váhy Pl' ... , PtI 

a označíme-li střední chybu pro jednotku váhy písmenem mo, 
je podle (I, odst. 6) střední hodnota veličiny li rovna mo : V Pi. 

Předpokládejme, že chyby Ei sledují normální zákon čet­
nosti. Pak střed,ní chyba mz, výsledku x', jehož skutečná 
chyba je lXlel + ... + lX"e" bude rovna [(I, 12")] 

V 2 2 2 V[ 2] 2 m O 2 m O 2mO lX ± lXI - + lX2 - + ... + lX" - = mo -. 
Pl P2 P" P 

'Označíme-li ještě váhu veličiny x' značkou Pa;' , je 

mo V[~2 : p] = mo : Vpz' [viz I, (16')]. 

Podobně střední chyba m7l , veličiny y' je rovna 

• 
mo V[f32 : p] = mo: V py', 

a střed.tú chyba mz' veličiny z' je rovna 

mo V[,,2 :p] = mo : VPz" 
kde značí P7I', pz' váhy veličin y~ a z'. 

Součty [lX2: p], [f32: p], [1'2: p] určíme takto: Násobme 
normáhú rovnice (7) po řadě čísly Qll' Q12' Ql8 a sečtěme. 
Bude 

x' {[paa] Qll + [pab] Ql2 + [pac] Q13} + y' {[pab] Qll + 
+ [pbb] Q12 + [pbc] Q13} + z' {[pac] Qll + [pbc] Q12 + 
+ [pec] Q13} = [pal] Qll + [pbl] Ql2 + [pel] QIS· 

Určíme-li čísla QIV Q12' Ql3 z roVJŮc 

[paa] Qll + [pab] Ql2 + [pac] Ql3 = 1, 
[pab] Qll + [pbb] Ql2 + [pbc] Ql3 = 0, (12) 
[pac] Qll + [pbc] Ql2 + [pec] QIS = 0, 

bude 

x' = [pal] Qll + [pbl] Q12 + [pel] Ql3 = ~ (PlalQll + .Plb1Q12 + 
+ PICtQI3) + l2 (P?fL2Qll + P2b2Q12 + P2C2Q13) + ... + 
+ ln (Pl1a"Qll + P"b"Q12 + P"CnQ13)· 
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Srovnáním s rovnicemi (ll') plyne 

LX, = P~&l1 + p/J&12 + PiCÍJ13 , i ~ 1, 2, ... , n. (12') 

Odtud 
, 

LX;,2 : Pi = (PP&l1 + P/J1J12 + P~,QlS)(a&ll + b&12 + C&13)' 

Tedy • 

[LX2 : p] = {[paa] Qll + [pab] Q12 + [pac] Q13} Qll 4-
-r- {[pab] Qll + [pbb] Q12 + [pbc] Q13} Ql2 + {[pac] Qll + 

+ [pbc] Ql2 + [pec] Q18} Q13· . 
A podle rovnic (12) jest [ťX2 : p] == Qll. 

Součet [lX2 : p] je tedy roven veličině Qn, plynoucí z rovnic 
(12). Abychom Ql1 určili přímo z koeficientů normálních 
a redukovaných rovnic, užijeme postupu vyloženého na konci 
předcházejícího odstavce. Jen musíme uvážiti, že zde místo 
[pal], [pbl], [pel] jest 1, 0, 0, tedy místo [pbl. 1] jest nyní 

- [pab] : [paa] = Al' (13) 

[viz (4), (4') a (9)], místo. [pel. 1] jest - [pac] : [paa] 

[viz (4) a (4')] a místo [pel . 2] ~ude nyní 

- [pac] : [paa] - Al [pbc . 1] : [pbb . 1] == A 2 (13') 

[viz (5), (5') a (9)]. Tedy z rovnice (10) vyp1ývá 
1 A 2 A 2 

Qll ~ [paa] + [pbb
l

. 1] + [Pcc
l

• 2] . 
( 13") 

Abychom určili součet [/12 : p], násobíme normální rovnice (3) 
po řadě čísly Q21' Q22' Q23 a Rečteme. Určíme-li čísla Q21' Q22' 
Q23 z roynic 

[pO,a] Q21 + [pab] Q22 + [pac] Q23 == 0, 
[pab] Q21 + [pbb] Q22 + [pbc] Q23 == 1, .(121) 

[pac] Q21 + [pbc] Q22 + [pec] Q23. == O, 
bude 

y' == [pal] Q21 + [pbl] Q22 + [pel] Q23 
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a odtud 

Ih, == P~-a,1J21 + Pib,Q22 + PiC,Qaa, i == 1,2, ... , rl, (12'1) 

a [ft2 : p] == Q22' 

Součet [lJ2 : p] je tedy roven veličině Q22' plynoucí z rovnic 
(121). Abychom jej určili přímo z koeficientů normálních 
a redukovaných rovnic, musíme uvážiti, že zde místo [pal], 
[pbl], [pel] jest O, 1, O, tedy místo [pbl . 1] je nyní 1 a místo 
[pel. 1] je O; odtud plyne, že místo [pcl. 2] bude nyní 

• - [pbc . 1] : [pbb . 1] == Bl' (14) 

Tedy z rovnice (10') hude 

I B 2 
Q - -- --- + ------~--

22 - [pbb . 1] [pec. 2]" 
(14') 

Abycholll konečně určili součet [1'2 : p], násobíme normální 
rovnice (3) po řadě čísly Q3l' Q32' Qas a sečteme. Určíme-Ji 
čísla Q3l' Q32' Qaa z rovnic 

[paa] Q31 + [pab] Q32 + [pac] Q33 == 0, 
[pab] Q31 + [pbbJ QS2 + [pbc] Qaa == 0, (122) 

[pac] Q31 + [pbc] Q82 + [pec] Q38 == I, 
hude 

z' == [pal] Q3l + '[pbl] Q32 + [pcl] Q33' 
a odtud 

'Yi = Pia iQ31 + P,b,Q32 + P,CiQ33, i == 1, 2, ... , n (12'2) 

a, 

[y2 : p] == Q33' 

Součet [y2 : p] je tedy roven veličině Q33' plynoucí z rovnic 
(122), Abychom jej určili přímo z koeficientů normálních 
a redukovaných rovnic, musíme uvážiti, že zde místo [pal], 
[pbl], [pel] jest 0, 0, I, tedy místo [pbl. 1] jest ° a místo 
[pel : 1] hude 1; odtud plyne, že "místo [pel . 2] bude nyní 1 
a tedy z rovnice (10") jest 

Q33 == 1 : [pec. 2]. (15) 
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Můžeme tedy psáti 

m,,' = V"';..' = mo V f~ + [Pb~l~i] + [~2~ 2] , 

mo V 1 B12 
mll' = V PII' = 1lIo [pbb . l] + [pec. 2] , (16) 

m., = V~, = 1lIo V[~. 2]· 

Při tom Al' A2' Bl plynou ze vzorců (13), (13') a (14). 
Z rov~ic (12') a (12'1) pro (Xi a Pi plyne: 

tXi{Ji : Pi = (Piťl,Qll + plJ,Q12 + P,C,QlS) (a,Q21 + b,Q22 + 
+ CiQ23) = (PctlP,Qll + P(lL,bt,Qll+ p,a,c,Q13) Q21 + (p,,-aÍJ&l1+ 

+ p,bibiQ12 + PibiCiQlS) Q22 + (pp iCiQn + P,-bi CiQ12 + 
+ PjCiCiQ13) Q23' 

Sečteme-li pro všechna 1: == I, "', n a použijeme-li rovnic 
(12), bude 

Ale jest také 

at.t,{Ji : Pi = (a,Qll + b&12+ e,.(JlS) (p,aiQ2l + pj)iQn + p(C"Q 23) = 
= Qll (PPP,Q2l + PILi);,Qn + Pia'CiQ28) + Q12 (p,-aIJ,Qn + 
+ p/J;,b&J2 + PÍJ,C,Q23) + Q13 (P,-at,C,Q21 + PÍJiC&22 + PiC,-c,Qn)' 

Sečteme-li zase pro vAoohna i a použijeme-li rovnic (121 ), bude 

[~,B : p] = Q12' 

Z toho je patrno, že Q12 == Q21' Stejně plyne 

(17) 

-Střední chyba lineárního výraz u l/J == 10 + 11~' + 
+ 12Y' + laz'. Dosadíme-li sem za x', y', z' ze vzorců (ll'), 
bude 

n n n 

rp = 10 + f12cxili + f;'iPili + I~Y"i = 
i=1 i=l i-I 
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" = 10 + 2(/lcx, + 12P, + fa'Yi) li' 
i-I 

Podle vzorce [I, (12")] hude tedy čtverec střední chyby vý­
razu (/) roven 

ft m2 
m.2 = i~ (/IlXi + IJl. + lay,)2 P: = 

= ~2{/12[;] + M2[lXp1 + iJ3[1X:] + 

+ !Jl[~] + f22 [P:J + !Jať;] + 

+ Ml [IX:] + M2 r:] + la2 ['1; ]}. 
A zavedeme-li veličiny Ql1' Q12' ... , Q33' bude 

m~2 = m02 {/l(/lQl1 + /2Q12 + laQls) + /2(flQ21 + /2Qn + 
+ /sQ23) + /a(flQal + /2Qa2 + fsQ33)}' (16') 

Veličiny QIV Q12' o •• , Qaa plynou z rovnic (12), (121) a (122), 

4. Co znamená anulováni determinantu ~ soustavy 
normálnfch rovnic! Je-li v soustavě (3) LI = 0, existují 
čísla i, y, ž, jež nejsou všechna rovna 0, a jež splňují rovnice 

[paa] i + [pab] Y + [pac] ž = 0, 
[pab] i*" [pbb] tj + [pbc] i = 0, (3') 
[pac] x + [pbc] li + [pec] ž = o. 

Nyní uvažujme o hodnotách ti = a,i + b(Ů + ciŽ, i = 1, 
2, ... , n. Násobíme-li je p,o(J", p,bi , PiCi a sečteme-li vždy 
pro všechna i, bude 

[pat] = [pbt] = [pctJ = O. 

~ásobíme-li hodnotu tl součinem Pit, a sečteme-li pro vše· 
chna i, dostaneme I 

[1),2] = [lJat] x + [pbt] iJ + [pct] Z, 
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tedy podle předcházejících rovnic [pt2] = 0, t. j. musí 

ti = aii + bi'Ů + ciŽ = 0, i = 1, 2, ... , n. (18) 

,Te-li tedy determinant Ll = 0, musí mezi koeficienty odchyl­
kových rovnic (1) býti vztahy (18). 

Naopak jsou-li mezi koeficienty odchylkových rovnic (1) 
vztahy (18), plynou z nich, násobím~-Ii je P,-Q;i, p,b" p,c, a se­
čteme-li pro všechna i rovnice (3'), kde všechna čí~la X, 'fl, ž 
nejsou rovna O. To však vyžaduje Ll = O. 

Jsou-li mezi koeficienty odchylkových rovnic (1) vztahy 
(18) a předpokládáme-li na pře Ž =F 0, píšeme 

x 'fl 
CI' = -·a,; - - bl -, ... . , z z 

tedy z odchy lkových rovnic (1) bude 

a. ( x - : z) + b, (y - ~ z) - li = v,. 

Z těchto odchylkových rovnic nevypočteme tedy hodnoty 
neznámých x, y, z, nýbrž jen hodnoty výratů 

i 
x--z a 

Ž 

y 
y- --;- z., 

Z 

Zmenšuje-li se' determinant Ll, zvětšují se koeficienty Qn, 
Q22' Q33· Ze vzorců (12), (121), (122) plyne totiž 

'1 1 Qu = - [Pbb], [pbc] Q22 = - [paa], [pac] 
Ll [pbc], [pcc] , Ll [pac], [pec] , 

Q _ 1 [paa], [pab] (19) 
33 - ~ [pab], [pbb] . 

-

Ze vzorců mz , = moVQllJ mg' = moVQ22, mz , = moVQ33 a ze 
vzorců (19) je patrno, jak roste střední chyba výsledných 
hodnot, zmenšuje-li se determinant Ll. 
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o. St.řední chyba mo pro jednotku váhy. Protože váha 
i-té odchylkové rovnice jest P~, bude střední hodnota chyby f" 
rovna mo : V Pi' Ze vzorců 

Vi = aix ' + biy' + CiZ' -lú Ei = aix + biy + CiZ -I,,:, 

(viz III, odst.1 I), kde Vi značí odchylky a Ei skutečné chyby 
i-té odchylkové rovnice, plyne 

Vi - Ei = ai (x' - x) + bi (y' - y) + Ci (z' - z). 

První ze vzorcli (ll') jest x' = (XI'I + ()(,2~ + ... +'Xn1n, 
při čemž z rovnic (12') a (12) plyne 

tedy 
[ alX] = 1, [ blX] = O, [ClX] == O, 

[VlX] = [alX] x' + [blX] y' + [c<x] z' - [llX] = x' - [leX], 
což je podle prvního ze vzorců (ll') rovno O. 

Násobíme-li tedy rovnici Vi - Bi. == a" (x' - x) + bi. (y' -
- Y) + Ci (z' - z) po řadě ()(,i a sečteme pro všechna i, bude 

- [~E] = x' - x a stejně- [PE] = 'y' - y, - [ye] , z' -z. 

Odtud ~ 

t' .. = Ei - aj [tXe] - bi [Pe] - Ci [ye] = - El (aj:xI + biPI + 
+ CC/l) - E2 (aiťX2 + bJ32 + CO'2) - ... + Bi {I - (ai<Xi + 
+ biPi + CiYi)} - ... - EM (ai()(,n + biP" + C~'Yn)' 
Ze vzorce [I, (12")] vypočteme čtverec střední hodnóty Vi, 

který označíme Vi2 • Bude 

m 2 m 2 

Vi2= _o (ailXI + bi/31 + C"YI)2+ _0_ (ai()(,2+ bi .82+ CtY2)2 + ... 
Pl' P2 
m 2 m 2 

... + ~ {I - (ai()(,i + bd3i + Ct.'Yi)}2 + ... + ~ (ailXn + 
Pi Pn 

+ b;f3n + C.y,,)2 = mo2 {ai2 [~] + 2aJJ, [~] + bi2[~] + 
. + 2n.i Ci [<XY] + 2b-iCi [PI'] + Ci2 [",2] + _\_ - 2ai ťX~ _ 

P P !p p" pf, 



- 2 b· Pi - 2 c. B} " ", Pi Pi 
čili 

P~i2 = mg2{PIS~ [~] + 2ptfllJ. [~]+ 2plJ~ [~2] + 

+ 2p,-aict [~] + 2pth~i [ P; ] + Pict2 [~] + 1 - 2ai(X; -

- 2bJ3i - 24."d· 
Pak bude součet 

[půl] = 11102 {[paa] [IX
I

] + 2 [pab] [~] + [pbb] [pa] + 
P .' P P 

+ 2 [pac] [IX:] + 2 [pbc] [~] + [pec] [~] + 
+ n - 2 [a(X] - 2 [bfJ] - 2 [cy]}. 

Užijeme-li označení Qn, Q12' .. " Q33 (viz III, odst. 3), bude 

[pV2] = mo 2 {([paa] Qll + [pab] Q12 +\ [pac] Q1S) + 
+ ([pab] Q21 + [pbb] Q22 + [pbc] Q23) + ([pac] QSl + [pbc] Q32+ 

+ [pec] Qaa) + n - 2 [alX] - ~ [bfJ] - 2 [cy]}. 

Užijeme-li yzorců (12), (121 ) a (122), dostaneme 

[pV2] = mo2 {3 + n - 2 [alX] - 2 [bfJ] - 2 [cyl}. 

Ze vzorců (12'), resp. (12'1)' (1"2'2) násobíme-li je a, resp. 
bi a Ci a sečteme-li pro věechnai, plyne [alX] = [bfJ] = 
= [cyl = 1, tedy 

a odtud 

(20) 

Správnou hodnotu součtu [pV2] nemůžeme vypočísti, protože 
neznáme střední hodnoty 'Úl'. Jsme proto nuceni dosaditi za 

) [pVl] přiblilnou hodnotu, t. j. ten součet čtverců odchylek 
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• 
násobených příslušnými vahami [pv2], který plyne z uvažo­
vané řady měření. Bude tedy přibližně 

m 2 _. [pv2] (20') 
o - n -3· 

V případě k neznámých bychom odvodili stejně 

m 2 _. [pv2] (20") 
o -'n-k· 

V kapitole II-IV předpokládáme, že se chyby, které zatě­
žují měření, řídí normáJním zákonem četnosti. Výpočet 
chyby mo pro jednotku váhy v tomto odstavci je však založen 
na vzorci I, (12"), který byl Qdvozen za předpokladu obec­
nějšího (viz I, odst. 4),. Platí tedy vzorce (20') a (20") nejen 
v případě, že se chyby veličin li řídí normálním zákonem 
četnosti, nýbrž i tehdy, jsou-li na sobě nezávislé a je-li jejich 
funkce četnosti sudá funkce. 

6. V ýpo~et sou~tu [pvv]. a) Přímá cesta. Dosadíme hod­
noty x', y', z', vypočtené z normálních rovnic (3) do levých 
stran odchylkových POvnic 

aiX' + biy' + CiZ' - l, = v, . • 
(1') 

Tak vypočteme odchylky Vi, odtud V,2, P,Vi2 a součet 

~PifJl' = [pv2]. Tento způsob je sice zdlouhavý, ale posky-
i 

tuje současně i jednotlivé odchylky Vi. Z jejich průběhu usu-
zujeme, mají-li vlastnosti nahodilých chyb či je-li na nich 
patrný nějaký systematický vliv (viz kap. V). 

b ) Nepřímá cesta. 
eX) Z rovnic (1') plyne 

[pvv] == ~p, (a,x' + biy' + Ci,Z' -li)2 == Z(p,o(l,X' + Pib,y' + 
i i 

+ p,C(Z' -Pi'i) (a,x' + biY' + CiZ' -li) == ([paa] x' + -
+[pab] y' + [pac] z' - [pal]) x' + ([pab]x' + [pbb] 11' +[pbc] z'­
- [pbl]) y' + ([pac] x' + [pbe] y' + [pec] z' - [pel]) z' -

- [pal] x' - [pbl] y' - [pel] z' + [pll]. 
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Protože x', y', z' splňují normáhú rovnice, jsou první tři 
členy rovny O a tedy ., 

[pvv] = [pll] - [pal] x' - [pbl] y' - [pel] z'. (21 ) 

{J) Vyloučíme-li z tohoto vzorce pomocí redukovaných 
rovnic hodnoty x'" y', z', dojdeme k novému vzorci. Protože 
jest 

x' + l~b] , + [pac] z' = [pal] , (8) 
[paa] y [paa] [paa] 

hude, vyloučíme-li x', 

[pvv] = [pU] - [pal] ~] - ([pbl] - [pal] ~~) y'-

- ([pcl]-[pal] ~:~) z', 

a zavedeme-li zkratky [pbl. 1] a [pel. 1] [srovn. (4') a (4)], 
hude ' 

[pvv] = [pll] - ~; - [pbl . 1] y' - [pel. 1] z'. 

Protože je dále 

, 

, [pbc . 1], [pbl • I] 
Y + [pbb . II z = [pbb . I i' 

hude, vyloučíme-li y', 
, 

[pal] 2 [pbl. 1]2 ( 
[pvv] = [pu] - [paa] - [pbb . 1] - [pel. 1]-

_ [pbl 1] [pbe _~ 1]) z' 
. . [pbb . 1] 

a zavedeme-li zkratku [pel. 2] [srovn. (5') a (5)], jest 

[pal] 2 [pbl.I]2 , 
[pvv] = [pll] - [paa] - [pbb . I] - [pel. 2] z . 
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• 
A protože· 

, [pel. 2] 
z = [pec . 2] , (8) 

dostaneme konečný vzorec ve tvaru 
[pal] 2 [pbl . 1]2 [pel . 2]2 

[PVv] = [pll] - [paa] - [pbb . 1] -, [pec . 2] . (22) 

7. Pl'ipad dvou neznámých a pl'ípad jedné neznámé. 
a) V případě dvou neznámých přejdou rovnice (1') v rovnice 

aix' + biy' - li = v,. 

Normální rovnice JMOU 

[paa] x' + [pab] y' = [pal], 
[pabJ x' + [pbb] y' = [pbl]. 

Redukované rovnice jsou 

[paa] x' + [pab] y' = [pal], 
[pbb . 1] y' = [pbl. 1]. 

Střední chyba m x , = moVQn, my' = moVQ22' při čemž Qn, 
Q22 a Q12' Q21 plynou z rovnic 

resp. 

[paa] Qn + [pab] Q12 = 1, 
[pab] Qll + [pbb] Q12 = 0, 

[paa] Q21 + [pah] Q22 = 0, 
[pah] Q2l + [pbb] Q22 = 1, 

... 

ne bo ze vzorců 

1 A12 [pab] 
Qu = tptZa] + [pbb .1]' kde Al = - [paaJ' a 

1 
Q22 = [pbh. 1] . 

Součet [pw]sepočítá bud přímo z odchylek Vi, nebo nepřímo 
ze vzorce 
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[pvV] = [pll] - [pal] x' - [pbl] y' = 
= [ ll] _ [pal]2 _ [pb~-=-I ]~ , 

p [paa] [pbb, I] 

Střední chyl>a pro je~otku váhy plyne ze vzorce 

m 2_' [pv2] 
0- n-2' 

b) V případě jedné neznámé přejdou rovnice (I') v rovnice 

aix ' -li == Vi' 

_Normální rovnice jest [paa] x' == (pal], 

Střední chyba m:e' == moVQll' kde Qll plyne z rovlůce 
I 

[paa] Ql1 = I, tedy Qn == [paa] , 

Součet [pvv] dostaneme ve tvaru 
[pvv] == [pll] - [pal] x' = 

== [pll] _ [pal]2 , 
[paa] 

Střední chyba pro jednotku váhy plyne ze vzorce 

m 2~ [pv2] 
O-n--l' 

Ještě jednodušší případ, kdy a, == 1 (přímá měl'ení nestejné 
váhy), vede ke vzorcům 

I [pl] 1 [pl]! 
x == [pl J Qll == [pj' [pvv] == [pll] - [pl 

[viz II, (19)] a mo2 = Jpv2]_, 
n-l 

Nejjednodušší případ - přímá měření stejné váhy - vede 
ke vzorcům 

rl] l' , [l]2 
x' == -, Qll = -, [pvv] == [pUl - - , ,n n n 
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[viz II, (19')] & 

21 [vv] 
mo = . 

n-l 

8. Redukce odchylkových rovnic Da lineární tvar. 
. . 

Nechť mezi měřenou veličinou m a neznámými X, Y, Z jest 
vztah 

f(X, Y, Z; t, u, w) = m, 

kde t·, u, w jsou veličiny, jejichž hodnoty určujeme pomoc­
nými měřeIÚmi. Ke každé skupině hodnot t" U" Wi, i = 
= 1,2, . o o, n, měříme příslušnou hodnotu mio Máme tedy pro 
tři neznámé X, Y, Z rovnice 

f(X, Y, Z; ti, u" Wi) = mi, 

jejichž počet je no 
Obyčejně známe předem nebo získáme předem přibližné 

hodnoty neznámých (xo, Yo' %o) a hledáme malé chyby x, Y, z, 
jež nutno k přibližným hodnotám algebraicky přičísti: aby­
chom dostali správné hodnoty neznámých (X = Xo + x, 

y = Yo + y, Z = Zo + z)o # 

Předpokládej me, že známe takové přibližné hodnoty, že 
můžeme v Taylorově rozvoji funkce f( Xo + x, Yo + y, Zo + z; 
t, u, w) podle rostoucích mocnin x, y, z zanedbati členy dru­
hého a vyšších řádů, že tedy můžeme s dostatečnou přesností 
psáti 

f(xo + x, Yo + y, Zo + z; t, u, w)~ 

~ f(xo• Yo. Zo; t. u. w) + (:~t x + (:~t Y + (: tz~ 
~ d + ax + by + cz, 

kde a, b, c, d jsou funkce t, u, w nebo konstanty o 

Píšeme-li ještě m, - di = li, máme k určení x, y, z zase 
n lineárních rovnic 

aix + b,y + CiZ = h, (1 ) 

s nimiž jsme se dosud zabývali v této kapitol~. 
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9. Pffklady na vyrovnáni zprostfedkujfcfeh m~fení. 
1. Určiti střední výšku závitu jemného stavěcího šroubu. 
Závity by13 potřeny olejem a otištěny desetkrát na papír. 
Změřena v každém případě vzdálenost krajních otištěných 
čárek .na dvacetinu mm a zjištěn příslušný počet závitů. 
Došli jsme k těmto číslům 

-

poěet závitů 

122 I 121 I 121 I 120 I ~ 21 I 121 I 121 I 120 I 111 I 114 

vzdálenost v mm 

85,20184,60184:,6°183,9°184,45184,6°184,551'83,95177,701 79,66 

Klademe přibližně střední výšku závitu Xo = 0,7 mm, přesně 
x = 0,7 + xo. Tak dostaneme z první dvojice čísel odchyl-
kovou rovnici · 

122 (0,7 + xo) - 85,20 = Vl' nebo 122io + 0,20 = Vl. 

Stejně z ostatních dvojic 

121xo + 0,10 = V2, 121io + 0,15 = v7 

121io + 0,10 = Vs' 120xo + 0,05 = Vs 
120xo + 0,10 = v" 111xo + 0,00 = ve 
12Ixo + 0,25 = V 6' 114io + 0,15 = VIO• 

121io + 0,10 = ve' 
Podle (III, 7b) bude Xo = [al] : [aa], při tom [00] = 142206, 
[al] = -144,20, tedy xo~ - 0,0010. Odchylky v setinách . 
mm JSou 

. +7,8; -2,1; -2,1; -2,0; + 12,9; -2,1; +2,9; +7,0; 
-11,1; +3,6. 

Odtud součet čtverců odchylek je 438,06, 

mo = ± V438,06 : 3 = ± 6,98 (v setináoh mm). 

A střední chyba výsledku 

mo . 6,98 1 2 '., h 

V· = ± V = ± ,9.10- (v setmac mm). 
[aa] 142206 



Tedy výsledek 
x == 0,6990 mm ± 1,9 . 10-' mm. 

2. Určiti konstanty Reichenbachova dálkoměru.·) / 
Reichenbachův dálkoměr je 

vodorovně ustavený daleko­
hled, jehož nitkový. kříž má 
tvar patrný z obrázku 4. Dál­
ko.měrem zaměřujeme na svis­
le posta venou dělenou lať a ur­
čujeme polohu horního a dol­
ního vodorovného vlákI;l& vůči 
obrazu latě, jinak řečeno urču­
jeme čtení při hOrWm a dol­
ním vláknu. Rozdíf'obou čtení 
označíme d. Z podobnosti troj-

obr. ~ - úhelníků pak plyne (z obr. 5), 
vzdálenost latě od předního 

ohniska objektivu je úměrna d [rovná se (/.: 8) . d == led]. 
Vzdálenost svislé osy stroje od předního ohniska objektivu 
se jmenuje malá konstanta c. Tedy vzdálenost D.latě od 
svislé osy stroje je rovna c + kd, kde k = .f : 8, velká kon­
stanta, býyá blízká 100. 

*) Srovnej Helmert, l. c. str. 89--94. 

Tabulka 

d I D I a I b I l I 8 

1,2661 126,014 1 1,2661 +0,047 2,3131 
1,0830 108,029 1 1,0830 +0,225 2,3080 
0,8434 84,049 1 0,8434 +0,014 1,8574 
0,6002 60,069 1 0,6002 +0,159 1,7592 
0,3593 36,089 1 0,3593 +0,076 1,4353 
0,1183 12,109 1 0,1183 +0,004 1,1223 

[aa] [00] [al] [OB] 
6 4,2703 +0,525 10,7953 

• I 
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F 1 

d L~iJ=' ============-7< -==iT 
( C 

I 
I 
I 

i __ --J-_ 

I 

Mají se určiti hodnoty c a k ze šesti dvojic hodnot dl, a Di 
sestavených do 1. a 2. sloupce následující tabulky. První 
a poslední dvojice vede k rovnicím 

. 
c + k . 1,2661 == 126,014, 
c + k . 0,1183 == 12,109, 

z nichž plyne k ~ 99,2, c ~ 0,37. 

Klademe-li c = 0,37 + x, k = 99,2 + y, plyne z první 
dvojice hodnot d" a Di, vztah 0,37 + x + (99,2 + y) 1,2661 = 
= 126,014, čili 

x + 1,2661y == 0,047 . 

. Stejně pro ostatní dvojice. Koeficienty a, b, l těchto rovnic 
jsou sestaveny ve 3., 4~ a 5. sloupci tabulky. V 6. sloupci 
jsou vypočtena čísla Bi' == al, + b, + l, a v dalších sloupcích 
potřebné součiny a jejich součty. 

v. 
bb I bl I b8 I v I Vl 

1,6030 0,0595 2,9286 +0,078 0,0061 
1,1729 0,2437 2,4996 -0,112 0,0126 
0,7113 0,0118 1,5665 +0,082 0,0067 
0,3602 0,0954 1,0669 -0,079 0,0062 
0,1291 0,0273 0,5167 -0,013 0,0002 
0,0140 0,0006 0,1328 +0,043 0,0018 

[bb] [bl] [b6] 0,0335 
3,9905 0,4382 8,6991 . 

• 



Součtové kontroly 
[aa] + [ab] + [al] - [aB] = 0,0000 
[ab] + [bb] + [bl] - [bB] = 0,0001 

ukazují, že koeficienty normálních rovnic jsou vypočteny 
správně. V další tabulce je provedena redukce normálních 
rovnic se součtovou kontrolou. 

Tabulka VI. 

x I y I I 
6 4,2703 +0,525 10,7953 
4,2703 +3,9905 +0,4382 8,6990 
4,2703 +3,9905 +0,4382 8,6990 
4,2703 +3,0393 +0,3736 7,6832 

I 0,9512 I +0,0646 I 1,0158 

Z redukované rovnice 

0,9512y = + 0,0646 

plyne y = + 0,0679, a z první normáhú rovnice tedy 
x = 0,0392. Odtud c -.:... 0,409, k . 99,268. 

V předposledním a posledním sloupci tabulky V jsou 
vypočteny odchylky Vi, jejich čtverce a [w] = 0,0335. 

Podle vzorce 

[vv] = [ll] - [al] x - [bl] Y 

(viz III, 78,), uvážíme-li, že 

[U] = 0,0841,. [al] = + 0,5250, [bl] = + 0,4382, 
x = 0,0392, Y = 0,0679, 

plyne [vv] = 0,0338. 
Podle vzorce 

[vv] = [U] _ [alJ2 _ [bl . l]~. 
. [ aa ] [bb . 1] 

(viz III, 78,), uvážíme-li, že 
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[00] = 6, [bl. 1] == 0,0646, [bb. 1] = 0,9512, 

bude [vtJ] = 0,0338. 
Pak [viz III, (20")] jest 

V [00] V-
m,~ = ±' n _ 2 == ± -}. 0,0338 = ± 9,2 . 10-2

• 

Odtud 
mo 9,2 .10-2 

mu == V[bb ~ == VO,9512 == ± 9,4 . 10-
2

• 

A protože 
1 A 2 [ah] 

'Qll = [00] + [bb ~ I]' kde Al = - [aa] , 

bude Qu = 0,6992, tedy 

mf& = mo VQ;l == 9,2 . 10-2 VO,6992 = ± 7,7 . 10-2 • 

Výsledek 
c ~ 0,409 ± 7,7 . 10-2, 

Ic = 99,268 ± 9,4 . 10-2• 

Přesněji určíme obě veličiny ca Ic, jestliže c změříme přímo. 
Bylo změřeno 0,335 a nejistotu v této hodnotě odhaduje 
Helmert na 0,003. Výpočet neznámé k z naměřených šesti 
dvojic di a Di provedeme za dvou různých předpokladů. 

!X) Předpokládáme, že odchylkové rovnice mají stejnou 
váhu. Pak první rovnice c + Ic . 1,2661 = 126,014, klade· 
me-li c = 0,335 a k = 99,2 + y, přejde v 1,2661y = + 0,082 
a stejně ostatní rovnice. Koeficienty nových odchylkových 
rovnic jsou sestaveny v 1. a 2. sloupci tabulky VII. Ve 
3. sloupci jsou vypočtena čísla 8i == bi + I, a v dalších sloup­
cích potřebné součiny a jejich součty. Součtová kontrola 
[bb] + [bl] - [b8] == - 0,0001 ukazuje, že koeficienty. nor­
mální rovnice 3,9905y = + 0,5876 jsou vypočteny správně. 
Odtud y = + 0,147, tedy Ic = 99,347. V dalších dvou sloup­
cích jsou vypočteny odchylky Vi, jejich čtverce a [vv]. 
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Tabulka vn. 
b I Z I 8 1 bZ t b8 I v I Vl 

1,2661 +0,082 1,3481 +0,1038 1,7068 +0,104: 0,0108 
1,0830 +0,260 1,3430 0,2816 1,4:545 -0,101 102 
0,8434 +0,049 0,8924 0,0413 0,7527 +0,075 56 

. 0,6002 +0,194 0,7942 0,1164 0,4766 -0,106 v 112 
0,3593 +0,111 0,4703 0,0399 0,1690 -0,058 34 
0,1183 +0,039 0,1573 0,0046 0,0186 -0,022 5 

I I t + 0,5876 I 4,5782 J\ 1°,0417 

Ze vzorců 
[vv] = [ll] - [bl] y = [ll] - [bl]2 : [bb] 

(odst. III, 7b) dostaneme [vv] = 0,0417, resp. 0,0416, 
neboť [ll] = 0,1281. Odtud 

mo = ± V [v'v] = ±VO,04Ii = ± 9,1 .10-2 

n-I 5 
a 

mo 9,1 .10-2 

m1J= = ± = ± 4,6.10-2 • 
y[bb] y3,9905 

Výsledek 
k = 99,347 -+- 4,6 . 10-2 • 

{3). Označíme-li skutečné chyby čísel D a d písmenem e a E', 
jest skutečná chyba odchylkových rovIŮC rQvna ke' - E. 

Jsou-li přísluěné hodnoty středních chyb rovny mam', bude 
čtverec střední chyby odchylkových rovnic k2m'2 + m 2• 

Helmert odhaduje m < 0,05, m' = 0,002, takže 

• m 2 < 0,0025, k2m'2 = 99,22 • 4 . 10--8 = 0,0394, . 
což je skoro 16krát větší než m2 • Rozhoduje tedy o váze 
odchylkových rovnic v tomto případě člen k2m'2. 

Protože váha je nepřímo úměrná čtverci střední chyby a 
podle provedených zkoušek je 8třední chyba m přímo 
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úměrná vzdálenosti latě, tedy přibližn~ přímo úměrná dél­
kám d, můžem~ jako váhu klásti veličinu 1 : d2• Násobíme-li 
každou rovnici 1,2661 Y = + 0,082 atd. odmocninou její 
váhy, tedy veličinou 1 : d = 1 : b, dojdeme k těmto rovni~ím 
o váze vesměs rovné 1 (srovn. II, 3): 

y = + 0,065 Y = + 0,323 • 
Y = + 0,240 Y = + 0,309 
y = + 0,058 Y = + 0,330. 

Z nich plyne y = A • 1,325 = + 0,221, k = 99,42.1. Pak 
v = + 0,156; -0,019; + 0,163; -0,102; -0,088; -0,109; 
[v] = + 0,001; [v'v] = 813 . 10-'. Stejná hodnota plyne ze 
vzorce II, (19'). Pak 

V813 . 10-' V--m1l = ± = ± 10-2 27,1 = ± 5,2 . 10-2• 
5.6 

Výsledek 
k = 99,421 ± 5,2 . 10-2 • 

3. Pro neznámé x, y jsou dány tyto odchylkové rovnice 

x ± y - I,;, = Vi, i = 1, 2, ... , 2n, 

v n rovnicích jest u y znaménko +, ve zbytku ~znamení-. 
Vypočísti vyrovnané hodnoty neznámých a jejich střední 
chyby. 

V tomto případě je [aa] = 2n, rabl = O, [bb] = 2n, 
[al] = [I]. Je-Ii 81 a 82 aritmetický střed hodnot li pro ta i, 
pro něž je v odchylkové rovnici u y znaménko + resp. -, 
jest [al] = nB1 + n82 'a [bl] = n81 - ns2• 

Normální rovnice tedy jsou 

Odtud 

2nx = nsl + 'n82 , 

2ny = 1l81 - n82• 

x = t (81 + 82), Y = t (81 - 82). 

Protože [vv] = [ll] - [al] x - [bl] y, [viz III, (21)], hude 

[vv] ='[12] -{-(81 + 82)2n -í (81 -82)2n = [l2] - n (81
2 + ~922). 
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Tedy střední chyba rno pro jednotku váhy je 

_ V[l2] - n (81
2 + 82

2
) 

mo-± 2(n-' 1) 

a střední chyba vyrovnané hodnoty x a 11 je m.,: V21i· 
4. Dokažte,' že n odchylkových rovnic 

x + biy + CiZ -l, = v, o váze 1, i = 1, 2, . '.J n 

vede ke stejným vyrovnaným hodnotám pro neznámé 1/, z 
jako 11. odchylkových rovnic t. zv. redukovaných: 

{ [b]} { [C]} { [lJ} , bi - n 1/ + Ci - n z - Ze - n = v, o váze 1, 

i = 1, 2, ... , n. 

Normální rovnice k daným odchylkovým rovnicím jsou 

nx + [b] 1/ + [cl z - [ll = 0, 
[b J x + [b2] 11 + [bc] z - [bl] = 0, 
[c] x + [bc] 1/ + [c2] Z - [cl] = o. 

Odtud redukované rovnice prvního řádu hudou 

Z redukovaných odchylkových rovnic dojdeme k normálním 
rovnicím .. 
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(23') 

Protože 

a dále 

[{bi- [!]}{Ci _ [:]}] = [be] _ [c~b] _ [b~c] + [b~c] = 

= [bej _ [b][e] ; 
n 

podobnou úpravou ostatIÚch koeficientů dokážeme, že rov­
nice (23) a (23') jsou totožné. 

Jak se v tomto případě vypočtou střední chyby nezná­
mých y a z? Podle vzorců (16) jest 

m .. = 1110 V [66
1
• 1] + [:l~], "!- = 1110 V[CC ~ 2]' 

,,- v ",,; 
prl cemz 

B __ [bc .1] 
1 - [bb. 1] · 

Veličiný [bb . 1], [be. 1] jsou koeficienty u y a z v reduko­
vané rovnici prvIÚho řádu, t. j. v první z rovnic (23) nebo 
(23'), a veličina [ce. 2] je koeficient u z v redukované 
rovnici druhého řádu. Střední chybu mo pro jednotku 
váhy vypočteme ze vzorce (20") t. j. mo = V[v2] : (n - 3). 
J:Ťj tom součet [v2] je podle (21) Il'oven [vv] = [UJ -
- [Z] x - [bZ] y - [cl] z. Vyloučíme-li odtud a z první nor-
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mální rovnice nx + [b] y + [c] z - [1] = O zase nezná.mou x, 
dostaneme 

[vv] = [ll] _[~2 _ Y {[bll _ [ll~bl} - z {[Cll- [l~Cl ' 

nebo podle předcházející úvahy 

[00] .. Hl; - ~]n -Y [{bi -. [!]} {li - [!]}]-
[{ 

[cjl {l [l]}] , , 
- Z Ci - nf i - n = [v v J. 

5. Z grafu, ukazujícího pravděpodobnou výšku syna v zá­
vislosti na výšce otce, byla vyllata tato čísla (v palcích) 

S = 65,7; 66,8; .67,2; 69,3; 69,8: 70,5; 70,9, 
O = 62; 64; 65; 69; 70; 71; 72. 

Předpokládáme-li mezi S a O vztah S = x + yO, určete vy­
rovnané hodnoty koeficientů x a y a jejich střední chyby.*) 
Normální rovnice jsou 

7x + 473y = ,480,2, 
473x + 32 051 Y = 32 494,6. 

Odtud 
y = 0,522 ± 0,008, x = 33,3 ± 0,5. 

6. Pro časy Tl' T 2, ••• , Tft, vyjádřené ve dnech, byly určeny 
opravy hodin Ol' O2, ••• , On. Určiti odtud opravu hodin 
° = x + yT pro libovolný čas T; y je denní chod hodin. **) 

Měření vedou k rovnicím x + yT - Oi = 0, i = 1, 2, ... , n. 
Normální rovnice jsou 

nx + [T] y = [o], 
[TJ x + [T2] y. = [oTl. 

*) Whittaker-Robinson, 1. c. str. 214. 
**) P. Pizzetti: I fondamenti matematici per la critica dei 

risultati sperimentali, Genova 1891, str. 136--138. 
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ČÍtáme-li T pro jednoduchost od středu [TJ : n, který polo­
žíme rovný O, přejdou normální rovnice ve tvar 

-'nx = [o] , 
[T2] Y = [oT]. 

Střední chyby budou tedy 

mz = mo: Vn, m,,= mo: V [TI]. 

Abychom vypočetli střední chybu opravy o = x + yT, 
užijeme vzorce [III, (16')]. V uvažovaném případě jest 

1 1 
10 = 0, II = 1, 12 = T, Qll = n:' Q12= Q21 = 0, Q22 = [T2]" \ 

Tedy 

V
-1- T2 

m. = mo n + [Ti]· 

7. Mezi teplotou T ebonitové tyče a odečtením x na stup­
nici je vztah 

x = A + BT + GT2. 

Vyhledati koeficienty B a G a jejich střední chyby ze šesti 
dvojic měření. *) 

Tabulka VIII. 

x 112,47115,28118,27121,00 I 23,81 128,.23 

T 114,441 20,141 25,521 30,391 34,92140,73 

Protože nezáleží na výpočtu koeficientu A, užijeme postupu 
vyloženého v příkl. 4, t. j. odvodíme redukované odchyl~ové 
rovnice. Aby koeficienty u C nepřevyšovaly mnohokrát 
koeficienty u B a prosté členy, dělíme každý stem a sou­
časně místo G zavedeme neznámou C' = 100C. 

*) Srovn. B. Kučera: Základové prakt. fysiky, II, str. 4. 
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b'=6_[6] , [c] l' = l_N 8 C =c--
n n n 

-13,25 -6,36 -7,37 -26,98 
. - 7,55 -4,39 -4,56 -16,50 

- 2,17 -1,93 -1,57 - 5,67 
+ 2,70 +0,79 +1,16 + 4,65 
+ 7,23 +3,75 +3,97 +14,95 
+13,04 +8,14 +8,39 +29,57 

I I I 
Normální rovnice budou 

466,87 B + 256,990' == 276,73, 
256,99B + 144,380' == 154,02. 

Redukovaná rovnice prvního řádu 

2,920' = 1,69. 
Odtud 

Tabulka. 

b'l 

175,56 
57,00 
4,71 
7,29 

52,27 
170,04 

I 466,87 

C' == 0,579, C = 0,00579, B = 0,274. 

A střední chyby 

ma ~ + 0,00088, mB == ± 0,049. 

8. Určiti methodou nejmenších čtverců prvních pět koe­
ficientů ve Fourierově řadě. 

Odchylkové rovnice"zde budou 

a + b sin Xi + C cos Xi + dsin 2Xk + e cos 2Xk -lk = Vk, 

k = 0, 1, 2, ... , n - 1. (24) 

2n 
Jak vidíme, je v tomto případě výhodné voliti Xl.; == - k, 

n 
kde k == 0, 1, ... , n - 1, t. j. určiti l" pro hodnoty Xk, jež 
rozdělují periodu 27l na n stejných dílů. Normální rovnice 
budou -
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IX. 

b'c' b'l' b'8 c'o"' c'l' C'8 
. 

+ 84,27 + 97,65 + 357,48 40,45 + 46,87 + 171,59 
+ 33,14 + 34,43 + 124,58 19,27 + 20,02 + 72,44 
+ 4,19 + 3,41 + 12,30 3,72 + 3,03 + 10,94 
+ 2,13 + 3,13 + 12,56 0,62 + 0,92 + 3,67 
+ 27,11 + 28,70 + 108,09 14,06 + 14,89 + 56,06 
+106,15 +109,41 + 385,59 66,26 + 68,29 + 240,70 

+256,991+276,73\+1000,601 144,38 1 + 154,02 I + 555,40 
I 

a~ + b [sin Xi] + C [cos Xk] + d [sin 2Xi] + e [cos 2Xi] - [lk] =0, 
a [sin xk1+ b [sin2 XI] + c [sin Xk cos Xk] + d [sin Xi sin 2Xk] + 

+ e.[sin Xi cos 2Xi] - [li sin Xk] = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

a [cos 2Xk] + b· [cos 2Xk sin Xk] + C [cos 2x); cos Xi] + 
+ r) [cos 2Xk sin 2Xk] + e [cos2 2Xk] - [li cos 2Xi] = o. 

2n 
Zmíněná volba hodnot Xi = - k, k

'= 0, 1, .. " n - 1 
n 

zjednoduší poslední rovnice takto: 

na = [lk], ln b = [lk sin Xk], in c = [li cos Xj], 

ln d = [li sin 2Xk], in 1 = [lJ; cos 2x,;]. (25) 

Abychonl to ukázali, uvažujme o součtech 
n-I 2 ft-I,) 

S, == ~ sin L ~ k a ~c = Z cos L .-n k. 
k=O n k=O n 

Výraz S, + iSc, kde i = + V-I, bude roven 

n-I iL 2n k 

S, + iSc == 2: e ft , 

k=O 

což je geometrická řada, jejíž první člen je roven 1 a podíl 
~ ... 2n 
e~-

" 
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Tedy 

Protože 

1 - eiL2n 
S. + i8c = ---2n- . 

-l-e n 

eiL2n == C08 27€L + i sin 21CL = I, je S, + iSc = 0, 

čili S. == Bc= O. 

·L 2n 
t -

Jmenovatel 1-· e n není roven nule, pokud L není ná-
80bkem čísla n. Z tQho je patrno, že na pře 

[sin~xisinl2xi] = -t[COS (ll + l2) Xi-cos(~-l2) Xi] == 0, 

pokud II =t= l2' kdežto pro ~ == l2 jest 

[sin2 II Xi] == tne 
Stejně je 

[sin llXi cos l2Xt] == t [sin (ll + l2) Xi+ sin (ll -l2) Xi] == 0, 

a to ať je II =t= l2 nebo II == l2· 
Konečně je 

[cos II xi cos l2Xi] == t [cos (ll + l2) xk + cos (ll -' l2) Xk] == 0, 

je-li II =t= l2· A pro II == l2 jest 

[cos2 lIXk] == ln. 

Označíme-li zase písmenem mo střední chybu pro jednotku 
váhy, bude střední chyba veličiny a rovna m,,:Vn a střední 
chyby všech ostatních koeficientů b, c, d, e jsou rovny moV 2 : n 

Veličiny Qll' Q22' Q33 atd. plynou totiž z rovnic 

nQll == 1, ln Q22 == 1, in Q33 == I atd. 

Tato úloha se vyskytuje v praksi často. Uvádím na př.: 
Určování periodických chyb v dělení kruhu, určování perio­
dických chyb mikrometrických šroubů,určovánÍ vlivu blíz­
kých hmot na. údaje torsní váhy podle způsobu Schweyda­
rova. 
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9. Určiti vyrovnané hodnoty pravoúhlých souřadnic (x; y) 
bodu P, jestliže byla změřena se stejnou vahou jeho vzdále­
nost od bodů (O; O), (7; O), (O; 6) a bylo naměřeno po řadě 
6,40; 4,47; 5,38.*) 

Zvolíme přibližné hodnoty Xo == 5, Yo == 4. Pak z rovnice 

V(5 + X)2 + (4 + y)2 - 6,40 == O, 

uvážíme-li, že -
V41 + 10x + 8y +-.-.. == V41 (l + t-yx + -!TY + ... )1 == 

== V41 (1 + -(-.-x +4~Y + ... ), 
plyne 

0,78x + 0,62y + 0,0031 == O. 

Stejně i druhé dvě rovnice 

- 0,45x + 0,89y + 0,0021 == 0, 
+ 0,93x - 0,37y + 0,0052 == O. 

Odtud vyrovnáním podle metody nejmenších čtverců plyne 

x ~ - 0,004, Y == - 0,002, 
tedy výsledek 

Xo + x == 4,996, Yo + y == 3,998. 

10. Na několika bodech, jejichž pravoúhlé souřadnice 
(Xi; Yi) známe, byly měřeny směry k těmto známým bodům 
a k jednomu bodu, jehož souřadnice (x; y) hledáme (hledaný 
bod). Jak postupujeme při výpočtu vyrovnaných souřadnic 
x,y1 

Nejprve vypočteme t. zv. směrníky směrů od daného bodu 
na jiný daný bod, t. j. úhly,- které svírají uvažované směry 
s kladným směrem osy x-ové. Na pře pro směrník au od bodu 
(Xl; Yl) na bod (x2; Y2) bude . 

Y2 - Yl tg 0'12 == -- - --- . 
X2 -Xl 

*) Whi ttaker -R o binson, 1. c. str. 214-215. 
~-
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/ 

Protože při měření směrů nemůžeme dělený kruh přesně 
orientovati, na př. tak, aby směr od středu kruhu k rysce 0° 
směřoval ve směru rovnoběžném s kladným směrem osy 
x-ové, musíme k měřeným směrům 812 (s bodu (Xl; Yl) na bod 
(x,; y,)) připojiti t. zv. orientační konstantu 01' aby z řady 
směrů vznikla řada směrníků, tedy 

O'li = Sli + 0l' 01 = O'li - Sli' 
\ 

Jestliže na př. v bodě (Xl; Yl)' kro~ě směru na hledaný bod 
(x; y) byl zaměřen jen jeden směr na některý daný bod, 
má.me pro orientační konstantu 01 jen jednu hodnotu. Jestliže 
jsme zaměřili několik směrů na dané body, máme pro orien­
tační konstantu několik hodnot a jejich aritmetický průměr 
kladpme jako její vyrovnanou hodnotu. Připojíme-li pak 
orientační konstantu k směru naměřenému při zaměření na 
hledaný bod, dostaneme t. zv. orientovaný směrník SOl s bo­
du (Xl; Yl) na hledaný bod (x; y). 

Nyní vypočteme přibližné souřadnice xo, Yo hledaného 
bodu ze dvou orientovaných směrů, a to takto: Ze souřadnic 
(Xl; 111)' (x2; y,,), z nichž oba orientované směry vycházejí, 

vypočteme vzdálenost těchto dvou bodů 812 = y~ - Y1 = 
sm 0'12 

I Xa-Xl = -- J pak ze sinové věty určíme strany 81o, 820 a 
cos 0'12 

konečně ze vzorců . 
Zo - Xl = "10 cos SOl' Yo - Y1 = 810 sin SOl' 

nebo 

Xo - Xi == &20 cos 802 , Yo - Y2 == 820 sin 802 

přibližné souřadnice xo, Yo hledaného bodu a ze vzorce 

tg a', == '!jo - Yi 
Xo-Xi 

přibližné hodnoty směrníků 0" i Z daných bodů na hledan)'. 
Dále uvážíme, že pro definitivní směrník O'i bude 

---
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tg 0', =Yo + L1y- YC, 
. Xo + L1z-x, 

kde Ax, Ag jsou hledané opravy přibližných souřadnic . 

Odtud 

(li = arctg Yo + Ay - y, 
Xo + Ax - Xi, 

a rozvineme-li v řadu Taylorovu, 

. 

(li = arctg Yo - y, + a, Ax + bi L1y = (l'., + a, Ax + bi L1y, 
xo-xi 

kde 
yo-y, Xo-Xi a, = - bi = - ---2-; 

8102 ' 8'0 

při tom 810 je délka strany mezi bodem (Xi; Yi) a (Xo; Yo)' 

Protože definitivní směrník (li se má rovnati' orientova­
nému směrníku Boi, dojdeme k odchylkovým rovnicím 

O'i - BOi = ai Ax + bi Ay + li = v;, 
kde 

li = 0" i - S oi' 

Z těchto odchylkových rovnic podle methody nejmen­
ších čtverců vypočteme neznámé L1x, Ag a jejich střední 
chyby. 



IV. 

VYROVNÁNI ZÁVISLÝCH M:EŘEN1. 

1. Vyrovnáni závislých měřeni (převedením na vy­
rovnání zprostředkujících měření). Uvažujme o této 
úloze: Neznámé Xv X 2, "', X~, pro něž jsme naměřili hod­
noty Ml' M2' .. " M~, mají přesně splňovati a podmínek 

Il(Xl , X 2 , "', X p ) = 0, 12(XV X 2, "', X~) = 0, ... , 
la(Xv X 2 , "', X p ) = O; (e > a). (1) 

, 

Obyčejně známe předem, nebo získáme předem, přibližné 
hodnoty neznámých XlO' X 20, •• o, xeo' takže 

Xl = x10 + Xv X 2 = x20 + x 2, "', X Q = X&?O + x(?' 

O opravách Xl' X 2, "', x~ předpokládáme, že jsou tak malé, 
že lze zanedbati již členy obsahující jejich součiny a čtverce, 
Pak z měření plyne e rovnic Xi - Mj = Xjo + xi - Mj - O. 
čili 

Xi -li = 0, kde li = Mi - x;o, i = 1, 2, "', (2. (2) 

Místo podmínek (1) můžeme psáti přibližně 

(Ol,) (Ol,) (0l,) 1.(Zt.o, x20, o •• , XPO ) + OZl OZl + oX
2 

oX'}. + ... + OX~ oXe= 0, 

nebo 

a'lxI + a'2x2 + . o. + a'Qx~ = a,o, g = 1, 2, "', a, (3) 

kde I 

a,j = - ,a"flo= -1,( XIO' Xoo,· o " XQo)' (Olg) 
OX; o 

Rovnice (3) mají býti splněny přesně, proto nejsou všechny 
neznámé nezávislé. Z rovnic (3) můžeme vyjádřiti na př. 
Xv X2' .•. , Xa jako lineární funkce neznámých Xa+l, Xa+2, 
• o o, x~, jejichž počet je e - a: 
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Xl = A ll xa+l + A12xa+2 + ... + A 1,()-aXQ + A IO, 

X2 = A 21 Xa+l + A 22 Xa +2 + ... + A 2,{)-aX" + A 20, (3') 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Xa = A a1xa+l + A a2xa+2 + ... + Aa,~aXCl + A aO • 

Máme tedy určiti e - a nezávislý~h neznámých tak, aby 
by 10 splněno pokud možno přesně (! rovnic: 

A llxa+l + A 12Xa+2 + ... + AI,(r-aXQ + A IO -ll = 0, 
A 21 X a+1 + "A 22X a+2 + ... + A 2,Q-aXe + A 20 -Z2 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .' . . . . . . . . 
A a1 x a+ I + A a2xa+2 + ... + Aa,e,>-axe + AaO -Za = 0, 

Xa +l -Za+l == O, 
Xa +2 -la+2 == 0, 
. . . . . . . . . . . . . . . 
X(} -le == o. 

(2') 

Protože počet nezávislých neznámých (e - a) je mehšínež 
počet těchto roVIŮc (e), nebude obecně lze nalézti takové 
hodnoty Za+l, X a+2, ... , xCl ' b.by všechny rovnice (2') byly 
splněny. At~ dosadíme za xa+b Xa+2, ... , x e jakékoli hodnoty, 
budou levé strany rovnic (2') rovny malým veličinám vi. 
Tedy 

AU Xa+l + A 12Xa +2 + ... + AI,~aX(} + AIO -ll == Vl, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A a1 x a +1 + A a2xa+2 + ... + Aa,Q-axQ'+ Aao -la == Va' 

Xa+l -la+l == Va+l, (2") 
. . . .. . . . . . . . . . . . . . . 
Xe -l(! == v(!. 

Předpokládejme, že váha j-té rovnice je p;. Hodnoty vah 
odhadujeme v tomto případě obyčejně podle středních chyb 
měřených veličin M;, vypočtených přímo z měření, nebo 
}.>odle výsledků podobných měřeIÚ dřívějších. Máme-li důvod 
k úsudku, že váhy jsou stejné, klademe je obyčejně rovné 1. 

Tím bylo převedeno vyrovnání závislých měření na vy­
rovnání zprostředkujících měření. Vyrovnané hodnoty· x' a+], 
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x' a+2, ... , x' ~ určíme jako v kap. III tak, aby byl minimální 
p 

součet ~ p;vl. Z podmínek pro minimum (derivace podle ne-
;=1 

známých x' a+l, x' a+2, ... , x' fl mají býti rovny nule) plyne 
e - a normálních rovnic, z nichž vypočteme nezávislé ne­
známé X'a+l, X'a+2, •.• , x'~. Dosadíme-li tyto vypočtené hod­
noty za Xa+l, Xa+2, ... , x~ do rovnic (3'); dostaneme vyrov-

, h dn t " , nane o o y X l' X 2' ... , x a· 

Střední chyba pro jednotku váhy plyne stejně jako v kap. 
III ze vzorce (20") 

mo = ± Ve--Jfe~-]-G) = ± V-[";_2] . (4) 

Lomená závorka značí součet členů pjVl pro všechny hod­
noty. indexu j = 1, 2, ... , (j. 

2. Vyrovnáni závislých měřeni užitím korelá,t. Casto 
se však užívá při výpočtu vyrovnaných hodnot x' l' X' 2' ... , x' Q 

jiného postupu.·) Tyto hodnoty mají činiti součet 
fl Q 

~ Piv;2 = ~ Pi (x'; -lj)2 
j= 1 ;=1 

minimem a při tom mají přesně splňovati podmínky (3). 

Podmínka minima jest 
(! 

2 ~ pj (x'; -lj) dx'j = O. (5) 
j=1 

Ale protože veličiny XiI' .•• , x'Q musí přesně splňovati rov­
ruce (3), nejsou přírůstky dx'j nezávislé, nýbrž musí vyho­
vovati a podmínkám 

a'1 dx' I + a'2 dx' 2 + ... + agQ d x' Q = O, g = 1, 2, ... , tJ. (6) 

Z těchto rovnic a z podmínky (5) vyloučíme a závislých pří-

*) J. Vojtěch, 1. c. I, str. 411-413. - K. Petr, 1. c. str. 
414 418. 
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růstků a položíme koeficienty u nezávislých přírůstků rovny 
nule. 

Předpokládej me, že na př. determinant 

• 

.1= 

alh a12, ••• , ala 

a21, a22, ••• , a2a 

• 
I aa1, aa2, •.. , aaa 

=t= O . 

Násobme rovnice (6) po řadě koeficienty 2lc1, 2lc2, ••• , 2ka, 

& odečtěme je od rovnice (5). Bude 

Q 

~ {Pi (x'; -li) -lcl~i -lc2a2i - ... -14al'aj}dx'j = o. 
' .... 1 

Úrčeme tak koeficienty kl' k2 , ••• , ka, kterým se říká kore­
láty, aby faktory II dx' l' ... J dx' a byly rovny nule. To je za 
uvedeného předpokladu o determinantu .1 možné. 

Pak ale zbývá podmínka 
(] 

Z {p, (x'; -li) - kla1; - k~ - ... - Ic,p,",,;} dX'i = O, 
j=a+1 

a protože přírůstky dX'~+l, ... , dx' Q jsou nezávislé, musí 
jejich koeficienty býti rovněž rovny nule. .. 

Celkem tedy musí býti 

Pi (x'; -1;) - klali - k2a2i - ... - k"a,,; == 0, 
j = 1, 2, .. o, [Jo (7) 

Levé strany těchto podmínek jsou parciální derivace funkce 

F = Pl (Xl -ll)2 + P2 (X2 -12)2 + o o o + Pf) (XQ -1f})2-
- 2kl (anxI + a l2x 2 + o •• + alexf] - a lO) -
- 2k2 (a21 Xl + a22x2 + o o • + a2Qx~ - a20 ) -

(~) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
- 2ka (aatx~ + a"0'2x2 + o o. + aagxf] - aao). 

Podmínky (7) tedy vypočteme, anulujeme-Ii parciální deri­
vace prvního řádu funkce F podle proměnných Xl' x2, ••• , XQo 
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Zvolíme-li za přibližné hodnoty pro neznámé x' l' ... , X' fl 

naměřené hodnoty Ml' M2, ... , Me, jest Xjo == Mj, tedy 
lj == O. 

Z rovnic (7) plyne 
• 

I a 
x~; == - 2: kp,; + lj, j == 1, 2, ... , e. (7 /) 

P/g=l 

Tyto vzorce vyjadřují neznámé x' l' x' 2' ••. , x' rl pomocí ko­
relát~, ... , ka. Dosadíme-li odtud za 'x' i do první z roVlŮc (3), 
~~ . 

a 11 . 
- (al1kl + a21k2 + ... + aalka + lIPI) + 
Pl 
a l2 + - (a 12kl + a22k2 + ... + aa2ka + l2P2) + 
P2 

. . . . . . . . . . . . . . . . . .. . . . . . . . 
al() + - (alf/kl + a2Q1c2 + ... + aa(}ka + lepQ) - alO == O, 
PQ 

a uSJlořádáme-li jako lineární funkci korelát kl' k2 , ••• , ka , 

bude 

kl - + k2 - - + ... + ka < - a10 + [au,zi] = o. [
a li] [ava2i]" [al1~a;] 
~ ~ ~ 

Aby se vzorce zjednodušily, zavedeme pro převrácenou hod­
notu vah zna(~ku qi == I : Pi a vynecháme druhý index j, 
podle něhož se tvoří součty naznačené lomenou závorkou. 
Pak bude předcházející rovnice a ostatní rovnice, které ply­
nou, do~ad.íme-li do dalších rovnic (3): 

k,. [qaI
2] + k2 [qa l a'2] + ... + ka[qalaa]-a'lO + [all] == O, 

k~[qa2al] + k2 [qa2
2

] + ... + ka[qa~a]-a20+ [a2l] == O, (9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
kl [qaoll1] + k2 [qaall2] + ... + ka [qaa2

] -aoo + [aJ] == O. 

Zvolíme-li Xjo == Mj, bude li == O a v rovnicích (9) odpadnou 
členy [all] == [a2l] =.":. = [aJ] == O. 
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, 

Těmto rovnicím se říká normální rovnice pro kore­
láty. Z nich vypočteme koreláty na pře Gaussovým postu­
pem (III, 2). Pak ze vzorců (7') plynou neznámé x'v X'2' , 
... , x Q' 

Výpočet normálních rovnic (9) pro koreláty se zase kontro­
luje součtovou kontrolou. Připojíme ke koeficientům 
z rovnic (3), t. j. k číslům 

au, a l2, ... , aUh 

a2V a22, ••• , a2Q' 
.' ........... . 
aa1' a0'2' ... , aaC!, 

součty lednotlivých sloupců, 81, 8 2, ••• , 8Q , takže je 
a a 

81 = L:aul , 8 2 == L: a(12' atd. 
g=l g=l 

(10) 

Násobíme-li na pře sloupce (10) po i'adě čísly q1all , qill2' ... 
qealf1' budou součty v jednotlivých řádcích [qa1

2], [qa1a2], ••• , 

[qa1aa], [qa18] , a při tom 

[q~8] = [qa I
2

] + [qa1a2] + ... + [qa1aa]' 

Tak jsou kontrolovány koeficienty první normální rovnice 
pro koreláty. Podobně se kontrolují i koeficienty ostatních 
normálních rovnic, _pro něž 

[qa28] = [qa2a1] + [qal] + ... + [qa2aa], 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
[qaa8] = [qaaad + [qaall2] + ... + [qaa2

]. 

Koreláty ka-b ka-2' ... , kl se počítají vždy ze dvou různých 
redukovaných rovnic. Tím ověříme správnost výpočtu ko­
relát. Správnost výpočtu neznámých x' l' x' 2' ... , x' f1 ze 
vZQrců (7') ověříme, dosadíme-li vypočtené hodnoty do pod­
mínek (3). 

3. Výpo~et sou~tu [pvv). a) Součet [pvv], kterého potře­
bujeme k výpočtu střední chyby mo pro jednotku váhy, mů-
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žeme počítati přímo z hodnot X'i; vypočteme odchylky 
Vi = x'; -l" čtverce Vj2, pak.součiny PfVl a utvoříme součet 
pro všechna i = 1, 2, o o o, (}o . 

b) Nepřímá cesta. 

lX) Užijeme-li vzorce (7), můžeme psáti 
Q 

[pvv] = 2, Pi (x'; - 1;)2 = 
. ;=1 

Q 

= L (kla]1 + o o o + ka4a;) o q; (kla]i + ... + ka4a;) = 
;=1 

= kl {kl [qalal ] + k2 [q~a2] + ... + ka [qalaá]} + 
+ le2 {~ [qaA] + le2 [qata2] + ... + lea [qa2aa]} + o.. + 
+ lea {lel [qaaal] + le2 [qaaa2] + ... + lea [qaaaa]}' 

Užijeme-li rovnic (9) a položíme-li lj = 0, bude 

[pvv] = alokl + a2Qk2 + . o • + aaoka. (ll) 

Můžeme tedy počítati součet [pvv].podle vzorce (ll) z hodnot 
korelát. . 

(J) Podobně jako ve výpočtu [pvv] (viz III, 6), můžeme vy­
loučiti koreláty ze vzorce (ll) a z normálních rovnic (9). 
V tomto případě je místo [pll] nyní 0, místo koeficientů 
- [pal], - [pbl], - [pel] atd. je nyní + a lO' + a20, + aao, "', 
místo [paa] je nyní [qllt~], (t. jo koeficient u kl v první z rovnic 

. (9)), místo [pbb. 1], [pbl. 1] nyní [qa~'2 . 1], [a20 • 1] (koefi­
cient u k 2 a prostý' člen v první redukované rovnici prvního 
řádu) a místo [pec. 2], [pel. 2] nyní [qaaaa. 2], [aso ' 2] 
(koeficient u ks a prostý člen v první redukované rovnici 
druhého řádu). 

Pak podle vzorce [III, (22)] plyne 

alo
2 [a20 • 1]2 [a30 • 2]2 

[pv·v] = -- + -+ ------ +.... (ll') 
[qala1] [qa2a2 • 1] [qa:P3 • 21 

z koeficientů a· prostS?ch členů normálních a rednkov'uných . rovniC. 
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4. St~ednf chyba lineárni funkce vyrov.naných hodnot. 
Chceme vypočísti střední chybu funkce tP = fo + flx'l + 
+ f2 X' 2 + ... + f(lx' (I. K tomu cíli musíme vyjádřiti cp jako 
lineární funkci měřených veličin Mi nebo veličin li. Bude 

(I (I a 

f/J = 10 + ~/jx'j = 10 + 2{/jqj 2kga"j + Ijlj} = 
;=1 ;;=1 ,,=1 

a 

= fo + L k [qa"f] + [fl]. 
g=1 

Zavedeme veličiny ""1' ""2' .. o, ha, které splňují rovnice 

~ [qa1tlt] + ""2 [qtlta2] + o o o + ha [qa1aa] = [q~/], 
kl [qa2a1] + h" [qa2a2] + o. o + ka [qa2aa] = [qaJ], (12) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
~ [qaaa~] + k2 [qa·atl2J + ... + ha [qaatlaJ = [qaal] o 

Násobíme-li rovnice (9) po řadě čísly hl' ~, . o o, ha, sečteme-li 
a přihlédneme-li k rovnic;m (12), dostan,Jm'e 

a 

kl [qa1/J + k2 [qaJ] + . o o + ka [qaa/J = 2 ku [qa"f] '= ~oht + 
u=1 

+ aooh2 + ... + aaoka - kl [a1lJ - k2 [a2l] - ... - ka [a~l], 

tedy 
f/J = 10 + alokl + aooh2 + . o 0+ aaoka + 

(I 

+ 2 (/; - kl~i - h2a2j - ... - katlal) li· 
j=1 

Protože střední chyba j-té z rovnic (2) je rovna mo : VP;: 
bude podle vzorce [I, (12")] čtverec střední chyby funkce f/J 
roven 

(I 

m~2 = mo2 L q; (/j - hlad - h2a2i - o. o - haaa;)2. (13) 
j=1 

Vzorec (13) můžeme ještě upraviti takto: 
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~ 

"2 qj (f; - hlav - ... - "'tIlaj) (Jj -hlad ---' ... - hcPa;) == 
;=1 

= [q//] - 2hl [q/a1] - 2h2 [q/~] - ... - 2ka [qlaa] + 
+ hl {kl [qalal ] + h" [Qaxa2] + ... + ha [qalaa]} + 
+ h2 {~ [qa~l] + k2 [qa2a2] + ... + ka [qa2aa]} + 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+ ha {kl [qaA] + k2 [qaaa2] + ... + ha [qacPa]}o 

Užijeme-li vzorců (12) a sloučíme-li, jest 

tedy 

g 

~ qj (I, - klal ; - h,~2j - o o • - kalLaj)2 = 
j-I 

= [qlIJ - kl [q/al ] - ~2 [q/a2] - o • o - }"a [q/a·a], 

m",2 = mo2 {[qlf] -hl [qlal ] -h2 [q/a2] -. o. - ha [q/aa]}. (13') 

Podobně jako v (III, 6) o výpočtu [PVV], můžeme vyloučiti 
veličiny kl' h", o o o, ka ze vzorce (13') a z rovnic (12). Jen místo 
p je nyní q, místo I jest I a místo a, b, c, ... je nyní~, a2, a3 , o o • 

Místo vzorce [III, (22)] bude tedy 

m.2 = m~2 (q[/f] _ [qa1/]2 _ [qa2/_o __ I]~ _.~qa31 -~~ _ o o 0)0 
[qalal ] [qa~2 o 1] [qtzA .2] 

. (13 N
) 

Při tom [q~al]' [qal/] jest koeficient u kl a prostý člen v prVlÚ 
z rovnic (12), [qa2a2 o 1], [qaJ o 1] je koeficient u k2 a prostý 
člen v příslušné první redukované rovnici prvního řádu, 
[qaaa3 • 2], [qaJ . 2] je koeficient u ka a prostý člen v první 
redukované rovnici druhého řádu atd. 

J~e-li na pře o jedinou podmínku 

a11 Xl + al2x2 + o o. + alC?xC? = a lO' 

bude také jediná veličina kl a příslušná rovnice (12) jest 

hl [qal~] = [qaJ] , 

takže čtverec střední chyby lineární funkce vyrovnaných 
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hodnot f/J = fo + fl X'I + fix' I + ... + I (lx' (l bude podle vzor­
ce (13') nebo (13") roven 

mti/I. = mol { [qlIJ - [qllt/J
I

}. (14) 
[qlltllt] 

Nechť jde o (J podmínek tvaru 

X'l + y'l + Z'l = lito, 
X'I + y'2 + Z'2 = a." 
. . . . . . . . . . . . . . . . . . 
, + I + ' . X a Y a Z a = aoo , 

(15) 

..c.h vv , h l:Č • ví ,,, '" 
v~ y merenyc vell ID oznac me Pl' Pl' P 1; Pa, P 2' P 2; ... ; 
Pa, p' a, p' a· Chceme určiti střední chybu výrazu 

a 

fP = 10 + ~ (fflx' (/ + I' ,y', + I",z",). 
(/=1 

Zavedeme čísla kt, ks, ... , ha, která splňují rOVlŮce (12), 

h, (qfl + q', + q",) = (q,l" + q' fil', + q" ,I",), 9 = I, 2, ... , (J. 

Pak ze vzorce (13') plyne 

m.2 = mol,iJ(q'li + q',/"z + q",j",I) -

_ (q,t, + q',t;, + q:,t",)2}. (15') 
(q, + q , + q fl) 

Chceme ještě vyPOČísti, jaká je průměrná hodnota poměru 
váhy měřené hodnoty k váze vyrovnané hodnoty. Označíme 
váhu měřené hodnoty M; písmenem P; & váhu (střední chy­
bu) vyrovnané hodnoty x'; písmenem Pi (m;). Máme tedy 

v.· • v h dn t I f Pi urcltl prumernou o o u - ~ p . 
e ;=1 ;. 

Protože pl. = m~ a podle vzorce (13') jest 
1 mo 



bude 

a 
fl Pi -' Q (! (! . 

~ P. = fl - Z ~aJj- 2 h2a~ - ... - ~ hclla;· 
;=1 , ;=1 ;=1 ;=1 

Při tom podle vzorců (12) jest 

h1[qa1a1] + h l [qa1a2] +. · · + ha[qa1aa] = q;a11, 

kl[qa~J + k 2[qa2a2[ + · · · + ka[qa~a] = qPIi' 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

k1[qaaal] + ha[qaaa2] + ... + ka[qaclla] = q,-Q,aj' 

Odtud na· př. 
qPt,oQ,lj, [q~a2]' ... , [qa1aa] 
qP21oQ,Jj, [qarz2] , . o ., [qa~a] 

I ' • • • • • • • • • • • • • • • • • • • • • • 'I 
q,-Q,aPJj, [qaaa2]' ... , [qaaaa] I 

kde .d' je determinant předcházející soustavy lineárních 
rovnic; tedy 

I 
[q~al]' [qal a2], ... , [qa1aa] i '''lali =.-!, [qQýJ~], [qa~2]' .. o, [qa~a] = 1. 

j~ L1 I o o o •••• o • o o o • o ••••• o • 

; [qaclll]' [qaaa2]' ... , [qaclla] I 

Podobně 

Q (! (! p' 
;;'k.p"JJ = 1, "" ;?lktPaf= 1, tedy j?l ~ = e - (J. 

Počet sčítanců Pi: P; jest e. Průměrná hodnota poměru 
váhy měřené hodnoty k váze vyrovnané hodnoty jest tedy 

~ i Pi = e - (J • (16) 
e ;=1 P'j (! 
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ó. Pffklady na vyrovnáni závislých měfeni. 1. V troj­
úhehúku ABC byly měřeny úhly A = 61° 07' 52,00", 
B = 76° 50' 54,00", 0= 42° Ol' 12,15". Jejich váhy jsou po 
řadě 3, 2, 2, sférický excess c' = 2,11". Provésti vyrovnání. 

Označíme-li opravy úhlů Xl' X 2, Xa, má býti 3X1
2 + 2X2

2 + 
+ 2xa2 minimální a při tom má býti přesně splněna podmínka 

Xl + X 2 + Xa = + 3,96". (17) 
}"unkce 

F = 3X1
2 + 2X2

2 + 2xa2 - 2k1 (Xl + X 2-+ Za - 3,96") 

nabude minima, když . 

1 oF __ 1 8F _ 1 8F _ O 
"2 oX

l 
- 2 OX

2 
- 2 OXa - , 

tedy když 
3x' I = kl' -2x' 2 = lel' 2x' a = lel; 

dosadíme-li do rovnice (17), bude ~ (t + t + t) =+3,96". 
To je normální rovnice, kterou bychom mohli přímo napsati 
podle první z rovnic (9): lel [qal~] = alOe Odtud lel = 2,97". 

Pak 

X~l = tlel = + 0,990", X'2 = tkl = + 1,485" . x's· 

Vyrovnané úhly budou: 

A + X'l = 61° 07' 52,990", 
B + x' 2 = 76° 50' 55,485", 
O + x's = 42° Ol' 13,635". 

Střední chyba pro jednotku váhy je mo = ± V[pvv] : 1, kde 
VI = x';~ tedy [pvv] = 3X'12 + 2X'22 + 2x'a2 = 11,7611. Po­
dle vzorce (ll) je [poo] = alokt = + 3,96" . 2,97" = 11,7612. 
Pak mo = ± 3,43". 

Ctverec střední chyby pro Xl je podle vzorce (14), do ně­
hož dosadíme 10 = 12 = ... = Ifl = O a 11 = 1, roven 

2 2 { . q12 } _ m 2 ql (q2 + qs) mZ1 = mo ql - - o , 
ql + q2 + qs ql + q2 + qs 
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odtůd 
z t 2 • 1 2" m~l = ?no, mZt = ± ,7 . 

Podobně je 

m,'I. = mo2 ql (ql + qa), m,= tmo V5 = ± 1,92" = mz• 
qt + q'l.+ q3 

To jsou střední ohyby vyrovnaných úhlů uvažovaného troj­
úhelníka .. 

Můžeme je vypočísti také přímo takto: Jsou-li AA, AB, 
AC skutečné chyby úhlů A, B, C a tedy 

• o , ISO +B -A-B-G 
~=-----------------

ql + ql + qs ' 

bude skutečná chyba ve vyrovnaném úhlu .A + x' I rovna 

AA _ A.A + L1B.+ L10 ql = 
, ql + q'l. + qa 

(q2 + q8) AA - ql AB - ql AG 
-

q1 + q2 + qa . 

. mo mo 
A protože střední hodnoty LlA, LIB, LIG JSOU VP"ľ VP2' 

V
1no čili m., Vq1' moVq'l.' moVqa, bude čtverec střední chyby vy­

Pa 
rovnaného úhlu A + X'l roven podle vzorce [I, (12")] 

'I. 

(g1 + ';: + ga)1 [(g. + ga)! g1 + g12q. + g12qal = 

= mo2 qt (ql + qa) . 
ql + ql + qa 

Podobně jest čtverec střední chyby pro vyrovnaný úhel 
B + x' 'I. roven 
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a pro úhel C + x' 3 jest 

ma" qs (ql + q,,) 

ql + q2 + qs 

Váhy vyrovnaných úhlů jsou po řadě rovny 

~+~+~ ~+~+~ ~+~+~ 
ql (q2 + q3) , q2 (ql + q3)' q3 (ql + q'lJ . 

V uvažovaném zvláštIÚm případě budou rovny číslům 4, 
~,l..!. / 

2. Na stanovisku bylo měřeno n úhlů lXl , cX2, •• " lX
'
h tvoří- ( 

cích dohromady plný úhel. Jaká je váha jednotlivých vy­
rovnaných úhlů, je-li váha každého měřeného úhlu rovna p? 

V tomto případě je 
F = pXl

2 + pX2
2 -t-- ... + PXn2 -

- 2k1 (Xl + X 2 + ... + X n - a10 ), 

kde alO == 3600 
- lXI - cX2 - ••• - lX". Pak , 

" I kl 
Xl == X 2 = ... == x" == -, 

p 
a dosadíme-li do podmínky x' 1 + x' 2 + ... + X'" - a lO == O, 
bude 

lel == alOP a X~ I == X' 2 = ... = X' ft = a10 
• 

n n 
Střední chyba pro jednotku váhy je 

rt"o = ± VP (x? + x? + X',,2) = kl V: = aloV = · 
Abychom vypočetli čtverec střední chyby vyrovnané hod­
noty Xi (a vyrovnaného úhlu exi + Xi), položíme ve vzorci 
(14) /; == 1 a místo ostatních I klademe O. Pak 
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tedy 

Vn -=- 1 G lO 1/ m:zj = ± mo pn = ±n 11,-1. 

Váha vyrovnaného úhlu bude pn: (11, - 1). 
Střední chybu vyrovnaného úhlu (Xi + x', můžeme počÍ. 

tati také pnmo: .. 
.' 3600 

- (Xl - lX2 - ••• -- lX" 
{Xj + X j = CXj + ----------

11, 

360
0 

_ {Xl _ lX2 _ ... _ {Xj-l + n - 1 (X, _ 

~ 11, n 11, 11, 1 

11, 11, 

Protože střední chyba jednoho měřeného úhlu je m,o: Vp, je 
střední chyba vyrovnaného úhlu (Xj + X'i podle vzorce 
[I, (12"] rovna 

V
I (11, - 1) (n ~ 1)2 T- Vn - 1 

m - + -= mo . 
o 11,2 P 11,2 P pn 

3. Mezi body Bt:est, Greenwich a Paříž byly v r. 1872 
určeny tyto rozdíly zeměpisných délek: 

Brest-Greenwich ... . 
Greenwich-Paříž .. . 
Brest-Paříž ....... . 

17m 57,154,8 váha 10, 
9m 21,120,8 váha 7, 

27m 18,190,8 váha 9. 
/ 

Určiti jejich vyrovnané hodnoty, jejich středIÚ chyby a 
váhy nejprve obecně a pak číselně.·) 

Označíme délkové rozdíly 

WB_O = Wl + Xl' WQ-P = W2 + XS, W B_ P = Wa + Za, 

má býti 

Wl + Xl + W2 + XI. = Wa + Xa ' tedy Xl + X2 - Xa = GlO' ---
*) Wright-Hayford, 1. c. str. 166. 
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kde 

Funkce 

F = Pl%12 + P2X22 + PaZs2 - 2k1 (Xl + X 2 - Xa - a10), 

odtud 

Dosadíme-li do rovnice 
a 

x, + x' x' a bude kl = 10 1 2 - a = 10' 
ql + q2 + qa' 

tedy 

X/a = _ a10qa 

ql + q2 + qa 

V uvažovaném zvláštním případě jest 

• 

kl ~ 0,2378, x' 1 = - 0,0248 , x' 2 = - 0,0348, x' 3 = + 0,0265 

a tedy vyrovnané hodnoty délkových rozdílů jsou 

17m 57,1308 ; 9m 21,0868 ; 27m 18,2168 • 

Střední chyba pro jednotku váhy bude 

mo = ± VP1 X/
1

2 + P2X'22 + Paxa'2 = 
= ± Vl,994 . 10-2 = ± 0,1418 • 

Podle vzorce (ll) je 
~ 

[pvv] = alokl = 1,991 . 10-2 • 
. , 

Jako v 1. příkladě jsou střední chyby vyrovnaných veličin 
, I , 

X I' X 2' X 3 rovny 

m V q1 (q2 + qa) m V q2 (ql + qs) m V qa (q1 + q2) 
o q1 + q2 + qa ' o q1 + q2 + qa' o q1 + q2 + qs 
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a váhy daných délkových rozdílů jsou 

ql + q2 + qa 
ql (q2 + qa) , 

ql + q2 + qa 
q. (ql + qa) , 

ql + q2 + qa . 
qa (ql + q2) . 

V uvažovaném číselném příkladě jsou střední chyby ±O,0388
, 

~O,0418, ±O,039R a váhy po řadě ~3, 2f'g8, 2řt'. 

c 4. V trojúhelníku ABC (obr. 
6) jsou vnitřní úhly měřeny 
s vahami Pl' PI' Pa· Je-li dána 
délka strany AB = c, o které 
předpokládáme, že je bez chy­
by, a je-li m"střední chyba pro 
jednotku váhy, jakájerelativ-

IÚ střední chyba délky a = BC 
ft, výšky ve~ 

A ____ -.::c=----'-_~ B Označíme-li úhly A, B, O 
a jejich opravy Xl' x2, xa, bude 
jako v 1. příkladě 

obr. 6 

F = PI Zl
2 + P2Z 2

2 + P3X3
2 

- 2kl (Xl + X 2 + Z3 -aIO)' 
• 

kde 
a10 = 180 + c' - A - B - o. 

Hledáme především střední chybu veličiny 

c . A a=-. OSIn. 
SIn 

Jsou-li L1A, L1B, L10 skutečné chyby v úhlech A~ B, O a jest­
, liže skutečnou chybu v a označíme L1a, jest 

Lla =:: LlA + ~8inC. 
A protože 

oa c 
BA - sin O cos A = a cotg A, 
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• 

~ - - sin~ C sin A cos C = - II cotg C, 

hude, zavedeme-li zkratky 

Cl = cotg A, Cz = cotg B, Ca = cotg 0, 

relativní chyba 
Lla 

f/J = - = Cl JA - Ca LJO. 
a 

Protože tedy jde o střední chybu výrazu Cl x' 1 - CsX' a' stačí 
použíti vzorce (14), kde položíme /1 = ~, f2 = O, /a = - Ca. 
Bude tedy 

m 2 = m 2 {q C 2.+ q r_2 _ (q1c1- qSCa)2}. 
• • o I I S~3 ql + q2 + q8 

Pro Pl = PI ....:-. Pa = 1 hude 

m.2 = mol {~I + es2 ._ (~ -; Ca)2} = 2i2 (~2 + ~es + es2). 

Jde-li o trojúhelník rovhostralUlÝ, je .. 

a tedy 

o 1 
~ = es = cotg 60 = Va 

mf/) = mo Vi· 
Chceme ještě vyhledati střední relativní chybu ve výšce 

C • A . B v = .. ...- sin S 111 • 
C sin C 

V~omto případě je 

Llvo = Cl LJA + C2 LJB - Ca LJC. 
- Ve 

Půjde tedy o střední chybu lineárního výrazu 

fP1 = ~X'l + C2X'2 - Cax'ao 

, 
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Užijeme-li zase vzorce (14), hude 

m 2 = m 2 { q C 2 + q C 2 + q r_2 _ ~qlCt t_ Q2c2 - q3Cs)2}, 
(1)1 O, 1 1 2 2 a"'., ql + q2 + qa . 

Je-li uvažovaný trojúhelník rovnoramenný a měříme-li oba 
úhly při základně stejně přesně, jest Cl == ~, Pl == P2 a tedy 

m 2 = m 2 {2q C 2 + q C 2 _ (2qICl-Q3Ca)2} = 
~1 o II 33 2~+~' 

_ 2 2 (Ct + cara _ 2 2 (Cl + C:J)2 

- mo qlqa 2q1 + qa - mo Pl + 2P3 . 

V tomto případě je 

Cl == cotg A = cotg (90 - tO) = tg tO, • 
takže 

_, . l-tg2 tO 
Cl + c3 == tg lC + cotg ° == tg tO + 2 tg tG == 

1+tg2tO 1 
- ==., 

2 tg ta sin a 
tedv .. 

mo V 2 
m(l)l == sin ° Pl + 2Pa . 

5. Od vrcholu Po je veden podél poledníku bodu Po řetěz a 
trojúhelníků (obr. 7), s vrcholy Pl ,P2' ... , Pa + b V nichž byly 
měřeny všechny úhly se stejnou přesností. Jaká je střední 
chyba: a) ve straně 811 == PgPg+l; b) v úhlu, který svírá 
strana 8g s poledníkem bodu Po; c) v průmětu PoFa+l čáry 
POPI ... P a+ 1 do polednfku bodu Po.·) (Výpočty provád~ti 
jakoby body PIJ P2, ••• , Pa+l ležely v rovině.) 

Délku POPl označíme 80 a předpokládáme o m, že byla 
změřena bez chyby. Měřené úhly v g-tém trojúhelníku jsou 

Ilo) A. R. Charke: Geodesy, Oxford 1880, str. 225-227. 
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Ag, Bq, eg a jejich opravy 
xg, Yg, z,. Podmínka, Z g­
tého trojúhelníka bude 

xg + y" + Zg == ago, (17') 

kde 

an. 1800 -A,-Bg-Cg. 

Funkce F je v tomto pří­
padě 

a 

F = 2: (xg
2+ y,l+ Z(2)-

,=1 

- 2kg (Xg + yg + Zg - a,o)' 

Anulováním derivací podle 
I ' , Xg, Yg, Zg P yne x',= Y g= 

== z' g = kg. Dosadíme-li do 
podmínek (17'), bude 

, , , -1n 
Y o == x g == z g == rgO' 

tedy vyrovnané hodnoty 
úhlů v g-tém trojúhelníku . 
JSou 

Ag+ x'" Bg+ y'" Og+ z',. 

P, 

obr: 7 

Označíme-li střední chybu pro jednotku váhy (t. j. v jednom 
měřeném úhlu) písmenem mo, pak podle vzorce (15'), kde 
klademe na př. 19 == 1 a ostatní I rovna O a qg = q' g == 
== q"g = 1, plyne střední chyba ve vyrovnaném' úhlu 

V qg v-
mo qg-q,+q'g+q"g == mo i· 

a) Abychom odvodili vztah mezi skutečnými chybami 
L1Ai, L1B" i == 1, 2, ... , g a příslušnou skutečnou chybou 
strany 8g, vyjdeme z věty sinové 
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sin Bl sin B2 ••• sm B, 
8, = 80 . A . A . A . sm I sm 2 ••• sIn , 

Al jest úhel proti dané straně 80, Bl proti první hledané 
straně Sl atd. 

Ze změněných hodnot úhlů bychom vypočetli 

L1 _ sin (Bl +L1BI) sin (B2+L1B2)··· sin (B, + L1~,) 
8(/+ S, - 80 sin (Al +~Al) sin (A2+L1A2) •• • sin (A,+L1A,) . 

Logaritmováním plyne odtud 
, 

log (s, + Lls(/) -log 80 = 2{log sin (Bc + LlBi) -
i=1 

--log sin (Ai + AAd} 

a z předcházející rovnice 

" lo'g 8(/ - ~og 80 = ~{log sin Bi -log sin Ad, 
i-I 

tedy 
fl 

log (Sg + A'~(l) -log 8(/ == 2 {log sin (Bi+L1B,)-log sinBd­
i=1 

Rozdíl 

(/ 

- ~ {log sin (Ai + JA i ) -log sin Ai}. 
i=1 

8, + .18, 
log (8, + L1s,) - log 8, = M log --­

s, 

:=:' M log 1 + - ~ M . - . ( 
L1S,) L18(/ 

8, 8, 

Označíme-li značkami dAt, dB, tabulkové diference pr() 
log sin a jednu vteřinu v místě .Ai, resp. Bi, jest 

log sin (Bi + L1B,) -log sin Bi ~ LlB'i "Bi 

log sin (Ai + L1A,) -log Rin A,~ L1Ai ~Ai, 
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tedy 
Lis, 1 ~ 'A tA) - = M ~ (L1B, ~Bi - L1 i o ,. 
8, i .. 1 

Půjde tedy o střední chybu výrazu 

cp = Lis, = Ml i (y', ~Bi - x', t5A i ). 
s, ,=1 

Užijeme zase vzorce (15'), v němž klademe 

q, = q', = q", = 1, ff ='- ~Ai, /" = + ~Bi, /", = o. 
Pak 

'm 2 = mo2 i {~A,2 + ~B,2 _ (-Mi: 6Bd
2
} = 

fP M2i=1 

m 22 ' = ~- ~ (t5A·2+ t5A·~B·+ ~B·2) 
M I 3.~ " '1." I· 

'1.=1 

Tedy střední relativní chy~a ve stra.ně 8, jest 

(18) 

Při tom LlA" AB" L10, a tedy i mo značí počet vteřin, tedy 
prostá čísla. \ 

b) Označíme-li úhel, který svírá strana 80 s poledníkem 
bodu Po, písmenem lXo (azimut bodu PIJ čítaný od severu 
přes východ na západ),. bude 

azimut směru P1P2 roven lX1 = 1800 + lXo + Cl' 
azimut směru P2Pa jest lX2 = - 1800 + eX1 - O2, 

azimut směru PsP, jest lXs = 1800 + eX'/, + 0 3 , 

azimut směru P,P" jest eX, = -1800 + eXa - C4, 
, ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

azimut směru P,P"+1 jest 

eX, = (-1),,-1 1800 + ~g-l + (-1),,-1 au' 
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Odtud 

{ 
00 

01." = 1800 + 01.0 + C1 - O2 + C3 - Of. + ... + (-1)"-1 O"' 

V . klad {O°. 1· {SUdé e vzorCI eme 1800' J e- I 9 liché· 

Předpokládáme-li, že azimut první strany (<Xo) byl změřen 
bez .chyby, bude skutečná chyba v (x, rovna 

LlťX, = LlGl - LlG2 + ... + (- 1)'-1 LIGu. 
Půjde tedy o střední chybu výrazu 

fPl = Z'l- Z'2 + ... + (- 1)'-1 z'"' 
a užijeme-li vzorce (15'), plyne 

mfJ)1
2 = m02 (tg); 

střední chyba v <x, bude proto rovna 

mo Vtg· . 
c) Průmět 

PoJ'a+l = 80 cos <Xo + 81 cos <Xl + ... + 8a cos <Xa· 

Skutečná chyba v průmě~u PoFa+1 je rovna 
a 

~(Ll8" cos C'Xg - 8, sin <X, LlťX,). 
1=1 

Viděli jsme, že 

8, ~" 
LlSg = M i~ (dBi LIB. - dAi L1At ), 

LlťX, = LlGI - LlG2 + ... + (- 1)'-1 LIG", 

tedy skutečná chyba v průmětu PoJ'''+1 je 
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Označíme délky průmětů od Fl do Fa+l, t. j .. 81 cos <X1 + 
+ ... + 8a cos ~a písmenem Pa a délky průmětů do přímky 
kolmé kpolednťku, t. j. 81 sin ~1 + ... + 8a sin ~a, písmenem 
Qa (pro a = I, 2, .. " a). Pak můžeme psáti skutečnou chybu 
v průmětu P;Fa+l: 

A Pa A A Pa - Pl + 
(~BlLJBl-~.AlLl.Al) M +(~B2LJB2-~A2LJA,,) M 

- -
LI .A LI Pa-P'l 

+(~Bs Bs-~ S .AS) M + ... + 
Pa-Pa-l -+ (~BaLlBa-~Aa LlAa) M - Qa LlGl + 

( 

- - --+ (Qa - Q1) LlG2 - (Qa - Q,,) LlGa+ 

+ ... - (Qa - Qa-l) (- I)a-l LIGa. 

Půjde tedy zde o střední chybu výrazu 

ť/J2 = (- x'l~Al +y'It5Bl ) Pa - z'lQa + 
M 

- -
'~.A '~B Pa-Pl , Q Q +(-X"u 2,+Y"U,,) M +Z,,( a- 1)+ 

, ..QA ' ~B Pa - P" , '(-"Q Q ) + + (....;-. X SU 3+ Y aU a) M - Z 3 a - " 

. . . . . . . . . . . . . . . . . . . . . 
, ~.A '..QB Pa - Pa-l + (- X aU a+ YaU a) M -

- Z' a (Qa - Qa-l) (_l)a-l. 

"Protože qg = q'g = 'q", = I, bude podle vzorce (15'): 

m.,1 = mo2 1/; {<ll + 1'1/2 + l"i) - <11/+ 1';+ f"1/}} 

Další výpočet se doporučuje prováděti číselně. 
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B. V řetězci pěti podobných rovnorameWlych trojúhelníků, 
v nichž úhly při vrcholech jsou 38° a úhly při základně 71°, 
je dána základna 80 prvního trojúhelníka. Je-li mo střední 
chyba jednoho měřeného úhlu a předpokládáme-li, že byly 
měřeny všechny úhly v trojúhelnících a že byly vyrovnány, 
jaká je relativní střední chyba strany 8r;~ 

Podle vzorce (18) je středrú· relativní chyba strany 8 5 
rovna 

Protože <538° == 26,9. 10-7, <571°== 7,2 . 10-7, bude 8třednÍ 
relativní chyba strany 8 5 rovna 1,31 . 10-6mo. 

O 7. Ve čtyrúhelníku ABCD 
(obr. 8) je dána úhlopříčka 

A ~r--+--~~ 

z = AC a byly měřeny úhly 
(1), (2), (3); (1'), (2'), (3') s va­
hami rovnými po řadě Pl' p' l' 
p\; P2' P' 2' p" 2· Určiti střední 
relativní chybu úhlopříčky 

C BD = Z .• ) 

V tomto případě je 

Z2 = AD2 + A.B2 -
obr. 8 - --

2AD . AR cos [(3) + (3')], 
8 a 

AD = SinZ(I) sin (2), AB = sinz(l/) sin (2'). 
• 

Abychom vypočetli, jak závisí chyba v délce Z na chybách 
Jl, L12, ... , J3' měřených úhlů, postupujeme takto: De­
rivujeme výraz pro Z2 podle (1). Jest 

, 

*) J ordan, 1. c. III, Stuttgart 1907 (5. vyd.), str. 163--165. 
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- -dZ - <lAD - dAD 
Z d(l) = AD . d(I)' - AB cos [(3)"+ (3')] d(l) , 

~I~ = - sin: (l) sin (2) cos (I) = - AD cotg (1) = 

= -ADcl , 

edy 
dZ ---- \ 

Z d(f) = - ADCt {AD - AB COR [(3) + (3')]}, 

a protože (viz obr. 8) 
-AD - AB cos [(3) + (3')] = Z COA lX, 

. 
Je 

dZ -
d(l) = -AD Cl cos ťX. 

Podobně je 

dZ -
d(2) = + AD Cz cos lX, 

dZ AB ' , 
d( I') = - C 1 cos ťX , 

kde 
Cz = cotg (2), c\ = cotg (I'), c'! = cotg (2'). 

Dále 
ZdZ --
d(3) = + AD . AB sin [(3) + (3')], 

a protože 

AB sin [(3) + (3')] = Z sin ~ 

(viz obr. 8), je 
dZ -. 
d(3) = AD SIn~. 
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Podobně 

dZ AB. , 
d(3'j = SIn lX • 

Půjde tedy o výpočet střední chyby pro výraz 

f/J = 11(1) + 1'1(2) + 1\(3) + 12(1') + 1'2(2') + 1"2(3'), 

kde 

II = - ADCt. cos lX, 1'1 = + ADc2 COS lX, 1"1 = AD sin lX, 
12 = - ABc'l COS x', 1'2 = + ABc'2 COS (X', 1"2 = AB sin (X'. 

Při tom podmínky jsou 

(1) + (2) + (3) = a10, (I') + (2') + (3') = a2Q. 

Podle vzorce (15') bude 

m.2 = '""02 {qJI2+ q'J?+ q"I/?+ q,N+q'J',2+ q"J"22-

_ (qJl + q'J'l + q" J"1)2 _ ~f!J2 + q'J'2 + Q"J"2)2} 
q1 + q'l + q"l q2. + q'2 + q"2 o 

Jde-li o kosočtverec, budou úhly (I) a (1') stejné a rovněž 
úhly (2), (3), (2'), (3') budou stejné; a také (X = t/(,', tedy 
II = 12' I' 1 . 1'2' 1"1 = 1"20 Předpokládáme-li dále, že 
Pl = P2' P' 1 = p" 1 = p' 2 = p" 2' bude výraz ve složené závorce 

2 {qJ12 + q'l (1'12 + 1\2) _ [qJI + q~'~/~~ rl)]} 

Dosadíme-Ii sem II = - ADCl cos IX, I' 1 = + ADc2 cos eX, 

1"1 = AD sin (X a uvážíme-li, že Ct. = cotg 2eX, C2 = cotg (2) = 
= tg eX, jest výraz ve složené závorce po úpravě 

AD2 qlQ' 1 ,AD2 I 
. = ---, 

sin2 
lX ql + 2q' 1 sin2 

(X (P'l + 2Pl) 
a tedy 

" 
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, 

A protože· v případě kosočtverce jest AD cos ťX . = tZ, jest '" 

mz mo V 1 
Z = sin 2lX 2Pl + P'l· (19) 

Zavedeme-li místo úhlu lX poměr Z : z = v, bude 

. z Z 
SUl lX = _, cos lX = , 

2AD 2AD 
. 2 2zZ 4zZ 2v 

SIn lX = = ----
. 4AD2 2 (Z2 + Z2) = 1 + v2 ' 

tedy 

mz 1 + v2V 1 
Z = mo 2v 2Pl + p' 1 . 

(19') 

• 

8. V řetězci trojúhelníků (obr. 9) je dána strana 8 první­
ho trojúhelníka a byly měřeny všechny úhly se stejnou 
střední chybou mo. Jest vypočísti střední chybu součtu 
S = 81 + 82 + ... + 8n za předpokladu, že 'trojúhelníky jsou 
rovnostranné .• ) 

Protože v tomto případě půjde o 2n - 1 podmínek tvaru 
(15) a všechny váhy p jsou stejné a rovné 1,' bude 

h-l . 

m,,2 = mo" 2 {(/,l + /"l + I" ,'I.) - -k (/" + 1', + 1",)2}. (15") 
g=l 

*) J ordan, 1. c. str. 159-161. 
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Musíme tedy určiti veličiny I" f'" I"" t. j. koeficienty 
u dA" dB" dO, ve výrazu 

2n-l 

S == 2 (f" dA, + /,,, dB" + f"" dO,,). 
,,=1 

Podle věty sinové vypočteme 

8 • B 
81 = . .AI sm l' 

sm41 
_ 8 sin 01 sin Ba o B 

82 - • A . A -:-;- A SUl 3' sIn 1 sIn I sm 3 

_ 8 sin 01 sin BI sin Oa sin B & • B 
83 - . A . A . A . A . .AI sm 6'· •. , sm 1 sm I sm s sm • sm n6 

8 sin 01 sin Ba sin B2u-2 . 
8, = . A' . A . A ... -. A sIn B2q-l o 

sIn 1 sm I sm s sIn 21-1 

Derivujeme-li podle Av obdržíme 

~ ==, - • : A" sin Bl cos Al IlAl = - 81 cotg Al dAl' 
s~ 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
d8, == - 8, cotg Al dAl. . 

Podobně, derivujeme-li podle Aa, dostaneme 

d81 == - 82 cotg AI dA2, ••• , da, == - 8, cotg AI dAl 

a stejně pro ostatní úhly As, A, atd. Tedy 

fl = - cotg Al (81 + 82 + ... + 8n ) == - n8 cotg 60°, 
la == - cotg AI (82 + . o. + 8n) == - (n - 1) 8 cotg 60°, 
13 == - cotg Aa (81 + ... + 8n ) == - (n - 1) 8 cotg 60°, 
/, == - cotg A, (8a + ... + 8n ) = - (n - 2) 8 cotg 60°, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
12",-1 = - cotg A 2",-18" = - 8 cotg 60°. 

Derivujeme-li podle BIJ obdržíme 

8 
dBl = . A cos Bl dBl == 81 cotg Bl dBI sm 1 
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a stejně 
d82 I {J2 cotg B3 dB3, d83 == 8s cotg B 5 dB Ď' 

ds" == 8" cotg B2n--1 d.B2n- 1 0 

Pro sudé indexy u·B jest 

dag == 8g cotg B 2 dB2, pro g == 2, o o., n, 

... , 

dag == 8" cotg B, dB" pro g == 3, o o o, n atd. 
Tudíž 

I' 1 == 8l ·cotg Bl =--= 8 cotg 60°, 
1'2 == cotg B2 (82 + .. 0+ 8,,) == (n -1) 8 cotg 60°, 
1'3 = 8 cotg 60°, 
1', == (n - 2) 8 ·cotg 60°, 
I' 5 == 8 cotg 60°, 
I' e == (n - 3) 8 cotg 60°, 
. . . . . . . . . . . . . . . . . . . . . . . . . 

I' 2n-1 == 8 cotg 60° o 

Úhel Cl obsahují 82,8a, o •• , 811, tedy 1\ == (n - 1) 8 cotg 60°; 
úhel C2 a všechny úhly se sudými indexy neobsahují žádné 
8g, tedy /"?J& == O; úhel Ca obsahují 83, 8" ... , 8", tedy 
1"3 = (n -2) 8 cotg 60°; podobně /"5= (n - 3) 8 cotg 60°, 
I" 7 == (n - 4) 8 cotg 60° atd. 

Vidíme, že 

II + 1'1 + 1"1 == 8 cotg 60° (- n + 1 + n - 1) == 0, 
/2 + 1'2 + /"2 == 8 cotg 60° (-, n + 1 + n -1) == O, 
/3 + 1'3 + /"3 == 8 cotg 60° (- n + 1 + 1 + n - 2) == 0, 
I f, + 1', + I", == 8 cotg 60° (- n + 2 + n - 2) == O atd. 

Tím vzorec (15") přejde v 

Dále jest 
2,,-1 

2n-1 

mrp2 = mo2 L (fIl + I' rl + I" g2). 
g=1 

2 Ig2 == 82 cotg2 60° {n2 + (n -1)2 + (n-I)2 + 
g=1 . 

+ (n - 2)2 + (n - 2)2 + ... + 12 + 12
}. 
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• 

c 

A protože 

12 + 22 + ... + n 2 = ln (n + I) (2n + I), 
jest 

tedy 

Podobně 

a 
2n-l 

21&-1 

2/,2 = l82 cotg2 60° n (2n2 + I). 
g=1 

21&-1 

2 /,,2 = 82 cotg2 60° {I2 + (n -1)2 + 
(1=1 

+ 12+ (n-2)2+ ... + 12+ 12}= 
= t n&2 cotg2 60° (2n2 - 3n + 7), 

2 /",2 = 82 cotg2 60° {(n -1)2 + (n - 2)2 + ... + 12} = 
g=1 

proto 

120 

= ~ 82 cotg2 60° (n -I) n (2n -I); 

A 
9. Vyrovnání nivelační 

sít ě. Při nivelaci města byla 
mvelační síť připojena na bo­
dy A a B základní nivelační 
sítě, jejichž výšky jsou V.4 a 
VB. V obr. 10 značí šipky stou­
pání tratí. V. jsou namě­
řené rozdíly výšek a Vi pří­
slušné hledané .opravy. úko­
lem je vyrovnati tuto .nive­
lačnI ~íť . Opravené rozdíly 
výšek mají splňovati tyto pod­
mínky: Z obrazce I jest 



čili 

Vl - 172 - Vs = a l , kde ~ = - Vl + V2 + Vs· 

Podobné jsou podmínky plynoucí z obrazců II, III a IV: 

v2 -v,-v6=a2, a2 =-V2 + V,+ Vs, 
Vs + Vs - v 7 = as' as = - V ó - V s + V 7' 

VS +v7 -vS =a", a,=-VS -V7 + VS· 
Podmínka pevného výškového rozdílu mezi body A a B jest 

Vs+vs + Vó +V5 = VB-VA, 

čili 

Va + V 5 = aó' a5 = VB - V.A - Va - V 5· 

Prosté členy ~, ... , a 5 vyjadřujeme obyčejně v mm. 

Osm neznámých oprav Vl' ... , Vs nemůže býti určeno uve­
denými pěti podmínkami. Ale přistupuje ještě podmínka, aby 
součet čtverců oprav násobených příslušnými vahami byl 
minimální (viz IV, odst. 1). V případě nivelací se podle zkuše­
ností předpokládá, že váhy jsou nepřímo úměrné vzdáleno­
stem. Píše se obyčejně Pi = 1 : Si, kde Si jest délka příslušné 
trati v km. To také znamená, že váha rovná 1 přísluší trati 
rovné 1 km. Má tedy býti minimem součet 

P1V1
2

. + P2V22 + ... + PSVS
2 

a při tom mají býti splněny podmínky 

VI - v2 - va = a1 , 

v2 -v,-vó = a2, 

vó + V S -v7 = aa, 
Vs + v7 - Vs = a" 

Vs + 175 = a5• 

Funkce F [viz (7)] v tomto případě jest 

(20) 

F = Pl Vl
2 + Pav22 + .... + Peve2 - 2lcl (Vl - V2 -:- Vs - a l ) -

- 2ks (v2 - V, - v5 - a2) - 2ks (vó + t'e - v7 - aa) -
- 2k, (Vs + v7 - Vs - a,) - 2ka (Vs + Vó - a5)· 
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Anulujeme-li parciální derivace podle jednotlivých Vi, bude 

P1VI == kl' 
P2V2 == - kl + k2, 

Psvs == - kl + k. + ks, 
. P.V. == - k2, (21) 

p"v6 == - k2 + k3 + k6, 
P8V 8 == k3, 

P7V7 == - k3 + k., 
Pet'e == - k4· 

Dosadíme-li tyto rovnice do podmínek (20) a píšeme-li 
q;, = 1 : Pi, bude 

kl (ql + q2 + qs) - ksfJ.2 - k,qs - k6q3 = a1, 

- klq'}. + k'}. (q2 + q, + q,,) -kil6 -kSq6 == a2 , 

- k2q5 + ks (q6 + q& + q7) - k4q7 + k6q6 == a3, 
- kl q3 - ksq7 + k, (q3 + q7 + q8) + k5q3 == a .. , 
- k l q3 -k'}.q6 + kil" + k,q3 + k" (qs + q6) == as· 

Ke stejným rovnicím bychom došli podle vzorců (9). Koefi­
cient [qa I

2 ] se rovná součtu převrácených hodnot vah pro ty 
trati, jež se vyskytují v první podmínce. Podobně [qa22], 
[qas2] atd. V koeficientu [qllta2] jest qala2 převrácená hodnota 
váhy pro trať, jež se vyskytuje ~T podmínce první a druhé 
a znaménko je buď + nebo - podle toho, jsou-li znaménka 
u a l i a'}. stejná či různá. Tak je na pře [qalaS] = - q2' [qalaS] == 
== O (protože žádná trať se nevyskyt."uje současně v první 
a třetí podmínce) atd. 

Sem stačí klásti qi == 1 : Pi = 8" jsou to tedy lineární rov­
nice se známými číselnými koeficienty. 

Z těchto rovnic yypočteme koreláty kl' k2 , ••• , k6 (na 
pře postupem Gaussovým). Pak z rovnic (21) vypočteme 
opravy Vl' ... , V 8" 

Pro kontrolu dosadíme do podmínek (20), jež musí býti 
splněny až na chyby plynoucí ze zaokrouhlování. 

Střední chyba mo pro jedničku váhy - jmenuje se také 
střední chyba kilometrová, protože váha rovná 1 přísluší 
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trati dlouhé I ·km - se vypočte podle vzorce (4) 

mo = ± Vt[pv2]. 

Vyrovnaná výška na př. bodu C jest V A + V s + VS. Před­
pokládáme, že výšku V.A známe bez chyby. Pak střední 
chyba vyrovnané výšky bodu C bude rovna střední chybě 
opravy vs. Podle vzorce (13') jest 

mf).2 = mo2 (q8 + q8h,) = mo2q .. (I + 11,,), (22) 

neboť jen 18 = I a ostatní I jsou rovna 0, takže [qa1f] = ° 
(člen qall je součin převrácené hodnoty váhy, příslušného 
koeficientu v první podmínce a příslušného I), 

[qaJ] = 0, [qaJ] = 0, [qa,/J = - q8' [qa.J] = O. 

Stačí tedy vypočísti h" z roVIŮc (12), jež zde budou: 

hl (ql + q2 + q3) - hll'l. - h4qa - kr;qa = 0, 
- hl q2 + ~ (q2 + q, + qr;) - h3qr; -' hr;qr; = 0, 
- h~6 + ha (qr; + q8 + q7) - h,q7 + hr;qr; = 0, 
- h,.q3 - hsq7 + h, (q3 + q7 + qs) + hsqa = - q8' 
- ~q3 - h~~ + haqr; + h,qa + hr; (q~+q6) = O, 

a dosaditi do vzorce (22). 

10. Vyrovnání trigono­
metrické sítě. Ve čtyrúhel­
ruku byly měřeny na každém 
vrcholu směry vždy ke všem 
třemzhývajícím vrcholům. Vy­
rovnati tuto síť! (Viz obr. ll.) 

Označíme naměřené hodno­
ty Si, i = 1, 2, ... , 12. Vy­
počteme-li na př. úhly v troj-
úhelníku ABO (82-81' 8 8-84, O 
8. - 8 s)' uvidíme, že jejich 
součet není přesně roven 1800 + 
+ excess 81 trojúhelníka ABC 
(počítáme jako na kouli). Je obr. ff 
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tedy patrno, že musíme naměřené hodnoty Si opraviti o hle­
dané opravy 8i. Pak podmínka, že součet v'yrovnaných úhlů 
v trojúhelníku, ABC má býti 1800 + ev bude 

- 81 + 8 2 - 8" + 8 e - 8 H + 8, = a1 , 

a1 = 1800 + e1 + Sl - S2 + S, - S8 + Ss - S8' (231) 

Podobně z trojúhelníků ACD a ABD: 

- 82 + 83 - 8 7 + 8 S - 810 + 812 == a2, 

a2 = 1800 + e2 + S2 - S3 + S7 - Ss + S10 - S12' (232) 

- 81 + 8a - 8 5 + 8 e - 810 + 8u = aa, 
aa = 1800 + ea + Sl- 8a + 8 5 -. S8 + S10 - 811, (233) 

Podmínka, která by plynula z troj úhelníka DBC, se dá odvo­
diti již z těchto tří podmínek, nepodala by tedy nic nového. 

Podle sinové věty sférické trigonometrie vypočteme 
sin AG ze sin AB v trojúhelníku ABC, dále sin AD ze 
sin AC v trojúhelníku ADC a konečně sin AB ze sin AD 
v trojúhelníku ABD. Tak se dá odvoditi další podmínka 

sin (S8 - S, + 8 8 - 8,) sin (Ss - S7 + 8 s - 8 7) 

sin (Se - S5 + 8 6 - 8 5) sin (S8 - Ss + 8 9 - 8 s) 

. sin (Su - 810 + 811 - 810) == 1. 
sin (812 - S10 + 812 - 810) 

Tuto podmínku převedeme na lineární tvar tím, že ji loga­
ritmujeme a jednotlivé sčítance log sin (S8 - S, + 8e - 8,), 
log sin (Ss - 8 7 + 8s - 8 7) atd. nahradíme přibližně stej­
nými výrazy log sin (S8 - 8,) + a' (88 - 8,), log sin (Ss -
- 8 7) + b' (8s - 8 7) atd., kde a /, b' jsou logaritmické dife­
rence pro log sin a 1" v místě úhlu S8 - S" 8 s - 8, atd. Dá 
se tedy poslední podmínka psáti ve tvaru 

a",8, + a,'586 + a,'888 + a",s7 + a"s88 + 
+ a"e89 + a,'loBto + a,'u8u + a4'12812 = a,. (23,) 

V uvažovaném případě máme 4 podmínky a 12 neznámých . 
. Ale přistupuje ještě podmínka, aby součet čtverců oprav 
81

2 + 82
2 + ... + 812

2 hyl minimální (viz IV, odst. 1). 
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Funkce F v tomto případě hude 

F = 81
2 + 82

2 + ... + 817,2 - 2k1 (- 81 + 82 - ••• -tlt) -
- 2k2 (- 82 + 8s - ••• - a2) - 2les (- 81 + Ss - ••• - a s ) -

- 2le, (a",s, + a,,1)81) + ... - a,). 

Anulujeme-li derivace podle 81, S2, ••• , 812, dostaneme rovnice 

Sl = _. kl - ks, S7 = - k2 +' k,a,'7' 
S2 = k1 - k2 , Ss = - kl + k2 + k4P4'S' 
sa = k2 + ka, 8, ' kl + k,a"" (24) 
s'" = - kl + k,a"" SIO = - k2 - ka + k,a,'IO' 
sI) = - ka + k,a"I)' 8u = ka + k,a,'ll' 
8 6 = kl + ka + le,a,'6' 812 = k2 + k,a,'12· 

Dosadíme-li odtud do podmínek, budeme míti čtyři normální 
rovnice pro koreláty: . 

6kl - 2k2 + 2ka + k, (- a4" + a,'6 - a"s + a.t,,) = 0l 

atd. 

Můžeme je zase kontrolovati přímo z rovnic (9). 

Normální rovnice řešíme na pře způsobem Gaussovým. Tak 
vypočteme koreláty lel' k2, ks, k,. Pak z rovnic (24) plynou 
opravy Sl' S2, ••• , 812 . Výpočet kontrolujeme dosazením do 
podmínek (23). 

Střední chyba pro jednotku váhy bude podle vzorce (4) 
rovna 

mO = ± Vf [82]. . 

Střední chybu jednotlivých vyrovnaných směrů, nebo jaké­
koli lineární funkce vyrovnaných směrů, počítáme zase jako 
v pf. 9 podle vzorce (13'), při čemž koeficienty h plynou 
z ruvnic (12). , 

" 
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v. 
POSTUP PO PROVEDENÉM VYROVNÁNí. 

Po vyrovnám se často tážeme, mají-li odchylky vlastnosti 
nahodilých chyb. Uvedeme nejprve podle Helmerta*) několik 
kriterií pro nahodilost chyb a způsob, jak odhadnouti přes­
nost těch kriterií. 

1. Zkoulky znamének. a) Součet znamének v dané řadě 
chyb nebo odchylek. 

Označíme řadu uvažovaných chyb (nebo odchylek) 81, 

E2' ••• , 8". Jejich znaménka označíme Vl' V2, ••• , V fh t. j. 
klademe V,= ±1, má-li chyba (nebo odchylka) znaménko 
±. Při tom nutno všechny chyby počítati ve stejném 
smyslu a ne tedy na př. některá 8 považovati za chyby 
měřených úhlů a jiná jako chyby rozdílu (360° - měřený 
úhel). Pak je součet znamének v dané řadě 8 = Vl + VI + 
+ ... + V". Mysleme si měření, z nichž vzeěla každá chyba 
nebo odchylka Ei, i == 1, 2, ... , n, opakována nekonečněkrát. 
Mají-li 8i vlastnosti chyb nahodilých a necháme-li chybu 81 
nabýti všech jejích nekonečně mnoho hodnot, a nezávisle na 
IÚ chybu 82 nabýti zase všech nekonečně mnoho jejích hodnot 
atd., a utvoříme-li vždy příslušné 8 pro všechny možné kom­
binace hodnot chyb, bude aritmetický průměr všech těchto 
součtů 8 roven O, protože k určitému počtu případů 8i se zna­
ménkem + musíme počítati stejný počet případů ci se zna­
ménkem -. 
Můžeme tedy říci: Průměrně je součet znamének. v řadě 

nahodilých chyb nebo odchylek roven o. 
Aby odhadl přesnost tohoto kriteria, to znamená, aby ně­

jak odhadl meze, v nichž můžeme ve skutečném případě če­
kati součet 8, uvažuje Helmert podobně, jako když se hledá 

*) F. R. He)mert: t~ber die Genauigkeit der Kriterien des 
Zufalls hei Beohachtungsreihen. Sitzh. der k. preuss. Ak. der 
WiSR., Phys.-math. Classe, 1905, st.r. 594--612. 
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průměrná hodnota chyb (srovn. t, odst. 3 a 4). Jenže zde jde 
o průměrné hodnoty odchylek od průměrné hodnoty. Jako 
tam se uvažují všechny možné hodnoty chyb, uvažují se zde 
všechny rozdíly mezi hodnotami, jichž může nabýti součet 
8 = Vl + V2 + ... + V ft a jeho aritmetickým průměrem 
rovným o. A jako tam se počítají čtverce všech možných 
hodnot chyb a jejich aritmetický průměr je (přibližně) roven 
čtverci střední chyby, počítají se zde všechny možné hodnoty 
čtverce 

ft 

+ ZVi Vi == 8
2

• 

(1) 

i,i=l 

Odmocnina aritmetického průměru hodnot (1) je pak střed­
ní odchylka součtu 8 od jeho průměru o. 

Protože aritmetický průměr součtu EV i V i se rovná O 
(plyne jako v I, odst. 4) a aritmetické průměry hodnot V i

2 

jsou rovny I, bude aritmetický průměr výrazů (Vl + V2 + 
+ ... + VA - 0)2 roven n. Je tedy Vn střední odchylka 
součtu 8 od jeho průměru O. 

Je-li absolutní hodnota součtu 8 větší než V n, předpokládá 
se, že působí nějaké systematické vlivy a že tedy chyby nebo 
odchylky nejsou nahodilé. 

b) Změny znamének v řadě chyb nebo odchylek. 
Jestliže uspořádáme vyšetřované chyby nebo odchylky 

podle nějaké proměnné t (na př. podle času, teploty atd.), jež 
nabývala při různých měřeních různých hodnot, a o níž tu­
~Hme, že měla systematický vliv na výsledky měření, a uká­
že-li se, že pro první polovinp všech měření takto uspořáda­
ných mají odchylky znaménka kladná a pro druhou záporná, 
soudíme, že odchylky nemají vlastnosti nahodilých chyb. 

K obecnému kriter~u pro změny znamének v řadách naho­
dilých chyb nebo odchylek se dojde takto: 
Označme počet sledů v řadě znamének Vl' V2, ••• , V ft 

písmenem f a počet změn písmenem w. Pak jest f - w == 
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= Vl V2 + V2 Va + Vs V, + ... + Vn- 1 Vn, neboť V, Vi + 1 
je + I pro sled Sr -I pro změnu. 

Pro nekonečně mnoho případů, uvažovaných v odst. la, je 
průměrná hodnota všech 1- tO rovna O, protože pro každý 
součin Vi Vi +1 na každé dvě kladné hodnoty (+ I) . (+ I), 
(- I) . (-I) připadají dvě záporné hodnoty (+ I) . (- I), 
(- I) . (+ I). 

Tedy: Průměrně je rozdíl sledů a změn v řadě nahodilých 
chyb nebo odchylek roven o. 

Aby vypočetl, jaká je střední odchylka rozdílu 1- tO od 
jeho průměru O, uvažuje Helmert zase o čtverci rozdílů 

(V 1 V2 + V2 V 3 + ... + V"-l V" - 0)2 = 
n 

= V 12 V 22 + V 22 V 32 + ... + Vn_ 12 Vn2 + L:Vi--1 V,2 Vi + 1 + 
i=1 

kde h > i + 1.. 

n 

+ L: Vi- 1 Vi Vh- 1 VAJ 
i=l 

Aritmetický průměr těchto čtverců je n - 1 (viz la), 
tedy Vn - I lze považovati za střední odchylku rozdílu 
1- w od jeho průměru O. 

Je-li některá chyba nebo odchylka rovna O, možno při vý­
počtu součtu 8 a rozdílu 1- w klásti příslušné znaménko 
jednou jako kladné, po druhé pak záporné a vzíti střed. Ke 
stejnému výsledku však dojdeme, když ve vzorcích 

8 = Vl + V2 + ... + Vf" 
I-w= Vl V2 + T'-2 Va + ... + ~n-1 Vn 

klademe příslušné Vi rovné o. 
Na střední odchylky Vn resp. Vn - I nemá existenoe nu­

lových chyb nebo odchylek žádného vlivu, protože pravdě­
podobnost jejich existence je nekonečně malá a průměrné 
hodnoty čtverců Vi2, V,;2 Vi + 12 jsou stejně rovné I, jako 

, kdyby se nulové chyby nevyskytovaly. 
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2. Zkou~ka sou~teDi skute~ných chyb nebo aritmetic­
kým prfiměrem skuteěných chyb. Nechť je funkce čet­
nosti pro chyby ei sudou funkcí, a jako v odst. la mysleme 
si opakována nekonečněkrá,~ měření, z IŮchž vzešla každá 
chyba ei. Necháme-li každou chybu ei nabýti všech jejích ne­
konečně mnoho hodnot nezávisle na ostatlÚch E, utvoříme-li 
součet e1 + e2 + ... + en pro všechny možné kombinace 
hodnot chyb a pak aritmetický průměr všech těchto součtů, 
bude průměr roven O, neboť aritmetický průměr pro každé Ei 

je roven o. 
Tedy průměrná hodnota součtu [eJ je rovna O, nebo prů­

měrná hodnota aritmetického průměru [eJ : n je rovna O. 
Značíme-li písmenem m střední hodnotu chyby e, t. j. veli­
činu danou přibližně rovnicí m 2 = [e2] : n (srovn. I, (10')), je 
čtverec středIú odchylky součtu [e] od jeho průměru-O roven 
n . m2. Ukážeme to, určíme-li čtverec rozdílu (e1 + e2 + 
+ ... + en - 0)2 = e1

2 + e22 + ... + en
2 + Eeiek pro neko­

nečně mnoho hodnot e1, e2' .. "' en jako v odst. la, a hledá­
me-li aritmetický průměr všech čtverců takto vytvořených. 
Je roven nm2, předpokládáme-li, že všechna měření byla 
stejné váhy. 

Střední odchylka součtu [eJ qd jeho průměru O je tedy rov-
na ± mVn = ± V[ee] a sti·ednť odchylka výrazu [e] : n od 
jeho průměru O je, podobně ± m : Vn = ± V[ee] : n. Je-li 
hodnota [eJ, ([eJ : n) vně mezí =t= V[ee], (=f V[et] : n), přéd­
pokládá se, že v chybách e jsou skryty nějaké systematické 
vlivy. 

Pro odchylky musí býti vždy splněno [vJ = O, v případě 
odchylek tedy nemá smyslu zkouška. vyložená v tomto 
odstavci. 

3. Zkouška. srovnánfm 8ou~tu ~tverců kladných chyb 
a 8ou~tu ~tverců záporných chyb. Uvažujme o výrazu 

Vl e1
2 + V 2 e22 + ... + V" en2. (2) 

Je-li funkce četnosti pro chyby ei sudá funkce, probíhá-li ei 
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všech nekonečně mnoho hodnot uvažovaných v předcháze­
jících odstavcích, je-li Vi = ± 1 a je-li ± zÍlaménko chyby 
Ei, bude součet yšech hodnot V i Ei2 pI'i stálém i roven O. 
Tedy průměrná hodnota v)rrazu (2), vypočtená ve stejném 
smyslu jako v pi'edcházejících případech, bude rovna O . 
. Ctverec střední odchylky součtu (2) 'od jeho průměru O 
bude roven n'm,'4, kde m' plyne přibližně ze vzorce 

m" = [e'] : n. 
Tento výsledek se odvodí stejně jako v odstavci 2, uvažu­
jeme-li o všech možných čt.vercích 

(V1 E1
2 + V 2 B2

2 + ... + V n En2 -0)2 = 
n 

= V1
2 81

4 + V2282' + ... + V n2E,,' + ~ Vi VkEi2Ek2. 
i,k=l . , 

Tedy: Průměrná hodnota výrazu Vl 81
2 + V2 82

2 + ... + V nEn2 

je rovna O, nebo průměrná hodnota součtu čtverců ldadných 
chyb se rovná průměrné hodnotě součtu čtverců záporných 
chyb. Střední odchylka výrazu (2) nebo rozdílu čtverců 
kladných a záporných chyb od průměru O je rovna ± 1n'2Vn = 

= ± V[e4]. Je-li rozdíl součtu čtverců kladných a záporných 
chyb vně mezí =f 1I[e4], předpokládá se, že v chybách Bi lze 
očekávati systematické vlivy. 

4. Zkoušky E. Abbeho. a) Vlastní zkouška E. Ab be­
ho. Jestliže systematické vlivy zatěžují kladné i záporné chy­
by přibližně stejně, bude výsledek vyšetřování podle odst. 2 a 3 
negativní. Proto se doporučuje srovnávati Q.vě funkce chyb, 
z . nichž v jedné jsou tušené systematické vlivy co možná 
potlačeny, kdežto ve druhé působí v plné míře. 

E. 'Abbe doporučuje uspořádati .chyby Bl' B2' ••• , Bn podle 
promělUlé, jejíž systematický vliv tušíme, a utvořiti součty 

A = B12 + 82
2 + ... + E",2, 

\ 

B = (E1 -E2 )2 + (E2 -E3 )2 + ... + (En_l-En)2 + (En -81)2. 

V součtu A se tušené systematické vlivy plně uplatňují, v B 
se uplatní obyčejně jen v posledním členu. Utvoříme ještě 
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, 
vyraz 

C = A - lB = 8182 + 82B3 + ... + B"Bl· 

Jsou-li chyby 8 nahodilé, bude průměrná hodnota výrazu 0, 
vypočtená jako v předcházejících odstavcích, rovna O. A 
čtverec střední odchylky výrazu A - -lB = O od jeho prů­
měru O se vypočte zase s pomocí čtverce 

(8182 + e~3 + ... + 8"B1 - 0)2 = 
= 81

282
2 + 8,l832 + ... + 8,,2812 + 2 (8182283 + ... ). 

Průměrná hodnota, vypočtená jako v dřívějších odstavcích, 
bude nm', čili střední odchylka výrazu A - tB = O od jeho 
průměru O jest ± m2Vn. 

b) Upravená zkouška E. Abbeho. 
Na místě výrazů A, B, O, uvažuje Helmert výrazy A*, 

B*,O*, kde 
A * ; (81

2 + E22 + ... + 8 1,2) - t (81
2 + 8n

2), 

B* = (81 - 82)2 + (82 - 83)2 + . ' .. + (8,,-1 - 8,,)2, 

0* = A* - vB* = 8182 + 8~3 + ... + 8,,-18n · 

?ase se dá ukázati, že průměrná hodnota výrazu 0*, vypočte­
ná jako v předcházejících odstavcích, je rovna O a odchylka 
výrazu A * - lB*' 0* od jeho průměru O jest ± m2 Vn-I. 

Vybočují-li čísla A-lB a A*-tB* z mezí =fm2Vn 
a =f m2Vn -1, předpokládá se zase, že exist.ují systematické 
vlivy, zatěžující chyby e,. 

5. Jak zjistime, že se odchylky od aritmetického prAmě­
ru řidi normálnfm zákonem ~etnosti~ Z odstavce (VII, 
2b, lX) plyne, že se odchylky naměřených hodnot od jejich 
aritmetického průměru řídí normálním zákonem četnosti, 
jestliže se jím řídí skutečné chyby jednotlivých měření. 

Zkoušku, že se odchylky řídí normálním zákonem četnosti, 
provádíme takto: Nejprve se přesvědčíme, že počet každého 
druhu znamének je přibližně stejný (v mezích uvedených 
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v odstavci 1). Pak zjistíme, kolik odchylek má absolutní 
hodnotu v mezích 

0-0,1; 0,1-0,2; ... ; 0,9-1,0, 
nebo 0--0,2; 0,2-0,4; ... ; 1,8-2,0, 

nebo 0-0,4; 0,4-0,8;' ... ; 3,6-4,0, 

. podle toho, jsou-li odchylky přibližně v mezích od -1,0 do 
+ 1,0, nebo od -2,0 do + 2,0, nebo od -4,0 do + 4,0. 

Císla, která takto zjistíme z pozorování, srovnáme s pří­
slušnými čísly teoretickými, vypočtenými za předpokladu, 
že se odchylky řídí normálním zákonem a že při tom 
ll, = I: moV2, kde mo je- st.ře~í chyba pro jednotku váhy při 
uvažované řadě měření [viz II, (15')]. V odst. VII, 2b, lX) 
je dokázáno: Je-li normální zákon, kterým se řídí skutečné 

chyby Vn e-h'sl , je normální zákon, kterým se řídí odchyl­

ky v od aritmetického průměru 

ll, V n _hl_n_vI Vn n -1 e n-1, 

kde n je počet měřeIÚ. Pak pravděpodobnost, že odchylka je 
mezi -x a + x, je rovna 

z 

211, V n f -h'~-v'd . 
Vn n -" 1 e ft-1 v. 

o 
Za vedeme-li proměnnou ' 

y = k Vn--~-l v, 
přejde předcházející výraz v tento tvar: 

"Vn z n-1 y;f e-
yl dy, 

o 
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což podle definice funkce (/J [viz I, (8)] je rovno 

~(Xh V n~ I)' 
Theoretický počet odchylek, které mají absolutni hod. 

notu v mezích od ° do 0,1 (0,2, 0,4), jest "tedy 

~(O,l.h V n~ :) =- n~(~V2 V n~ J. 
[n~(~ V n ~ I)' n~(~V2 V n ~ 1)]. 

Dále theoretický počet odchylek, které mají absolutni hod. 
notu v mezích od 0,1 do 0,2 od 0,2 do 0,4 nebo od 0,4 do 0,8 
jest . . 

resp. 

resp. 

{ ( 
0,2 Vn) (0,1 Vn)} 

n fP moV2 n-l -fP moV2- n-I ' 

n{~(~V2 Vn~I)-~(~V2 Vn~I)}' 

n{~(:~V2 V n~ I) -~(~V2-V n~ I)} 
A podobně dále. 

Protože n i mo známe, vypočteme snadno potřebné hod. 
noty argumentu funkce fP, příslušné hodnoty funkce fP inter­
polujeme z tabulky v odstavci I, (8) a hledaný teoretický 
počet odchylek plyne již podle předchozího snadno. 

(Srovn. pře 3 v odst. 7.) 

6. Jak zjistfme, že se chyby v uzávěru trojúhelniků 'idl 
normálnfm zákonem ~etDosti" V odstavci (VII, 2b, f3) je 
dokázáno: Chyby v uzávěru trojúhelníků se řídí normálním 
zákonem četnosti, jestliže se jím řídí skutečné chyby jednot­
livých úhlů. 
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Zkoušku, že se chyby v uzávěru řídí normálním zákonem 
četnosti provádíme podobně jako v odstavci 5. Jen musíme 
nyní uvážiti, že podle odstavce (VII, 2b, (J) je normální zákon 
četnosti, kterým se řídí chyby v uzávěru, 

h 

V 
e-: lh'e' . 

3n 
Pak pravděpodobnost, že chyba v uzávěru je mezi -x a + x, . 
Je rovna 

z 

v~fe-lA"·de. 
o 

Zavedeme-li proměnnou y = Va f, je předcházející výraz 

roven 
h 

Vaz 

, v:fe-u, dy . 4J(V3 x) = 4J (:vš-)-
o 

Známe-li tedy na př., kolik chyb v uzávěru má absolutní 
hodnotu v mezích 0-0,2; 0,2--0,4; atd., vypočteme hodnoty 

argumentu Ov a její dvojnásobek, trojnásobek atd., pak 
mo 6 

příslušné hodnoty (/J a z nich teoretický počet chyb v uzávěru, 
jejichž absolutní hodnota je v uvedených mezích 

7. Pffklady. 1. Vyšetřiti, mají-li odohylky od aritmetic­
kého středu v příkladě I z (II, 6) vlastnosti n~hodilÝQh chyb. 

Odchylky, v jednotkách 10-8 sec, jsou rovny po řa<;lě 
+24, +7, +64, +35, -5,3, -26, +5, -76, +41, 

+93,~, -55. 
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Odtud plyne s = + 2, V n = ± 3,5. Součet zna~ének se 
rovná +2, střední odchylka součtu 8 od jeho průměru O je 
± 3,5 (srovn. odst. Ia). . ' 

Dále je 1- w = + I, Vn -I == + 3,3. Rozdíl sledů a 
změn je roven + I a střední odchylka rozdílu f - w od jeho 
průměru O je ± 3,3 (srovn. odst. lb). . 

So~čet čtverců 'kladných odchylek je + 16301 . 10-16, 

součet čtverců záporných odchylek 16 382 . 10-18. Rozdíl 
je - 81 . 10-18. Součet čtvrtých mocnin odchylek je pak , 
1,64 . 10-24 , tedy střední odchylka rozdílu mezi součtem 
čtverců kladných a součtem záporných odchylek od průměru 
O bude (podle odst. 3) 

± V 1,64 . 10-12 ' ± 1,3 . 10-12• 

Zkouš~a E. Abbeho: Uvažujeme uspořádání odchylek podle 
č~u (e1 == + 24 . IO-s, ... , t:12 == - 55 . 100S). Pak A = 
= 32683 . 10-18, B = 67 738 . 10-18, tedy A - lB == 
= - I 186 . 10-18• Ctverec 

2 _ 32 683 10-16 m - 12. a 

Všechny tyto zkoušky ukazují tedy, že uvažovaná řada od­
chylek má vlastnosti nahodilých chyb. 

2. Vyšetřiti, mají-li odchyJky od aritmetického středu 
v příkladě 3 z (11;6) vlastnost i nahodilých chyb. (Mají.) 

3. Z Besselových měření .rektascense Polárky byla střední 
chyba proiednotku váhy mo = ± 1,3093 sec ~ počet odchy:­
lek od aritmetického průměru, jejichž absolut~ hodnota byla 
v mezích 0-0,4 sec; 0,4-0,8 sec atd .. až 3,6 sec a výše, hyl po 
řadě 25, 22, 19, ll, 9, 8, 2, 3, I, O~ Srovnati ttato čísla s 'pří­
slušnými theoretickými čísly, vypočtenými za předpokladu, 
že se odchylky řídí normálním zákonem.*) 

P?dle' odst.' 5 nutno počítati" hodnotu argumentu 

*) E. Ozu ber.: 1. c. str. 192-193. 
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0,4 V n - 4 

V 
- --~V-:=--- = 0,21711 

mo 2 n - 1 1,3093 198 

a její dvojnásobek až desateronásobek. Pro tyto hodnoty 
argumentu se vypočtou příslušné hodnoty funkce f/J: 0,2410; 
0,4607; 0,6429; 0,7806; 0,8753; 0,9346; 0,9683; 0,9859; 
0,9942; 0,9978. Odtud plynou hledaná theoretická čísla: 24,1; 
22,0; 18,2; 13,8; 9,5; 5,9; 3,3; 1,8; 0,8; 0,4. Rozdíly theoretic­
kých čísel a čísel plynoucích z měření jsou: -0,9; ---0,0; 
---0,8; +2,8; -0,5; -2,1; + 1,3; -1,2; -0,2; +0,4. 

4. V 61 trojúhelnících jihofinské základní triangulace bylo 
v uzávěrech 31 kladných chyb, 29zápomých a 1 chybarovnaO. 
Střední hodnota chyby v uzávěru byla ±0,611". Počet chyb 
s absolutní hodnotou v mezích 0-0,2"; 0,2"----0,4"; 0,4" až 
0,6"; 0,6"-0,8"; 0,8"-1,0"; 1,0"-1,2"; 1,2"-1,4", byl po 
řadě: 17; 10; 8; ~2,5; 8,5; 4; 1. (Při tom byla na pře chyba 
0,80" čítána jednou polovinou do skupiny v mezích 0,6" až 
0,8" a jednou polovinou do skupiny v mezích 0,8"-1,0".) 
Srovnati tato čísla 8 příslušnými theoretickými čísly, vypo­
čtenými za předpokladu, že se chyby v uzávěru řídí normál­
ním zákonem ootnosti.*) 

V (VII, 2b, tJ) je ukázáno, že vztah mezi střední hodnotou 
M chyby v uzávěru a střední chybou mo v jednom měřeném 
úhlu je 

M 0,611". 
1no = Va' tedy 1no = ± Va . Pak (VIZ. odst. 6) 

x x... Pr 2" . x 2 1 

V =. 1/· o x = 0, Je V = o, 3 5. 
m., 6 0,611" 2 mo 6 

Pro tuto hodnotu a její dvojnásobek, trojnásobek atd. byly 
z tabulky funkce f/J vyhledány příslušné funkční hodnoty 
(0,2567, 0,4904 atd.). Z nich pak plyne, že theoretický počet 

*) T. J. Kukkamski: Verbesserung der horizontalen Win­
kelmessungen wegen der Seitenrefraktion. V eroff. des fin. Geód. 
Inst. No. 28, Helsin.ki 1939, str. 14. 
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odchylek, jejichž absolutní hodnota je v mezích od O do 0,2", 
je roven 61. 0,2567 = 15,7. Počet odchylek, jejichž abso­
lutní hodnota je v mezích od 0,2" do 0,4" jest 61 (0,4904-
- 0,2567) = 14,3. Dále ply-
noučÍs}a 11,2; 8,3;5,4;3,2; 1,7. 
Rozdíly theoretických čísel 
a čísel plynoucích z měření 
jsou: -1,3; + 4,3; + 3,2; 
--4~2; -3,1; -0,8; +0,7 (viz 
obr. 12). fO 

Na obr. 12 jsou theoretická 
čísla i čísla plynoucí z měření 
v!o~raz~na tak, že chyby v u- 5 
zaveru JSou naneseny na osu 
úseček (0,2" /'.. 5 mm) alpo-
čet chyb v uzávěru na osu 
pořadnic (10 chyl? v uzávěru 
/'.. 25 mm). 

5. V téže síti byly směry opra­
veny vzhledem na příčnou refrakci. 
Klad;ných chyb v uzávěrech bylo za- 20 
se 31, záporných 29 a 1 byla rovna o. 
Střední hodnota chyby. v uzávěru 
klesla na ±O,470". Počet chyb s ab­
solutní hodnotou v mezích ° -0,2" 15 
až 1,0"-1,2" byl 21; 16,5; 9; 8,5; 7; 
o. Srovnati tato čísla s příslušnými 
theoretickými Čísly.*) (Rozdíly theo- 10 

retických čísel a čísel plynoucích 
z měření jsou: -0,9; +0,3; +2,8; 
-1,6; -3,6; + 1,4; viz obr. 13.) 

8. Systematické vlivy zatěžujtcf 
měřeni. Neřídí-li se odchylky nebo 
chyby normálním zákonem četnosti, 

*) T. J. Kukkamaki, l. c. str. 14. 

o,,,: f2 
f,0 

ot.r. 13 
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nebo ukazují-li kriteria uvedená v odst. 1-4 na nějaký 
systematický vliv, hledá se, jaký by to mohl býti vliv. 

Na příklad: Při určování, jak závisí doba kyvu kyvadel na 
tlaku vzduchu (p) a na teplotě kyvadel (t), pokud se závislost 
na tlaku a teplotě vyjadřovala vzorcem alP + a2t, nebo 
a1d + a2t, kde d je hustota vzduchu, ukazovala kriteria pro 
nahodilost chyb na existenci systematických vlivů. Teprve 
když se závislost na p a na t vyj ádřila vzorcem 

1/-
alP + a2 v P + a3t + a,pt + a5t2

, 

byla zbývající systematická chyba odstraněna.*) 
Jiný příklad: Rozdíly patrné v př. 4, obr. 12, mezi theore­

tickým počtem chyb v uzávěru a počtem, který plynul z mě­
ření, ukazovaly rovněž na existenci nějakých systematických 
vlivů. 'Když byly jednotlivé směry opraveny vzhledem 
k příčné refrakci, zlepšil se souhlas mezi theoretickým'počtem 
chyb v uzávěru a počtem plynoucím z měření (př. 5, obr. 13). 
Jak patrno z těchto dvou příkladů, vyšetřování odchylek 
nebo chyb vede k hledání systematických vlivů, zatěžujících 
měření. Pokud odchylky nebo chyby ukazují nějaký syste­
matický vliv, nesmíme býti s výsledky měření a vyrovnání 
spokojeni. 

Uvedu ještě podle Hayforda**) tři pokyny, jak objeviti 
systematické chyby. 

(X) Rozdě1í:níé tp.ěření na několik skupin (na pře večerní 
a ranní měření azimutu) a určíme výsledky (Ak) a střední 
chyby (mi) výsledků z každé skupiny měření zvlášť. Uká­
že-li se, že rozdíly mezi výsledky jednotlivých skupin 
(ak - ad jsou větší, než by měly býti podle příslušných 
středních chyb (V mJ;2 + mf), soudíme, že měření v jednotli­
vých skupinách jsou zatížena nějakou systematickou chybou. 

(3) Užíváme-li při měření nějakého přístroje, jehož práce se 
může v jistých mezích ~a měření měniti, je nutno přímo vy-

*) Jahresbericht des Direktors des Geod. Inst. Potsdam 1939, 
str. 16. 

**) Wright-Hayford, 1. c. str. 277-278. 

13~ 



šetřiti, jaký vliv mají tyto změny na výsledek, po případě 
dooiliti, aby přístroj pracoval po celé měření za podmínek 
pokud možno stejných. (Tak je na pře nutno kontrolovati 
opoždění, za viněné elektromagnetickým relais při měření 
tíže.) 

y) Systematické chyby mohou býti konečně zjištěny, uži­
jeme-li k měření různých při@trojů a různých method. (Na pře 
určíme zeměpisnou šířku některým způsobem užívajícím 
universálního stroje a pak N ušl-Fričovým cirkumzenitálem.) 

• 
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VI. 

M:EŘENt S PftEDEPSANOU pftESNOSTt. 
HOSPODÁRNOST M:EŘEN1. 

V měřických vědách, na pře v geodesii, astronomii a částeč­
ně i ve fysice, nejde jen o to, určiti z měření nějakou veličinu, 
nýbrž určiti ji s určitou předepsanou přesností. Voje­
dinělých případech pak bylo dokonce uvalováno, jak určiti 
hledanou veličinu co nejhospodárněji, t. j. jak při daném 
množství měřické práce získati výsledek co nejpřesnější, 
a měření byla podle této úvahy provedena. 

1. Měřeni s předepsanou přesnosti. Vyložím nejprve na 
několika příkladech, jak přesně nutno provésti měření, má-li 
býti dosaženo výsledků určité přesnosti. Při tom umožňují 
odhadovati přesnost měření a výsledků bud největší možné 
chyby nebo střední chyby. 

a) Při tak zv. relativním měření tíže se !lrčuje doba kyvu 
neproměnného kyvadla jednak na místě B, kde zrychlení 
tíže (gB) známe, jednak na místě x, kde chceme zrychlení 
(g:l;) určiti. Označíme-li měřené doby ky,:u T B a T z , bude 
přibližně . 

TB=nV :B' Tz=nV :z' 
kde l je t. zv. redukovaná dé~a kyvadla. Odtud plyne 
gBTB 2 == gxTz2 čili 

gZ=gB(~:r (1) 

Z tohoto vzorce vyplývá 

gz = gB (TB + ~lJ_ TS = gB( 1 +Tz
;:, TB)-2 = (l') 

Tz-TB (Tx-TB)2 
= gB - 2gB T

B 
+ 3gB T

B 
- .... 
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S jakou přesností InusÍme při tom měřiti dobu kyvu PB a Tz, 
abychom určili gz na 1 miIigaI1 (1 mgal = 100a cm/sec"). 
Vliv chyb L1TB a LlTz na gz je roven přibližně 

A • ogz ogz 
LJgz==. oT

B 
LlTB + oT

z 
LlTz, 

a protože ze vzorce (1') pro T z ~ T B vyplývá 

bude 

Aby 

musí býti 

ogz _. + :!gB _ ogz 2gB 
oTn - T B 'oTz T B ' 

1 cm 
111 gz I < 103 sec2 ' 

1 1 
TB I L1TB-AT~ I < 2.10" 

poněvadž gB -...:..- 103 cmjsec2• Největší možný vliv chyb 
LI T B a L1 T fl: nastane, budou-li obě chyby míti opačná zna­
ménka. V tomto nejnepříznivějším případě musí tedy býti 

ILtTI 1 T 
2 T < 2 . 108' I Ll T I < 4 . 108 . 

. 
K relativním měřením tíže se užívá kyvadel půIse~un-

dových, při nichž T -...:..- t sec. Pro ně tedy má býti 

I ,1T I < 8 .\08 sec· :~~-sec. 
Výsledek lze shrnouti takto: Abychom ze vzorce (1) vypo­
četli zrychlelÚ tíže v místě x schybounejvýšrovnou 1 mgal, 
musíme změ~iti doby kyvu půlsekundových kyvadel asi na 
jednu desetimiliontinu vteřiny přesně. Musíme tedy k tomu 
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užíti takové methody, která zajišťuje tuto přesnost (na př. 
registrace na filmu). 

b) S jakou -střední chybou musíme určovati dobu kyvu 
kyvadel, chceme-li na každé stanici (x) i na stanici připojo­
vací (B) určiti vždy čtyři řady měření a má-li střední chyba 
ve výsledné hodnotě tíže býti menší než ± 0,5 mgal1 (Řadou 
měřeru jmenujeme určení doby kyvu všech čtyř kyvadel 
pokud možno rychle za sebou a při ppdmínkách pokud možno 
stejných.) 

Vztah mezi středními chybami ml (pro g~), m2 (pro Tn), 
m3 (pro T~) po<!le vzorce (1") je 

I V( ogz )2 ( Ogz)2 
ml == ::r: oT B m 2

2 + oP z" ms2 --=- ~ 

Klademe-li 

. ± 2gB V 2 + 2 == PB ma ma . 

T B --=-1- soo, 
1 cm 

ml == ± 2 .103 sec2' 

plyne ze vzorce (2), že má býti 
1 

m3 == ± 1,13 . 10-7 sec. 

(2) 

A protože T z je odvozeno ze čtyř řad po čtyřech měřelÚch 
doby kyvu, musí jedno měření doby kyvu míti střední 
chybu asi 

± V16 10-7 5-7 1 13 . sec == + 3, . 10 sec. , 
Přesnost jednotlivých měře~ých elementů má býti tedy ta­
ková, aby střední chyba ve výsledné době kyvu bylá nejVýš 
asi ± 3,5 . 10-7 sec (viz pře c) ad)). 

c) Při relativním měření tíže máme vypočísti t. zv. redukci 
na nekonečně malý výkyv r~ = l\T <x 2, kde T je doba kyvu 
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kyvadla a (X výkyv v obloukové míře. Chceme ji určiti s chy­
bou menší nebo nejvýš rovnou 10-8 sec. Amplituda lX se 
určuje z rozkyvu dmm na filmu, na němž jsou kyvy kyvadla 

registrovány, a z kOllBtanty D podle worce tX -=--- t ~. 
S jakou přesností musíme určiti měřené veličiny1 

Určíme-li rozkyv d s chybouL1d= ±2.lo--2 mm, bude její 

vliv na vypočtené T", roven ~ ~ LI;. Klademe-li T = t sec, 

14,6' o.." hodn D 1 2 1 3 ( ..,. ~ = '-,- (prumema ota) a =,7. O mm prl-
e 

bližná hodnota konstanty D), bude vliv chyby L1d roven 
± 1,54.10-9 sec. 

S jakou přesností musíme pak určiti konstantu D, aby 
celková chyba ~ r IX nestoupla nad žádanou mez 1 ' 

Protože z celkové chyby ± 10-8 sec zbývá po odečtení 
1,54.10-9 sec jen 8,46.10-8 sec, musí 

2(X OIX 8,46 . IX d 8,46 
I T . 16 oD L1D I < 109 sec, t. J. T -16 D2 I L1D I < 109 sec. 

Klademe-li zase T= t sec, (x = 14,?', D = 1,72 . 103 

e 
a za rozkyv na filmu tl = 60 mm, musí 

I L1D I < 8,46 16 .2 , 1,722 
• 108 

-' 3 
= 109 • 14,6' e 60 mm - mm. 

mIn 

Je tedy patrno, že musíme konstantu D určiti s chybou 
rovnou nejvýš asi 3 mm. 
Podobně nutno uvážiti vliv měřických chyb na ostatlú 

redukce dob kyvu (redukci na teplotu a hustotu vzduchu, na 
chod hodin a na soukyv stativu). *) A střední hodnota součtu 
všech těchto uvažovaných chyb na dobu kyvu musí býti 
podle pře b) menší. než· ± 3,5 . 10-7 sec. UkáŽÍ-li se při mě-

*) B. Kladivo: K měfenf zrychleni tíže, Sborník české vys. 
školy techn. v Brně, sv. XII, spis 46. 
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ření větší rozdíly redukovaných dob kyvů na téže stanici, než 
by plynulo ze střední chyby ± 3,5 . 10-7 sec, musíme hle­
dati dalěí chyby (na př. změny v délce kyvadel, otřesy aj.) 
& jejich vliv na výsledek pokud.možno snížiti. 

2. Hospodárnost m~fenf. Nyní ukážeme na příkladu 
trojúhelníkových sítí, jak se klade a řeší otázka nejhospodár­
něji provedeného měření. 

Označíme hledané chyby úhlů Xi značkou ~X;, j = 1, 2, 
3, ... , fl, příslušné váhy Pi značÍ, kolikrát má býti každý úhel 
měřen; půjde právě o určení čísel Pi. . 

Podle (IV, 1) jde zde o případ rovnic [IV, (2)] 

dXi -li = 0, 
a podmínek [IV, (3)]: 

a'l dXl + a'2 dX2 + ... + a'Q dXQ = a,o, g = 1, 2, ... , (J. (3) 

Při tom máme určiti při daném množství měřické práce co 
nejlépe (t. j. s největší vahou) nějakou příčku v trojúhelní­
kové síti, jejíž délka se dá vyjádřiti jako funkce měřených 
úhlů I(XI'~' •.. ' xe). Protože vyrovnané hodnoty úhlů Xi 
jsou x; + ~X;, bude vyrovnaná hodnota 'hledané příčky 

f/J = l(xI + ~Xl' x 2 + ~X2' ••• , XII + ~xQ) . 

-.:../0 + 11 dX1 + 12 dX2 + ... + le dxll · 
Tato funkce má býti určena co nejpřesněji, t. j. má býti její 
váha P~ maximální nebo má býti minimální výraz 

1m 2 Q 

-- = 4)2 = "2qiFi2. (4) 
P~. mo j=1 

[srovn. IV, (13)J. Při tom značí 

Fi = li - hlOtu - h,p2; _e ••• - halta;, (5) 
a hl' h2, ••• , ka plynou z rovnic [IV, (12)] 

h,. [qa1a1] + k2 [qala2] + ... + ha [qalaa] = [qa1/J, 
hl [qa,pl] + 11,2 [qa,p2] + ... + ha [qa2Q a] = [qaJ], (6) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Protože pak množství měřické práce jest dané, musí býti 

Pl + P2 + ... + PQ = C; ! 

(c je konstanta). 

Váhy Pi jsou kladné nebo rovné nule; proto je píšeme ve 
tvaru Pi = Yi2• Máme tedy vhodnou volbou veličin YI, 
j = 1, 2, ... , (b učiniti minimem výraz 

~= Fl2+ F22 + FQ2 
2 2 + ... 2 

Pffi YI Y2 YQ 
při podmínce Yl2 + Y22 + ... + yQ2 = c. Abychom nalezli 
podmínky minima, anulujeme parciální derivace funkce 

1 k (2 2 "2 - + YI + Y2 + ... + '!In - c) ·Pffi .. 

podle jednotlivých proměnných '!Jl' Y2' ... , YQ (srovn. kap. IV, 
odst. 2). První podmínka bude na př. 

- 2;12 + 2~1.f oFl ah, + 2F: f aF2 ah, + ... + 
YI YI 1=1 Oh, OYI Y2 1= 1 Oh, OYI 

+ 2F! i aFQ ah, + 2kYl = o. 
yf2 1==1 Oh, OYI 

K f ·· t V· Oh, . t oe IClen pn -;- Jes 
VYl 

2{FI oFl + F2 oF2+ ... + FQ OFQ} = 
Pl oh, P2 Oh, PQ Oh, 

• = - 2 - alt + -- a'2 + ... + -- alQ . {
-Fl F2 FQ } 
Pl P2 PQ 

Protože rOVlŮce (6) lze psáti ve tvaru 

Q 1 fl 1 fl 1 
. ~ -. a1,F, = 0, 2, ~ aa;F;= 0, ... , 2, ---: aajFl= 0, (6') 

, r::c 1 p, i -= 1 p, i:= 1 p~ 
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hude kO€.ficient při oh, roven nule, a to pro 1 == 1, 2, "', (J. 

OYI 

Bude tedy první P9d~ínka pro minimum 

Yl (k -::2) = o. 

A stejně plynou ostatní podmínky 

(7) 

K určení veličiny"(/) je třeba znáti (! hodnot ť5xv ť5x2 , ••• , ť5xQ , 
z nich však (J je určeno podmínkami (3), je tedy nutno určiti 
(! - (J neznámých. 

Pr v h d t Fj. 1 2 IV" . od ' k otoze o no y -, 1 == , , ... , (b sp nUJl (J p mIne 
Pi 

(6'), je z nich jen f! - a nezávislých. Zvolme za ně hodnoty 
s indexem 1, 2, ... , f! - a. Ostatní závislé hodnoty 

FQ- a+1 FQ 
, ••• J 

PQ-a+l PQ 

jsou pak určeny rovnicemi (6'). Až na zvláštní případy, které" 
z úvahy vylučujeme, nebudou rovny konstantě k; musí tedy 
[viz (7)] - až na vyloučené zvláštní případy - býti pří­
slušné veličiny y rovny nule. Bude tedy za uvedeného před­
pokladu 

YQ-a+ 1 == YQ-a+ 2 == ... == YQ == O 
a tedy i 

PQ-a+l == Pu-a+2 == ... == Pti == O. (8) 

Pokud pak z rovnic (6') plynou pro • 
FQ-a+l F" Q , ... , 
PQ-a+l PI1 

hodnoty konečné, což předpokládáme, musí býti 

FQ_-a+ 1 == FfI-a+2 == , .. == FQ == O. 
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Jak patrno z podmínek (8), nemá býti (J neznámých XQ-d+l, 

XQ--c7+2, •.. , xQ vůbec měřeno. Protože pak k určení funkce cp 
je nezbytně nutno měřiti fl - (J neznámých, musí býti mě­
řeny všecky zbývající úhly Xl' x 2' ••• , xQ-a. To zase značí, že 
Pl' P2' ... , Pe-d musí býti kladná čísla, a z podmínek (7) 
plyne, že musí 

F 2 F2, F 2 
~' == 2.. == ... == Q-a == k. 
P 2 p 2 ' P 2 ' I 2 p'-a 

(9) 

Absolutní hodnoty veličin 

Fl F 2 FQ- a , , ... , 
Pľ P2 Pf/-a 

mají podle toho býti ii rovny. 

Tedy máme-li docíliti co největší váhy výsledku lIJ, mu­
síme měřiti jen právě tolik veličin, kolik je jich k určení hle­
dané funkce ,rp nezbytně potřeba. Všechny ostatní veličiny 
nemají býti měřeny (věta Schreiberova) .• ) 

Ze vzorce (4) plyne 

- == ---.!... + _2 + ... + _ Q-a 2 == k (Pl + P2 + ... (
1) F2 F2 . F 2 

P. min Pl P2 PQ-a (10) 

... + Pf/-a) == I V k 1 ťI Fl 1 + 1 F 2 1 + ... + I' F Q-a 1 ). 

Jsme tedy vedeni k tomuto postupu: Vhodnou volbou čísel 
kl' k2, ••• , ha docílíme, aby a z ~eličin Fl' F'J., ... , F f1 bylo 
rovno nule a aby při tom součet absolutních hodnot zbýva­
jících veličin F byl minimální. 

Určíme-li takto hodnoty Fj, budou podle rovnic (9) hle­
dané váhy Pi rovny 

1 
Pi == I Fil . V-· . k 

*) C. Runge: Der Schreibersche Satz. Z. f. VermeARungR­
wesen, 1890, Rtr. 21-24. 
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Konstanta k plyne pak z rovnice Pl + P2 + ... + P(l = c. 
Bude 

1 
VA: (I FIl + I Fil + ... + I F,-a I> = c . 

• Jde-li o více podmínek (3), poskytuje skutečné řešení obtíže. 
Uvedu j ednod uchý příklad s j ednoupodmínkou (3). 

Předpokládáme, že v trojúhelníku ABO je dána strana AB 
a že byly měřeny vnitřní úhly A, B, O s vahami Pl' P2' Pa. 
Jak zvoliti Pi, P2' Pa, aby Pl + Ps + P3 = c a aby při tom 
byla co nejlépe určena výška 

tJ. = ~Bcsin B sin.A!.) (ll) 
sm 

Podmínka (3) [viz str. 144] je zde 
LlA + L1B + LlC - (180° -A -B - O) ="0. 

Ze _ vzorce (ll) plyne 

f/J = Ve + 11 L1,A + 12 LlB + la Ll O, 
kde 

11 = Ve cotg A, 12 = Vo cotg B, la = - v, cotg o. 
Pak ze vzorce [IV, (13)] plyne 

1 _ Fľl. + F22 + Fa'/. --- - -, 
P~ Pl P2 Ps 

v. v v 
prl cemz . 

Fl=/I-hl' F2=/2- hl' F 3 =/a- hl 

a podle vzorců [IV, (12)] jest 

hl = qJI + qJ2 + qal3. 
ql + q2 + q3 

Máme tedy určiti minimum výrazu 

1 F12 F22 Fa2 
v· dmi 2 2 2 - = -2 + -2 + 2 prl po nce Yl + Y2 + lIa = c. 

P. YI Y2 Ya , 

*) Jordan: I, 1. c. ~tr. 139-141. 
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Podmínky minima jsou 

Yl (k - ~:) = O, Y2 (k - ~::) = O, ( 
Fa2) Ya k- Pa2 = o. 

Protože 
\ 

Fl + Fa + !l = O, 
Pl P2 Pa 

jsou dvě z hodnot Fj : Pi nezávislé a jedna je závislá. Pro 
nezávislé musí býti F : P = ± V k; není-li závislá hodnota ve 
zvláštním případě rovna k, bude příslušné y = O a tedy 
i příslušné F = O. 

Předpokládejme, že A > B > C a že jsou v 1. kvadrantě. 
Klademe-li Fl = O, je ~ = ve cotg A a 

I F 2 1 + I Fal = ve{1 cotgB-cotgA 1+ l-cotgO­
- cotg A I } = Ve (cotg B + cotg O). 

Při Fa = 0, je kl = ve cotg B a 

I Fl I + I Fa I = Ve (2 cotg B - cotg A + cotg G). 

Při Fa = O, je ~ = - Ve cotg O a 

I Fl I + I F 2 1 = ve (cotg A + cotg B + 2 cotg C). 

Protože 

a 

2 cotg B - cotg A + cotg O - cotg B - cotg O = 
= cotg B - cotg A > O 

cotg A + cotg B + 2 cotg C - 2 cotg B + cotg A -
- cotg C = 2 cotg A - cotg B + cotg O > 0, 

je v uvažovaném případě I F2 I + I F 3 I nejmenší. Nejlepší 
rozdělení vah by tedy bylo v poměru čísel 

I Fl I = O, 1 F 2 I = ve I cotg B - cotg A I, 
I Fal = Ve I cotg C + cotg A I· 
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Je-li 
A = 78°, cotg A = 0,213, 
B = 68°, cotg B = 0,404, . 
C = ~4°, cotg C = 1,483, 

je nejlepší rozdělení vah v poměru čísel 

I cotg B - cotg A I = 0,191, I cotg C + cotg A I = 1,696. 

Má-li býti na. pře Pl + P2 + Pa = 2..Q:.,IDUSÍ býti konstanta 
úměrnosti 30 : 1,887 a tedy Pl = 0, P2 -=- 3,0, Pa -=- 27,0, t. j . 
úhel A nemá, býti měřen, úhel B má býti měřen třikrát a úhel 
e Dlá býti měřen 27krát. 
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VII. 

,rÝZN .. .\.M VYROVNÁNI METHODOU NEJMENStCH 

ČTVERCŮ. 

1. Význam výsledků vypočtených podle methody nej­
Iuenšfch ětverců, lidi-li se Dlěfieké chyby normálnfm 
zákonem ěetnosti. Ve II. kapitole jsme vyložili první Gaus­
sovo zdllvodnění methody nejmenších čtverců. Viděli jsme 
(11,2), že jsme oprávněni užíti k vyrovnání měřických vý­
sledků methody nejmenších čtverců vždy, kdykoli je platný 
postulát aritmetického průměru, t. j. je-li aritmetický prů­
měr z výsledků přímých a stejně přesných měření v každém 
případě nejpravděpodobnější hodnotou a má-li mimo to 
funkce četnosti pro chybu Ei tvar CJ?i(Ei). 

Protože z post·ulátu aritmetického průměru a z okolnosti, 
že funkce četnosti pro chybu Ei má tvar CJ?i(Ei) plyne, že se 
chyby zatěžující měření řídí normálním zákonem chyb, před­
pokládají výklady v kapitole II až IV, že se chyby zatěžu-
jící měření řídí tímto zákonem chyb. -

V tom případě je mezi střední a pravděpodobnou chybou 
vztah 

r == m .0,6744B . ~m 

(srovn. I, (31)). K odhadu přesnosti měření a vyrovnaných 
výsledků lze v tomto případě užívati bud střední nebo 
pravděpodobné chyby. Při deseti měřeních (při 200, 8000 mě­
řeních) lze pak považovati za extrémIÚ možnou chybu při­
bližně ± 2m (-+- 3m, ± 4m) (srovn. I, 8). 

Řídí.li se chyby zatěžující měření normálním zákonem 
chyb, jsou hodnoty neznámých, vypočtené podle methody 
nejmenších čtverců, nejpravděpodobnejší hodnoty, jež ply­
nou z výsledků měření ll' l2' ... , ln (srovQ.. na pře (111,1)). 
Současně mají takto vypočtené hodnoty nejmenší střední 
chyby nebo největší váhy ze všech lineárních celistvých 
funkcí výsledků měření Zl' Z2' ... , ln (srovn. VII, 3). 
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Extrémní možné chyby vymezují pak obory, uvnitř nichž 
jsou pravděpodobně skutečné hodnoty neznámých výsled­
ných hodnot. 

2. Kdy se řidi měřické chyby normálnim zákonem ~et· 
llosti 1 Nyní budeme uvažovati o otázce, kdy se měřické 
chyby řídí normálním zákonem četnosti. Uvedeme některé 
okolnosti, jež přispívají k jejímu objasnění. 

a) Tážeme se, kdy je platný. postulát aritmetického prů­
měru. [V takovém případě se budou měřické chyby říditi nor­
málním zákonem chyb, má-li ovšem mimo to funkce četnosti 
pro chybu Ei tvar cp,(Ei)·] 

Postulát aritmetického průměru je na pře platný, jsou-li 
splněny tyto jednodušší předpoklady: 

I. Zvětší-li se naměřené hodnoty k-násobně (vyjádří-li se 
v jednotce k-krát menší), zvětší se k-násobně i nejpravděpo­
dobnější hodnota z nich odvozená. Jsou-li naměřené hod­
noty Xl' X2, Xa •.. , X n a označíme-li nejpravděpodobnější hod­
notu I(xl , X2, ••• , XIt), má býti 

l(kx1, kx2, ••• , kx",) = k I(xv x2, ••• , xn), 

což znamená, !e I jest homogemrl funkce prvního stupně·). 

II. Zvětší-li se všechny naměřené hodnoty o totéž číslo, 
zvětší se o totéž číslo i nejpravděpodobnější hodnota z nich 
odvozená, t. j. volba počátku měřítka posouvá nejpravděpo­
dobnější hodnotu stejně jako naměřené hodnoty: 

I(xl + h, X 2 + h, ... , X n + h) = I(xl , X 2, ••• , xn) + k. 

III. Všechna měření, protože jsou stejně přesná, přispívají 
stejně k vytváření výsledku, takže chyba e má stejný vliv na 
nejpravděpodobnější hodnotu, ať zatěžuje kter9ukoli z na­
měřených hodnot. 

Zatěžuje-li chyoa e naměřenou hodnotu x" je její vliv na 
výsledek roven 

*) J. Vojtěch, 1. C. str. 389. - K. Petr, 1. c. str. 324. 
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8/ el 82/ 

.6 ~ + -2' o 2 + "'J uX, . Xi 

jak plyne z rozvoje 

I(xl , x2, ••• , Xi + E, ••• , XII) -/(x, X2, •• " x,,) 

podle věty Taylorovy. 

Z II. předpokladu plyne, rozvineme-li podle k v řadu Tay­
lorovu /(XI + k, .•. , x., + k): 

I( Xl' x2, ••• , Za) + ll, -;- + ~ + ... + -;- + ... = (
ol oj oj ) 
uXI uX2 uXtI 

= /(:.;, X2, •• " XIt) + k, 

a srovnáme-li koeficienty u k, tento vztah: 

!L + !L + ... + ~ = 1. 
oXt oX2 ox" 

(1) 

Podle III. předpokladu, podle něhož má býti 

o/ ' l~ 021 
E-+-2 , 2+·" OX, . OX, 

stejné pro jakékoli i, musí býti 

oj oj o/ 
oX

I 
= oX

2 
= ... = oz. 

a tedy podle (I) 
" oj _ oj _ _ oj 1 

oX
l 

- oX
2 

- ••• - OX" - -;;;. (2) 

Z I. předpokladu plyne podle Eulerovy věty 

o/ oj • 0/ 
I( Xl' x2' .. " Xn} = Xl -;- + X2 -;- + ... + X,,-;-uXl uX2 uX" 

a, podle (2) plyne odtud 
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Tato úvaha Schiaparelliho*) předpokládá mlčky spojitost 
funkce j(xl , x2' ••• , xn ) a jejích prvních derivací. 

Jestliže tedy jsou splněny uvedené jednodušší předpoklady 
o vlastnostech nejpravděpodobnější hodnoty, odvozené z na­
měřených hodnot, platí postulát aritmetického průměru. To 
v sobě zahrnuje, že se měřické chyby řídí normálním záko­
nem chyb a.že jsme oprávněni vyrovnávati podle methody 
nej menších čtverců, zase ovšem za předpokladu, že funkce 
četnosti pro chybu ei má tvar CPi(ei). 

* 
Závisí-li funkce četnosti pro chybu e, = x - Xi nejen na 

rozdílu ci = X - Xi, nýbrž má-li obecnější tvar cp(Xi, x), dá 
se ukázati, že postulát aritmetického průměru vede k obec­
nější funkci četnosti. Podle Poincarého**) lze to dokázati 
takto: 

Je-li skutečná hodnota měřené veličiny x, nechť je pravdě­
podobnost, že výsledek pozorování byl mezi Xl a Xl + dxl , 

rovna cp(xl' x) dxl . Dále nechť pravděpodobnost a priori, že 
veličina x je mezi x a ll; + dx, je rovna 1p(x) dx. V nejjedno­
dušším případě, máme-li důvod předpokládati, že všechny 
hodnoty x v určitých mezích jsou a priori stejně pravdě­
podobné, přešla by funkce 1p(x) v konstantu C. 

Podle pravidla (} násobení pravděpodobností je pravdě­
podobnost, že výsle.dky nezjÍ,vislých pozorování jsou v me­
zích od Xl do Xl + dx1 , od X2 do X 2 + dx2, .•• a od Xu do 
Xn + dx" , a je-li měřená veličina x, rovna 

cp(x1 , x) cp(x2, x) ... cp(x", x) dX1 dX2 ••• dXn. 
Pravděpodobnost, že měřená veličina je v mezích od x do 
x + dx a při tom že vSrsledky měření jsou v uvedených me­
zích, bude podle pravidla o násobení pravděpodobností 

• rovna 

*) P. Pizzetti, 1. c. str. 8~89. - E. Czuber, 1. c. str. 31 
a.ž 33. 

**) H. Poincaré: Calcul des probabilités, 2. éd., Paris 1912, 
str. 169-176. 
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• 

p = lp(x) dx . <p(X1 , x) <p(X2 , x) ... <p(X", x) dX1 dX2 ••• dXn. 

Podle pravidla ó součtu pravděpodobností bude pravdě­
podobnost, že výsledky měření jsou v uvedených mezích a že 
měřená veličina může míti jakoukoli hodnotu v mezích od 
-00 do + 00, rovna integrálu , 

00 

dX1 dX2 ..• dXn ftp(x) cp(x1, x) cp(x2, x) ... rp(x", x) dx. 
-00 

Jestliže nastal případ, že výsledky měření jsou v uvedených 
mezích, a označíme-li pravděpodobnost (a posteriori), že mě. 
řená veličina je při tom v mezích od x do x + dx, písmenem' 
P, můžeme podle pravidla () násobení pravděpodobností 
psáti 

00 

p = P dX1 dX2 ••• dx,. f1p(x)cp(xv x) (l'(x2 , x) ... cp(xn , x) dx, 
-00 

tedy 
P = 1p(x) dx . q;(xl , x) cp(x2, x) ... cp(x", x) . 

GO 

flp(x) cp(xv x) fP(xz, x) ... cp(x", ~) dx 
-00 

Podle Gausse zavádí se k určení veličiny x podmínka, aby 
pravděpodobnost P hyla maximální pro 

Xl + XI + ... + Xn x= , 
n 

to značí, aby pro toto ~ byl maximální výraz 1p(x)<p(xv x) . 
. <p(xz, x) ... q;(xn , x), nebo, což vede k stejnému výsledku, 

• vyraz 
19 tp(x) <p(x1, x) cp(x2 , x) ... cp(x", x). 

Podmínka pro'extrém je 
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Píšeme-li 
1J"(x) 
tp(X) = x(x), 

je předcházející podmínka 

F(x1, x) + F(x2, x) + o o 0+ F(x", x) + X(x) = 00 (3) 

Tato podmínka má býti identická s podmínkou 
(3') 

Zavedeme místo Xl' X 2, o o o, Xn po řadě Xl + dx1, X 2 + dx2, 

o o o, Zn + dx., kde přírůstky dxl , dx2, o o o, dx" jsou takové, 
že x zůsta;ne nezměněné. To znamená, ž& z podmínky (2) 
plyne 

oF(xl , x) d + oF(x2J x) d + + oF(x"J x) d - O 
~ Xl ~ x2 o • • ~ Zn - , 
uXI uXs uX. 

a z podmínky (3') 
dX1 + dX2 + ... + dXB = 00 

Protože ,tyto rovnice mají býti identické, musí býti 

oF(x1, x) = oF(x2, x) = .. o = oF(x", x) = A'(x), 
oXl " oX2 ox" 

funkce jen proměnné x, a odtud 

F(x" x) = A'(x) x, + B'(z)o 

Podmínka (2) pro extrém je tedy 

" 2 {A'(x) Xi + B'(x)} + %(2:) = 0, 
\-=1 

čili 

" 
A'(x) ~xt + nB'(x) + x(z) = 00 

i-I 

" Zavedeme-li sem ~x, = nx, bude 
i-I 

n {x A'(x) + B'(x)} + X(x) = 0, 
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Protože tato podmmka má býti splněna. pro každé 11, a pro 
každé x, musí 

",,' (x) 
x(x) = = O, 

",,(x) 
tedy ",,(x) musí býti rovno konstantě a mezi funkcemi A' a B' 
musí býti vztah 

x A'(x) + B'(x) = o. 
Pak z rovnice 

q;'(Xi, x) éJ 
( 

) = -;-lg q;(x" x) = A'(x) Xi + B'(x) 
q; xi, X uX 

plyne (je-li dA :dx = ~', dB: dx = B') integrací 
19 q;(Xi, x) = A(x) Xi + B(x) + Ig8(xd, 

čili 

(5) 

q;(Xi, x) = @(x,) eA(z>z,+B(z>. (6) 

Zde jsou dvě funkce @(x,) a A(x) libovolné, funkce B vy­
chází pak z podmínky (5). 

To tedy vyplývá z Gaussovy podmínky, aby - jsou-li vý­
sledky měření Xl' x2, ••• , Xn - byla nejpravděpodobnější 
hodnota rovna aritmetickému průměru. Jak je viděti, jest 
normální funkce' četnosti' -, 

( ) 
k -AI(Z-Z .)' 

q; X - Xi = V.1l e, I. 

jen zvláštním případem obecného vzorce (6). 

b) 'Je-li skutečná chyba nějaké veličiny rovna lineární 
funkci částečných chyb, z nichž každá se řídí normálním 
zákonem chyb, ří~íse normálním zákonem i chyba uvažo­
vané veličiny. 

Budeme předpokládati, že částečné chyby €l' e2, ••• , e" se 
řídí normálním zákonem, t. j. pravděpodobnost, že ,e, je 
v intervalu < Ll, LI + dLl >, jest 

k, _h·ILiI,J A Vn e ... ULJ. 
-. .0.° 
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Tážeme se, jaká je pravděpodobnost, že chyba E == ,tlEl + 
+ A~2 + ... + AnEn jev mezích od E do E + de 1 

• Pravděpodobnost, že chyby El' ... , En nabudou současně 
hodnot El' ... , Eia, jest 

~lh~ ... hn e-<htIEtl+hťEsl+ ... +hn
1l n

l ),1_,1_ ,1_ (V n)1& l.U"l ~2 ••• ~n' (7) 

... ~ pravděpodobnost, že A-1El + A#2 + ... + AnEn nabude hod­
noty v mezích od El do E2' bude rovna integrálu výrazu (7), 
při čemž integrační obor je takový, že . 

El < AlEl + A#2 + ... + AnEn < E2· 

Abychom provedli tuto integraci, násobíme nejprve výraz (7) 
integrálem 

CX) EI 

2~ J de J ďyei8('-).llt-A•ls- .. . -AnBn), (8) 

-~ Et 

() němž víme, že je rovný 1, pokud El < AlEl + ~2 + .,.' + 
+ AtaEn< E2' a je roven 0, když AlEl + ~2 + ... + AnE" ne­
leží uvnitř těchto mezí. Pak můžeme integrovati výsledný 
výraz v celém oboru všech proměJUlých, neboť omezení oboru . 
nerovnlnou 

El < AlEl + A#2 + ... + AnEn < E2 

je provedeno tím, že jsme násobili integrálem (8). 

Hledaná pravděpodobnost tedy bude 

Integrál 
00 00 

J de,-ei8(-Ai~i)-hi!li' == J (cos BA-iEi - i sin eA-iEi) e-hil'i
s d.e,= 

-CX) -00 
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Ci) 

= 2 J cos eAiEie-kil~il dE" 
o 

a protože 
ClO 

J -..4.%1 h dIV n _{"I: A e cos x x === - - e , 
2 A 

o 

bude předcházející integrál roven 

tedy 

-00 Bl 

1 JE' 2 Vn -T': (~::+ ... +~:) - _ . e dTo 
- 2n VAl2 A,,2 

Bl hl2 + ... ~ h" i 

Pravděpodobnost, že chyba AtEI + ~2 + ... + AnEn je v me­
zích od E do E + de, jest tedy 

(

' :I A I) , I. III ft 
de -B. -+"'+JiI --====-========= e kll n. -VAI2 An

2 

Vn h/ + ... + h .. 2 

Srovnáme-li tento výraz s výrazem pro normáhú zákon, vi­
díme, že chyba AlEl + ~2 + ... + AnEn se řídí rovněf nor-
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málním zákonem, jenže míra přesnosti je nyní 

H= 1 

Vll2 lft2 ' 
"'-t2 + ... + 11,.2 

čili 

1 A12 ~2 A.2 

H2 = h
1

2 + h;i + ... + hA 2 • 
(9) 

A protože mezi mírou přesnosti hi, a střednť chybou mi je 
vztah 

1 
'TTIf.hi = V 2' 

plyne pro čtverec M2 střední hodnoty chyby E vzorec 

M2 = A12fnt2 + Ag2m22 + ... + A.2m.2 (10) 
[viz I, (12")]. 

Užití. 
lX) V odstavci II, 4 byl dokázán vztah (15) mezi odchyl­

kami Vi a skutečnými chybami Et. V případě stejných vah 
přejde onen vztah ve vzorec 

1 
Vi = - {- E1 - B2 - •• 0+ (n -1) B, - o. 0- Bft}. 

11, 

Protože tedy odchylky Vi se dají vyjádřiti jako lineární funk­
ce skutečných chyb B, je podle právě dokázaného patrno: 

Řídí-li se skutečné chyby normálním zákonem četnosti, 
řídí se odchylky od aritmetického průměru rovněž normál­
rum zákonem a naopak, neřídí-li se odchylky od aritmetické­
ho průměru normálním zákonem, neřídí se jím aspoň některá 
ze skutečných chyb (kdyby se jím řídily všecky sku­
tečné chyby, musely by se jím říditi i odchylky od aritme­
tického průměru). 

O Ví 10 { ll, , v tO {skutečné chyby b d znac me- 1 h' mlru presnos 1 pro odchylky ,11 . e 
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podle vzorce (9) 

čili 

I n-I (n-I)2 n-I 
k /2 = -n2k2' + n2k2 = nk2 ' 

k' = kV n . 
n-I 

Tedy pravděpodobnost, že odchylka v je v mezích od v do 
v + dv, bude 

k' k V -hlAV· 

V3/-h····~V = Vn n ~ 1 e ,,-I dv. 

tJ) Všimněme si trojúhelníkové sítě. Měřené úhly trojúhel­
níka označíme A, B, C. Součet úhlů podle 'měření je A + 
+ B + C. Protože známe, jaký tento součet má býti 
(180 + 8', kde 8' je nadbytek uvažovaného trojúhelníka), 
známe s~utečnou chybu 8 v uzávěru trojúhelníka, t. j. 

8 = 180 + E' - (A + B + C). 

Označíme-li skutečné chyby v jednotlivých úhlech Ev E2' 83' 

jest 
E = - El - 82 - E3· 

Z předcházejícího výsledku je patrno: rtídí-li se 81, 82, E3 nor­
málním zákonem četnosti, řídí se jím i chyba v uzávěru 
a naopak, neřídí-li se chyba v uzávěru normálním zákonem, 
neřídí se jím aspoň některá z chyb v měřených úhlech. 

Je-li 

{
h , " t. {skutečné chyby úhlů A, B, C, 
k' mlra presn08 1 pro chybu v uzávěru trojúhebúka ABC, 

hude podle vzorce (9) 

1 3 
h'2 - 12 

Tedy pravděpodobnost, že 
E + de, bude 

II 

"il· k' k c 1 ,va. 
chyba 8 je v mezích od E do 
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h' -h'! e2 d __ ~ -t1t 2e2 d V;e e- V3n e .. e. 
OZllačínle~li střední chybu měřeného úhlu písmenem m a 
střední hodnotu chyby v uzávěru písmenem M, plyne ze 
vzorce (10) . 

J..lf 
čili m = V3. 

A ·vypočteme-li podle vzorce I, (10') 

M2 = [S2], 
n 

kde n je počet chyb v uzávěrech, bude 

. m = ±V[e2
]. 

3n 

(ll) 

( ll') 

" . 

c) Podobně jako v odstavci b) uvažujeme o obecnějším 
pi'ípadu, *) kdy skutečná chyba nějaké veličiny je rovna li­
neární funkci Alel + A#2 + ... + Anen částečných chyb el' 
e2, ••• , en , při čemž Ei se řídí zákonem četnosti qJi(Ei). (Pro 
různá i mohou býti funkce qJi různé.) 

Pravděpodobnost, že chyby ev e2, ••• , en nabudou současně 
hodnot Sl' e2, """' Sn, jest . 

(12) 

A pravděpodobnost, že Alel + A#2 + ... + Anen má hodnotu 
mezi wI a W 2' bude rovna integrálu výrazu (12), při čemž obor 
je takovSr , že . 

W 1 < AISI + ~2 + .". + AnEn <·w2• 

Stejně jako v odstavci b) bude tedy pravděpodobnost P, že 
celková chyba Alel + ~2 + .... + Ane;~ je v· mezích od W 1 do 
W2' rovna. 

*) Whi ttaker-Ro binson, l. c. Rtr. 168-173. 
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-00 Wl ~OO -00 -00 

Píšeme-li 
00 

f e-i9x cpl'(X) dx = QI'(B), 
--00 

bude 

Uvážíme-li, že 

a zavedeme-li označení Q(@) = QI(A-I@) Q2(A2@) o o o Qn(A,l~), 
jest 

00 

P I jQ(B) '.o '.o dLl = - -0.- (etO'w:! - e l O'W1 ) o. 
2:t lB -

-00 

Pravděpodobnost P', že AlEl + A#2 + o o o + AnEn je nlezi e 
a E + dE, budě 

[protože J=- (eie(e+de) - ei8a ) = ~ eige (ei8de - 1) , ei8e de]· 
tB ~B 

00 

P' = ~j Q(e) eige de, 
-00 

tedy rovna ťp(E) de, kde ' 
00 

1 j . m(E) = - Q(fJ) tiSe dB. 
T .)""7' -.. " 

(13) 
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Zavedeme označení 
co 

8k = f xktpr(x) dx. (14) 

-co 

Pak podle definice D,(f)) bude 
ex> 

D.(8) = f e-i8x tp.(x) dx = 
-co 

co . _ f( - if)x _ (f)X)2 i(8x)3 ~X)4 _) _ 
- ll! 2! + 3 ! + 4! . . . fPr( x) dx-

. 8 2 if)3 B' 
= 1-~f)81-2T82+ 3! 83 + 4!8,+ ... 

Odtud 
. €)2 i€)3 €)' 

19 Dr(f) = 19 (1 - ~e81- 2! 82 + 3"! 83 + 4! 8~ + ... ) = 

. f)2 ie 3 

= - ~f)81 - 2(- 81
2 + 82) + ':t! (8s - 38182 + 281

3
) + 

kde 

164 

f)' + 4! (8, - 48183 - 382
2 + 1281

282 - 681
4

) + ... = 

. 8 2 if)a €)4 
= - ~f)P1- Tl P2 + 3! Pa + 4! p, + ... , 

Pa= 

81, 1, O, O 
82, 81, 1, O 
8 3, 8 2,.281, 1 
8" 8a, 382, 381 

Sv 1, O 
82, 81, 1 
83J 82, 281 



Veličině Pk se říká seminvaria~t řádu k nebo k-tý seminva;. 
riant. Uvážíme-li, že 

n 

Ig.Q(8) = L: Ig.Q,,(A,,8), 
"=1 

vidíme, že na př., pro součet odchylek el + e2 + ... + en bude 
n 

19 D(8) = 2 lg DIa(8) = 
h=1 . 

. 8 2 i8a 
= -~8 2 PI-2T L:P2 + TI 2 Pa+ ... ~ 

čili, že lze psáti 

. 8 2 i8a 
Ig.Q(8) = - ~8PI- 21P2 + 3T Pa + ... , 

kde Pi je rovno součtu k-tých sem invariantů jednotlivých 
odchylek. Uvažujeme-li celkovou chybu e = Alel' jest 

. 8 2 i8a 
19 D(8t= Ig.Ql(AI 8) = - ",8PI - 2TP2 + 3f Pa + ... = 

. Al282 iAI 3f)a 
=-~At8PI- 2! P2+- 3! Pa+··· 

V tomto případě je tedy Pic rovno k-tému se~invariantu 
chyby Cl' násobenému Alc• 

Obecně, je-li e = Atel + ~2 + ... + A-ne,,, plyne, že 
ft 

19 D(8) = L: Ig.Q/a(A,,8) = 
"=1 

ft. A" 282 • AA 383 

= 2 {- ",)."f)PIA - 2' P2" + '" 3 PaA + ... }, 
1&=1 • 

čili, že lze Ig.Q(8) psáti zase ve tvaru 

. 8 2 iea 
19 .Q(B) = - ",BP1 - 2! P 2 + 3! Pa + ... , 
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kde 
Pl = AlPll + A2P12 + ... + )""P11l' 
P 2 = A12p2l + Álp22 + ... + An 2P2fh 

Ps = Al 3Pal + ~3P32 + ... + An3
P3n atd. 

Ny~í budeme předpokládati, že jednotliv'é chyby 81, 82' •.. , 8n 
jsou velmi četné a velmi malé. Protože první seminvariant 
je podle definice roven 

00 

PIh = J Sh rp,,(s,,) de", 
-00 

tedy vlastně roven aritmetickému průměru všech hodnot 
chyby 8lh můžeme docíliti vhodnou volbou středu, od něhož 
čítáme chyby, že první seminvariant vymizí. 

Předpokládáme, že jsme to učinili pro všechny chyby t'l' 
" , 

E2' ••• , En, a oznaClme 

{ O, P21' P31' P41' ... seminvarianty Chyby} 81 atd. 
0, P22' PS2' P42' ••• 82 ' 

Pak podle předcházejícího pro výslednou chybu 

E = AlEl + A#2 + ... + AnEn 

bude 
Pl = O, 
P 2 = Al2p21 + A2

2
P22 + ... + An 2p211, 

P3 = ,t13P31 + ~3P32 + ... + ln3
P3n· 

Při tom ze vzorců pro P2' Pa, p, plyne, že pro Pl = 8 1 = O 
bude P2 = ~, Pa' = 8a, p, == 8 4 - 382

2, podle vzorce (14) značí 
tedy P2 a Pa střední hodnoty druhých a třetích mocnin chyb. 

Budeme předpokládati, že P2 je konečné; dále, že počet 
chyb t'i, jest velmi značný a že střední hodnoty čtverců chyb 
Pn' P22' .•. , P2ft jsou přibližně stejného řádu. Pak podmínka, 
že P2 je konečné, předpokládá, že každá z hodnot ) .. "2p2,, j~ ko-
nečná hodnota, násobená 1 : n, takže A-"V P2h je řádu I : V n. 
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) 

Potom 13"P3" je řádu ~"l' tedy Ps hude' řádu 
P2h n:. 

P k d 1· " . Pak b d k v, b d P hl d o u ve lClna ·-a u e onecna, u e a - vz e em 
P2h 2 

k ,faktoru n-t - malé proti P2 • 

Podobně plyne, že Pt je malé proti Pa. Pro výslednou chy­
bu tedy bude 

f)2 . €)a €)t 
19 D(€)) = -2" P2 + laT P3 + 4! P,+ ... , 

kde Pi klesá s rostoucím. i. 
Pravděpodobnost, že výsledná chyba je mezi e a E + dE, • 

bude podle vzorce (13) rovna 

fP(E) = 

00 

( ) . I J i9s-!8
I
P! de CPE ==~ e .. == 

-co 

-::t:J co IJ -!9
I
P. = Jl e - cos ee de, 

a protože o 
oc bZ 

e-.J.' CIIS b~ de = 2" ~ e u, *) J IV---
o 

*) K. Petr: Počet. integrální, Pr~ha 1915, str. 225. 
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• 

bude 
Sl 

( ) 
I -2P. 

fP E • --e , 
V2nP2 

(15') 

kde 

P2 == A1
2
P21 + A2

2
P22 + ... + Án2

P2'" 

Ve 2. odstavci jsme uvedli některé podmínky, jejichž 
splnění zajišťuje, že měřické chyby se řídí normálním záko­
nem četnosti. Byly to: 

a) Podmínky Schiaparelliho o vlastnostech nejpravdě­
podobnější hodnoty odvozené z měření, doplněné další 
podmínkou, že funkce četnosti pro uvažované chyby mají 
tvar .qJi(ei) . 

b) Podmínka, že skutečná měřická chyba je rovna lineární 
celistvé funkci částečných chyb, z nichž každá se řídí nor­
málním zákonem četnosti. 

c) Podmínka, že skutečná měřická chyba je rovna lineární 
celistvé funkci částečných chyb, z nichž každá se řídí·záko­
nem četnosti CPi(ei), jestliže počet částečných chyb je dosta­
tečně velký a jsou-li splněny jisté podmínky o středních 
hodnotách druhých a vyšších mocnin částečných chyb. 

Je-li některý z předpokladů a), b) nebo c) splněn, můžeme 
býti jisti, že měřické chyby se řídí normálním zákonem čet­
nosti, a z toho plyne, že je nu t n o v těchto případech vyrovná-o 
vati podle metody nej menších čtverců; dále, že hodnoty ne­
známých takto vypočtené jsou nejpravděpodobnější hodno­
ty, jež plynou z výsledků měření; že mají nejmenší střední 
chyby a největší váhy ze všech lineárních celistvých funkcí 
výsledků měření ll' l2' ... , ln; a konečně, že extrémní možné 
chyby, jež jsou podle počtu měření rovné dvojnásobným, 
trojnásobným nebo čtyrnásobným středním chybám, vyme­
zují obory, uvnitř nichž jsou pravděpodobně skutečné hod­
noty neznámých výsledných hodnot. 

3. Druhé zdůvodněni methody nejmenšfch ětverců. 
Nechť hledané veličiny x, fj, z mají býti zase určeny z rovnic 
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Q'iX + biy + CiZ = li, i = 1, 2, ... , n, (16) 

kde li jsou prosté členy odvozené z výsledků měření. Před-
pokládáme, že li nemají stejnou váhu. . 

Laplace uvažuje o této úloze asi takto: Rovnice (16) nutno 
nějak kombinovati, abychom dostali konečné rovnice pro 
výpočet neznámých. Ale jak to udělati nejvýhodněji? , 

Nechceme užívati jiných konečných rovnic než lineárních. 
To je podmínka nutná, jde-li o velký počet pozorování, jinak 
by vylučování neznámých a jejich výpočet byl nepraktický. 
Věechny způsoby kombinací rovnic (16), má-li z nich býti 

vytvořena konečná rovnice lineární, vedou k násobeIÚ rovnic 
(16) jistými faktory a k utvoření součtu těchto součinů. 
Označíme-li faktory k V)Ypočtu neznámé x písmeny Av A2' 
••• , A.fI , budeme míti pro x konečnou rovnici 

, 

y. y v prI cemz 

takže 

n 

2).i (ai x + biy + Ciz -li) = 0, 
i=l 

n 

2 Aia-i = I, 
i=l 

1l. 

2Aibi = 0, 
i=l 

1l. 

2 AiCi = 0, 
i=l 

(li) 

(17') 

Kdyby n = 3, stačily by rovnice (17) k výpočtu faktorů 
Al' ~, As j k výpočtu neznámé x = AIl! + )~2 + AJs. Pokud 
však n > 3, nestačí rovnice (17) k určení faktorů A. Nutno 
tedy připojiti další podmínku. Chceme-li dostati postup nej­
výhodnější, musíme hledati takovou soustavu faktorů ~, ~ 
... , A-n, aby čtverec středlli chyby v každé vypočtené nezná­
:mé byl nejmenší, nebo její váha největší. 

Podle této úvahy Laplaceovy·) postupujeme takto: Jak 
jsme viděli (I, 3) ·a ještě uvidíme (VII, 3b), je za jistých 
předpokladů převrácená hodnota váhy Px pro neznámou x, 

*) Théorie analytique des proba,bi1ités, II, § 24. 
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"plynoucí ze vzorce (17'), rovna 
1 A 2 A 2 ~ 2 
_ = _1 + ~ + ... + ~, (18) 
Pzo Pl P2 Pn 

jsou-li Pl' P2' .. ·,Pn váhy jednotlivých rovnic (16). 
Má tedy býti výraz (18) minimem při podmínkách (17). 

Funkce F (viz IV, 2) je zde rovna 

fl, A.2 fl, tl 11. 

F = ~ ~ - 2~ L (Aiai - 1) - 2k2 2 Aibi - 2k3 2 A&c,. 
i = 1 P~ i = 1 i = 1 i = 1 

Podmínky minima jsou 

Ai - = k1ai + k2bi + kaCi· 
Pi 

Dosadíme-li odtud za ~ do podmínek (17), bude 

a při tom 

~ [paa] + k2 [pab] + ka [pac] = 1, 
kl [pab] + k2 [pbb] + ka [pbc] = O, 
kl [pac] + kl [pbc] +. ka [pec] = O 

(19) 

, 

(20) 

(20') 

Označíme-li písmenem LI determinant soustavy rovnic (20), 
bude 

k _ ~ [pbb], [pbc] 1 [pab], [pbc] 
1 - LI [pbc], [pcc] , k2 = - LI [pac], [pec] , 

k _ ~ [pab], [pbb] 
a - LI [pac], [pbc] , 

a tedy podle vzorce (20') bude 

1 [pal], [pab], [pac] 
x = Lf [pbl], [pbb], [pbc] . 

[pel], [peb] , [pec] 
(21) 

Kdybychom k určení neznámých x, y, z položili podmínku, 
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. 
aby byl minimální součet čtverců odchylek Vi = aiXo + biy + 
+ Ciz - li, při čemž každý sčítanec Vi2 vchází do součtu ná­
sobený příslušnou vahou Pi, t. j. má-Ii býti minimální součet 

n 

2Pi (ai x + biy + CiZ -li)2, 
i=l 

musí býti (srovn. III, 1) 

[paa] x + [pab] y +' [pac] z = [pal], 
[pab] x + [pbb] y + [pbc] z = [pbl], 
[pac] x + [pbc] y + [pcc] z = [pel], 

a odtud zase • 

1 ,[pal], [pab], [pac] 
x= Lf [pbl], [pbb], [pbc] . 

I [pel], [pcb] , [pec] 

[viz (21 )]. Podobně pro y a z. 

Je tedy patrno: Podmínky, aby konečné rovnice pro ne­
známé x, y, z byly lineární a aby váhy Px, Py, pz neznámých 
x, y, z byly maximální, vedou ke stejn)?m hodnotám nezná-
mýcp. jako methoda nejmenších čtverclt. . . 

A naopak: Methoda nejmenších čtverců vede k takovým 
hodnotáIp neznámých x, y, z, které mají největší váhy (nej­
menší střední chyby) ze všech lineárních celistvých funkcí 
hodnot ll' l2' "', ln· 

Podle tohoto druhého zdůvodnění methody nej menších 
čtverclt nejsou vyrovnané hodnoty neznámých nejpravdě­
podobnějšími hodnotami, jako byly v případě, kdy jsme 
mohli předpokládati, že měřick~ chyby se řídí normáhúm 
zákonem četnosti. Střední a extrémní možná chyba nemá 
v tomto případě významu pro vymezení oboru, v němž jsou 
pravq.ěpodobně skutečné hodnoty neznámých. 

K tomuto druhému zdůvodnění nlethody nejmenších 
čtverců připojíme několik doplňků. 

a) Podmínku, aby konečné rovnice pro výpočet nezná­
mých byly lineární, autoři 1>0 Laplaceovi skoro vesměs pře-
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cházejí bez povšimnutí. Ch. A. Vogler*) odůvodňuje lineár­
nost konečných rovnic pro výpočet neznámých asi takto: 

Vyrovnané hodnoty neznámých x, y, z jsou jakési funkce 
prostých členů, a to takové funkce, že 

1. hodnoty neznámých, které vyhovují všem odchylkovým 
rovnicím, musí zůstati nezměněny a 

2. přesné hodnoty prostých členů vedou k přesným hodno­
tám neznámých, které zase ~plňují všechny přesné odchylko-

" . ve rovnIce. 

Píšeme vyrovnané hodnoty 

x = 1:I;(ll' Z2' ... : Zn), Y = 11I(Zv Z2' ... , Zn), i = Iz(ll' l2' ... , lfl)· 

Do~adíme-li tY.to hodnoty za x, y, z do rovnic (16), bude 
-

I aix + b,y + c,z ~ li + li, (16') 
-

takže li + li můžeme považovati za takové prosté členy, že 
všechny odchylkové rovnice (16') se dají splniti neznámými 

- - -
x = 1:I;(ll + lv l2 + Z2' .. . ,'ln + ln), 

- - -
y = 11I(ll + lv l2 + l2' ... , ln + ln), - - -
Z = /z(ll + ll' l2 + l2' .. o, ln + ln}, 

při čemž podle předpokladu 1: 
- - -

Iz(~, l2' . o ., ln) = Iz(~ + ll' l2 + l2' .. 0' ln + ln), 
- - -

11I(~' l2' o o o, ln) = III(ll + ~, l2 + 12, ... , ln + ln), (22) - - -
Iz(~, l2' o o o, l.n} = Iz(ll + ll' l2 + 12, ••• , ln + ln)· 

Označíme-li li + Ei přesné hodnoty prostých členů a x + E, 
y + 1}, z + C přesné hodnoty neznámých, musí býti podle 
předpokladu 2: 

x + ~ = I:I;(~ + El' 12 + E2' . o., ln + En}, 
Y + 1} = 11I(ll + Ev l2 + E2' 00 0' ln + En), (23) 

Z + C = Iz(ll + EI' l2 + E2' ... , ln + En)· 
-----

*) Didaktisches zur Ausgleichungsrechnung. Z. f. Vennes­
sungswesen, Brl. 33 (1904), str. 394-402 a 609--613. 
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Jde-li o druhé zdůvodnění methody nej menších čtverců, za­
ložené na vzorci pro váhu výsledné hodnoty, jejíž chyba je 
lineární funkcí částečných chyb Cl' c2' ... , c,,, musíme před­
pokládati, že ci jsou tak malé veličiny, že v Taylorových 
rozvojích funkcí Iz, ly, Iz můžeme zanedbati členy od druhého 
řádu, že tedy místo (23) stačí psáti 

~ = AICl + ~2 + ... + Anc,,, 
'YJ = A' lCl + A' ~2 + ... + A' "cn, (23') 

C = A" 1 cl + A" 2C2 + ... + A" nE", 
kde 

Tyto derivace se mohou vypočísti na př. pro střední hodnoty 
l' l' l' 2' ... , l' n v uvažovaném oboru. 

Je zřejmé, že v téže úvaze nemůžeme jednou klásti za 
funkce I lineární výrazy a po druhé p~né výrazy, pokud 
proměnné jsou v přibližně stejnýoh mezích. Předpokládáme-li 
tedy, že odchylky li jsou přibližně ve stejných mezích jako 
skutečné chyby ci, musíme místo rovnic (22) psáti 

Al~ +;.J2 + ... + AnIn = 0, - - -
A'lll + A'J2 + ... + A'nln = 0, (22') 

- - -
A"lll + ),,"J2 + ... + A" nl", = o. 

Protože podle' předpokladu 2 musí býti odchylkové rovnice 
(16) splněny, klademe-li místo li všude li + Ci a místo x, 1}, z 
po řadě x + ~, y + lJ, Z + C, bude 

ai (x + ~) + bi (y + 1}) + Ci (z + C) = li + cf, 

a odečteme-li od této rovnice 
-

aix + biy + CiZ = li + li, 
bude -

ai~ + b,"'Y} + CiC = ci - li· 

(16') 

Násobí~-li po řadě Ai a seéteme, bude - vzhledem k (22') 
I 
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a k (23') 
[aA] ~ + [bA] '11 +' [cA] C == [EA] =~, 

podobně 

[al'] ~ + [bl'] 1] + [cl'] C == [EA'] = 1], (24) 

[aA"] ~ + [bl"] 17 + [cA"] C == [El"] = C· 
l\lysleme si několik řad měření a nechť hodnoty ll' l2' ... , l,. 
jsou vždy v uvažovaném oboru. Pak pro každou řadu dojde­
me k rovnicím (24) se stejnými koeficienty, ale nestejnými 
~,'tJ, C· Z t6ho je patrno, že rovnice (24) musí býti splněny 
identicky pro jakékoli ~, 1], C, t. j. musí býti 

[alJ == 1, [bA] = 0, [cA] == 0, 
[aA'] == 0, [bA'] = 1, [cA'] = 0, (25) 
[aA"] = 0, [bA"] = 0, [cA"] = 1. 

Rovnice (22'), dosadíme-li do nich z rovnic (16')zali, nabudou 

tvaru [a.l] x + [bA] Y + [cA] z - [lAJ == 0, , 

z nich podle (25) dostaneme x = [ll], Ý = [ll'] a z = [ll"] 
[viz (17')]. 

b) Zbývá ukázati, jak byl odvozen vzore~ 

1 ~2 A,22 ln2 
- = - + - + ... + _., (18) 
Pa; Pl P2 Pn 

pro váhu lineární funkce částečných chyb. 

x) V odstavci VII, lb) bylo dokázáno: ftídí-li se chyby Ei, 

i = 1, 2, ... , n, normálním zákonem četnosti 

hi -h.le. 1 

V.1l e 
"', 

bude pravděpodobnost, že výsledná chyba E == ~El + ~2 + 
+ ... + lnEn je v mezích od E do E + de, rovna 

H -Hlel d Vn e , E, 
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kde míra přesnosti 
1 

H= . 

Vll2 ~2 ln2 

h/- + h
2

2 + ... + h
n 

2 

Pravděpodobnost, že výsledná chyba jest v mezích od -e 
do + E bude tedy f/J(HE) (srovn. I, 8). Ať je E jakékoli, 
bude tato pravděpodQbno3t větší, je-li větší mír8, přesnosti H. 
Podobnou úvahou došel Laplace k požadavku, že míra přes­
nosti H má· býti co možná největší. 

A zavedeme-li místo míry.přesnosti hi a H váhy Pi a Pz, 
V. \f V prl cemz 

mo ] 
himi = hi Vp, = V 2 

[viz I, (24') a (16')], čili 

bude 

1 2m 2 1 2mo2 
__ o a podobně 

h i
2 Pi H2 pz 

1 Al2 ~2 An2 

- = - + -- + ... + -. 
Px Pl Ji2 Pn 

(18) 

Tento výsledek je tedy založen na předpokladu, že chyb Ei je 
konečný počet (rovný zde počtu měření) a že se všechn)j řídí 
normálním zákonem četnosti. 

fJ) Gauss vyšel od pojmu střední chyby a ze vzorce [I, (12")) 
pro lineární funkci částečných chyb, který byl dokázán. za 
předpokladu, že měřené veličiny jsou na sobě nezávislé a že 
funkce četnosti čáEtečných chyb jsou sudé funkce. 

Zavedeme-li zase váhy jako veličiny nepřímo úměrné 
čtvercům středních chyb (srovn. I, 6), dostaneme zase vzo­
rec (18). 

y) Vzorec (18) byl konečně odvozen*) z těchto jednoduš­
ších předpokladů o vlastnostech váhy: 
-----

*) F. Bernl';tein und W. S. Baer: Ein Axiomensystem der 
Methode der kleinsten· Quadrate, Math. Annalen, 1915, str. 
284-294. - Whittaker-Robinson, l. c. str. 228-231.; 
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1. Je-li Xi naměřená hodnota pro veličinu x, označíme-li 
váhu veličiny Xi písmenem Pi a je-li A nějaké číslo, pak hod­
notě lXi veličiny AX přísluší váha Pi /(l), kde /(A.) je nějaká 
funkce l. 

2. Přísluší-li hodnotě xi veličiny x váha Pi a nezávisle na­
měřené hodnotě Yi veličiny y váha qi, přísluší hodnotě 
Xi + Yi pro součet x + y váha r i, při čemž 

(26) 

3. Přísluší-li dvěma nezávisle naměřeným hodnotám téže 
veličiny stejná váha rovná 1, přísluší aritmetickému prů­
měru obou naměřených hodnot váha 2. 

4. Přísluší-li naměřeným hodnotám Xv .•. , Xn stejná váha 
rovná 1, přísluší součtu Xl + X 2 + ... + X n váha řádu 1 : n, 
t. j. násobíme-li váhu součtu Xl + X 2 + ... + X n počtem n, je 
součin konečný, roste-li n nad každé číslo. 

Z axiomu I plyne: Je-li u nějaké číslo, přísluší hodnotě 
1.tAXi veličiny ulx váha rovná Pi /(UA), ale také rovná 
Pil(u) ·/(l). Funkce 1 musí tedy splňovati podmínku (t. zv. 
funkcionální rovnici) 

l(uA) = I(u) ./(A). (27) 

Jediná funkce I(l) proměnné A > O, která je konečná v in­
tervalu e, e', při čemž O < e < e', a která hoví funkcionální 
rovnici (27) pro všechny kladné hodnoty proměnných A, u, 
jest funkce li, kde k je reálná konstanta.·) Tedy: váha pří­
slušná hodno'tě lXi veličiny lx je 

Pi~.1t. \ (27') 

Podobně váha příslušná hodnotě lYi veličiny ly je qiAJ: 
a váha příslušná hodnotě A (Xi + Yi) je r,Ai , při čemž podle 
pi'edpokladu 2 musí býti 

1p (riAk) = 1p (PiAk) + 1p (qiAk). (28) 

Veličina fi je podle vzorce (26) funkcí proměnných p, a qi. 
Derivujeme-li rovnici (26) podle Pi, jest 

*) K. Petr: Počet diferenciální, str. 117. 
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a podobně z rovnice (28): 

tedy dělením 

• 

lp'(ri).1:) ori ).1: =--= lp'(Pi).k) ).k, 
OPi 

. , k 

Od d ·· .., díl 11' (zA) . ,. I' A v tu Je patrno, ze po '( Je nezaVlS y na z. protoze 
11' z) 

• ZAk je souměrná funkce vzhledem k z a ).1:, nezávisí funkce 
k ' 

lp'(ZA). . 'll:. k Y P'v I· 
, '( 'lk anI na z, anI na,. a Je rovna onstante C. lseme- 1 

11' (Z)1p lL ) 

u místo ).k, musí funkce 11" splňovati funkcionální rOVlŮci 
1p'(zu) = C lp'(z) ~p'(u). Podle dřívějšího musí býti funkce 

, 1 k' d 1 k' 1 
1p (z) rovna C" . z a te y 11'( z) = C (k' + 1) z + . 

Konstantou -k,l ;) můžeme ve vzorci (26) krátiti, takže 
. _ c( + 

můžeme psáti 
1p(z) = zk", (29) 

kde k" = k' + 1. 

Nechť jsou Xl' X 2 dvě nezávislé hodnoty veličiny X, každá 
o váze 1. Pak lxl , tX2 jsou dvě nezávislé hodnoty veličiny tx, 
každá o váze tk [srovn. vzorec (27')]. A t (Xl + X 2) jest hod­
nota veličiny X, jíž přísluší podle vzorce (26) a (29) váha r, 
a jest 

k'+l_ ~_ 1. I 
(r) - 2kk" + 2kk" - 2kk"-1. 

Podle předpokladu 3 musí býti r = 2, tedy 21:" = 2kl;~_1' 
čili k" (k + 1) = 1. (SO) 
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Je-li X'l hodnota veličinyl~ o váze Pl a X'2 nezávisle určená 
hodnota veličiny xa o váze P2' pak ~ x' 1 + ~x' 2 je hodnota 
veličiny Al ~ + A2X 2 o váze r, při čemž 

ri" = (P1~~)k" + (PaAl&)~" = P1~'''Átl-k'' + P2k"Aa1- k". (31) 
, , 

Je-li dále x' 3 nezávisle určená hodnota veličiny x3 o váze P3' 
pak AtX'l + Atx'a + lax'a je hodnota veličiny Atx1 + 1aX2 + 
+ AaXa o váze 1", při čemž 

r'k" = 1'~" + (P3Aak)k" = P1k"~1-t" + P2~'~Asl-.k" + Pak"As"-i" 

atd. (31') 

Jsou-li x' l' x' 2' ... , x' ft hodnoty pro veličiny Xl' X 2' ••• , XA' 

každá' o váze rovné 1, pak x' I +' x' 2 + ... + x'", je hodnota,. , 
prQ ~oučet Xl + ,x2 + ... + Xn a přís,lušná v~ha l' plyne podle 

. 1 ' 

vzorce (SIr) z rovnice· 1'k" :::;:::: n, tedy 1'. n k". , Podle předpo-

kladu 4' ~usí býti li~ n : .. +1 konečná, tedy 

1 
k" + 1 = 0, k" = ~ 1. 

\ 

Jsou-li tedy x' l' x' a, ... , x' n hodnoty pro veličiny Xt,Xa, 
,: .• , Xn o vahách rovných Pl' Pa, ... , Pn, je A,lX'l + ~x'a + 
+ ... + A,,,,X' ft hodnota veličiny Al Xl + ;"xa +, ... + ;"'x"" 
jejíž váha pz je dána podle vzorce (31') vzorcem' 

• I ~ • 

, I ~2 l2. ).,.2 
- = - + ~ + :+ - (18) pz . . Pl Pa . . . r • Pn ' '. 

* 
Ve 3. odstavci-jsme uvedli některé podmIDky, za nichž je 

plaJ;né druhé zdů vodnění methody nejmenších čtverců. Kromě 
případu, kdy se chyby měřických'V-ý8Jedkli řídf normálním 
zákonem četnosti (srovn. odst. 2), uvedli jsme tyto pod-
~mínky: . 
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a) Výsledné hodno~y mají býti lineární celistvé fu~ce 
hodnot ll' l2' ... , ln plynoucích Z měření. 

b) Je-li váha chyby Ei rovna Pi, je váha pz funkce A.lEl + 
+ ~ + ... + AnEn dána vzorcem 

~ = Al2 + ~2 + ... + An
2

• 

1),; Pl P2 Pn 
• 

Tato druhá podmínka byla odvozena jednak (podle 
Gausse) pro případ, že měřené veličiny jsou na sobě nezá­
vislé a že funkce četnosti jednotlivých chyb El' E2' ••• , CR 

jsou sudé funkce, jednak z některých jednodušších před­
pokladů o vlastnostech váhy. [Viz P) resp. y).] 

Je-li splněn předpoklad P) nebo y), a uznáme-li jako 
nutný předpoklad a), pp.k nutno zase vyrovnávati podle me­
thody nejmenších čtverců. Hodnoty nezn~mých, takto vy­
počtené, mají nejmenší střední chyby a největší váhy. Nejsou 
to však nejpravděpodobnější hodnoty, pl)JIloucí z výsledků 
měření, a střední a extrémní možné chyby nemají v tomto 
pHpadě významu pro vymezení oboru, v němž jsou pravdě­
podobně skutečné hodnoty neznámých. 

4. Měřické chyby se neřídf ani normálním zákonem ěet­
Dosti, ani nejsou splněny pfedpoklady druhého zdůvod­
něni methody nejmenších ětverců. (Viz odst. 3. Na pře 
funkce četnosti není sudá funkce, nebo měřické chyby nejsou 
nahodilé atd.) V tomto případě vyrovnání podle methody 
nejmenších čtverců nepoq.ává ani hodnoty nejpravděpodob­
nější, ani hodnoty o největší váze a nemá také smyslu odha­
dovati přesnost měření a výsledků pomocí středních nebo 
prtiměrných chyb, protože (podle odst. I, 3) to předpokládá, 
že funkce četnosti jsou sudé funkce. \ 

Ale i v tom případě podává methoda nejmenších čtverců 
snadno vypočítatelné a určité vyrovnané hodnoty; má ty 
výhody,"na něž upozornil již Legendre. 
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CESTA K VĚDĚNf 

je tedy 1ikolem vyroVDávaci­

ho počtu. 

Jednou z jeho nejjednodul .. 

lich cest je methoda nejmen· 

tich čtvercfl, kterou vám 

pfedklá.dá autor této knihy. 

Knltka Kladivova nespoko­

juje se vlak jen s theoretic­

kým výkladem o podstatě t0-

hoto zpt&sobu vyrovnávaclho 

počtu, ale ukazuje vám na 

řadě pHkladfl, jak se sku­

tečně v praxi mohou výsled­

ky měřeni methodou nej­

menlich čtvercfl vyrovnávat, 

jak 8e vylettuje povaha chyb 

a konečně jak 8e fI08UZ'Uje 

pře8t&08t mMent a výpotttl. 

Tim vlim obohati vale po­

znáni a bude" vám mostem 

mezi theorH a dennlm Ilvo­

tem. 
Dostanete ji vlude u knih­

kupcfl nebo pHmo v naklada­

telatvi 

PROMETHEUS, 

Praha n, Zitná 25. 
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