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Podkladem price zemé&me-
FiCe, fysika, chemika a vSech
technik@ti je méfeni veliin,
kterd bohuZel jsou zatiZena
riznym druhem chyb. Tyto
doprovéazeji celou dal3f praci
technikovu a maji vliv na
jeho vysledky.

Je pochopitelné, Ze se tech-
nik snaZi odstraniti tento vliv
a hledd cestu, jak uréiti onu
hodnotu mérené veli¢iny, kte-
rd je co nejbliZ¥ skuteéné
hodnoté, a jak wurcéiti chybu,
s kterou bylo mé&feni prove-
deno. Touto chybou rozumf
meze (interval), v nichZ sku-
teénd hodnota méfené velili-
ny se nachdzi. Vyrovnat mé-
feni a posoudit jeho presnost
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PREDMLUYVA.

Snazil jsem se napsati struénou a jasnou knizku o méric-
kych chybéch a o vyrovndni podle methody nejmensich étver-
cu a objasniti vyklad na pifkladech. — Chtél bych, aby se éte-
n4ar z ni naudil nejen vyrovndavat podle methody nejmensich
¢tverc, ale také vySetfovat charakter mérickych chyb a od-
chylek, protoZe to miuZe poskytnouti smeérnici, jak hodnotiti
vysledky vyrovndni: Jsou-li to hodnoty nejpravdépodob-
néj8i nebo maji-li nejvétsi vahu nebo jsou-li to jen jakési
stfednf hodnoty. — Pozorny étendr, ktery knizku prostuduje,
muZe rozuméti vétsiné spisud, t¥kajicich se methody nejmen-
Sich ¢tvercu.

KniZka je uréena predevsim pro absolventy zemémeéric-
ského inZenyrstvi, ddle pro ty, ktefi provddéji zemémérictvi
v praxi, ale také pro astronomy a pro fysiky, kratce pro vse-
chny, kterf se zabyvaji nebo se chtéji zabyvati nékterou me-
iickou védou at' theoreticky nebo prakticky.

Ze vSech ucebnic o methodé nejmensich étverci uvddim
dvé, z nichZ jsem nejvic ziskal: F. R. Helmert: Die Ausglei-
chungsrechnung nach der Methode der kleinsten Quadrate,
3. vyd., Leipzig-Berlin, 1924, a E. T. Whittaker-G. Ro-
binson: The Calculus of Observations, 2. vyd., London and
(Glasgow, 1929.

B. Kladivo.

P. S. Ponévadz autor Prof. Dr. B. Kladivo (* 24. 6. 1888)
zemrel 8. tinora 1943, provedli dpravu rukopisu této posledni
jeho préce a tiskové korektury jeho pritelé.



I.
UvoD.
1. Jaké druhy chyb zatéZuji mé&¥ické vysledky? VSechna

méfend jsou zatiZena chybami. Nauéime se je rozliSovati na
jednoduchém pifkladé méreni vodorovnych vzddlenosti in-
varovymi draty.

Dré.ty u nds obvykle maji délku pribliine 24 m. Na kon-
cich jsou k nim pfipojeny stupnice asi 8 cm dlouhé, délené po
milimetrech. Méiend délka D se rozdéli na tseky dlouhé p¥i-
bliZné po 24 m. V koncovych bodech tseku se postavi tiinohé
stojany, nesouci vodorovnou rysku, jez se urovnd kolmo ke
gvislé roviné r, vedené meérenou délkou. Draty se napinaji
dvéma zavazimi po 5 kg a urovnavaji se do roviny r tak, Ze
kaZd4d stupnice jest proti zminéné rysce (obr. 1).

Pfi méreni odhadujeme polohu rysek viéi délenym stup-
. nicim (obr. 2).

Oznac¢ime vodorovnou vzddlenost mezi pocdtky obou
stupnic pismenem L a ¢tenf u rysky na pocateéni (koncové)
stupnici pismenem [, (I;). Pak bude vodorovna vzddlenost d
mezi obéma uvaZovanymi ryskami rovna |

d= L+ 1,—1, (1)

Kromé ¢éteni /;, I, musime urciti je3té teplotu dratu, proto-
ze jak délka L, tak délky na stupnicich z4visi na teploté.
Déle nutno zmériti vyS8kovy rozdfl mezi obéma ryskami a
opraviti délku d vzhledem k tomuto rozdilu.

A nyni uvaZujme o chybéach, které mohou zatézovati délky
d, pocitané podle vzorce (1). Predné se mluvivi o hrubych
chybich. Odhadujeme-li pozorné polohu rysky viéi mili-
metrovym stupnicim, je chyba, které se pri tom dopustime,
jisté mensi nez + mm. Dopustime-li se v tomto pripadé chyby
rovné 1 mm nebo 1 cm, je to zavinéno nezkuSenosti nebo ne-
pozornosti. Takové chybé fikdme hrubd chyba. Hrubé chyby
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abr 1

Stojany pro napfnénf invarovych dr&tﬁ.*)

T

obr 2
Ryska stojanu a délend stupmice.
*) Seznam vSech obrazci je na str. 180.



musime véas odkryti nejcastéji tim, Ze méfrime nékolikrat
a meéreni zatiZenda hrubou chybou Skrtneme.

Délky pocitané podle vzorce (1) budou jisté zatiZeny chy-
bami, kterym se ikd pravidelné nebo soustavné nebo
gsystematické. Délka L, uréend srovnédnim dratu s normal-
nim métitkem, je zatiZend chybou ¢, z tohoto srovndni, t. zv.
chybou z etalonovéni. Spravnd délka je pak L + ¢,. Chyba ¢,
je stdla, protoze kazdy tisek ji bude zatiZen stejné.

Jiné stalé chyby, které mohou zatézovati délky (1) jsou:
Chyba vyvoland zménou napinaci sfly (na pr. neni-li nékteré
zdvaZi presné 5 kg). — Nebo chyba vyvoland tim, Ze zrych-
leni tiZze v misté, kde méfime, je jiné nez v misté, kde byly
drity etalonoviny — nevezmeme-li zménu tiZe v ivahu.

Na prechodu mezi chybami stdlymi a proménlivymi mii-
7Zeme uvésti t. zv. osobni ch ybu pozorovatele. Pozorova-
telé OdhadUJl polohu rysky vuéi déleni nepfesné. Prislusna
chyba mé dvé é4sti. Jedna z nich byvé u peélivého a zkuse-
ného pozorovatele po deli dobu stéld. Pravé této ddsti se ikd
osobni chyba pozorovatele.

Prejdeme nyni k proménlivym chybim systematickym.
Oznacime-li koeficient roztaznosti invarového driatu pisme-
nem x a ur¢ime-li teplotu dratu s chybou ¢,, bude jeji vliv
na hodnoty vypoctené podle vzorce (1) roven priblizné
24xe, m. ProtoZe &, se muZze od tseku k tdseku méniti,
¢itdme tuto chybu k proménlivym chybdm systematickym.

Jinou takovou chybou je chyba z vyboceni dratu z ro-
viny r. Svird-li rovina, v niZ je drat napjat, s rovinou r hel
A, je spré,vné vodorovnd vzddlenost rysek, promitnutych
do roviny 7, rovna d cos f§, tedy chyba —d 4+ dcos f =
= d (cos f —1). Tato chyba nabyvs rtiznych hodnot, podle
toho, jaky je uhel (. Pri tom zustévé stile zdpornd.

Jind proménlivd systematickd chyba vznikne, zméni- T
vaha délkové jednotky drdtu, na pr. orosenim, prebyteénou
vaselinou, zneéisténim a pod. — Nebo zmén{-li se napinaci
sila tim, %e se zméni tfenf napinactho provazce. — Nebo
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chyba, ktera pochdzi z toho, Ze rysky na stupnicich nebyly
sprdvné vyneseny. — Jesté jinou takovou chybu vyvold
chyba ¢; v koeficientu roztaZnosti. Jeji vliv na délku d je
priblizné rovny 24ei¢ m, kde ¢ je teplota drditu. — Nebo
koneéné t. zv. chyba theorie, kterd vznikd tim, Ze vzorec
uzity k vypoctu délky invarového pdsma neni presny.

Pri kazdém méreni se musime snaZit poznati pri¢iny vSech
systematickych chyb, které by mohly sniZiti pfesnost vysled-
ku pod Zddanou mez, a musime snfZit jejich vliv tak, aby ani
vBechny dohromady nerusily Zadanou presnost vysledku.
Déje se to vSelijak. Vyndlez invaru znamenal podstatné sni-
zeni vlivu chyb, pochdzejicich z nespravného uréeni teploty
drétu (24~e, m). Koeficient roztaznosti platiny je totiz
9,0.10—%, invaru az 1,0.10—7. — Zvolime-li dva draty,
z nichZ jeden ma kladny koeficient roztaznosti a druhy za-
porny a priblizné stejné velky, bude v aritmetickém pru-
métu z obou meéreni vliv chyby &, zase sniZen, protoze je
roven 24¢, . #(x + a’) m.

NemizZeme-li vliv systematickych chyb takto nebo jinak
sniZit, musime jej ur¢iti z pomocnych pozorovan{ a mérické
vysledky podle toho opravime. Na pr. uréime novym, pres-
néj$im méfenim koeficient roztaZnosti, ¢. j. jeho chybu &,
nebo aspon jeji podstatnou ¢dst a pricteme k mérickym vy-
sledkim chybu 24¢; m. — Nebo zjistime zvaZenim, o¢ se lisi
napinaci zdvazi od 5 kg, a vypoCteme, jaky vliv to m4d na
délku napjatého dratu, a podle toho opravime méfeni.

Koneéné se mluvivd v tvahdch o t. zv. chybédch na-
hodilych. Budeme tak jmenovati chyby, které maji tyto
vlastnosti:

a) Stejné velké kladné a zéporné chyby se vyskytujl' stejné
casto, tedy kladnd a stejné velka zdporna chyba jsou stejné
pravdépodobné.

b) Chyby s mensi absolutni hoduotou se vyskytuji castéji
nez chyby s vétsi absolutni hodnotou, je tedy pravdépodob-
néjsi, Ze se dopustime malé chyby neZ velké.



c¢) Chyby, jejichz absolutni hodnota je blizkd nule, se vy-
skytuji nejcastéji, Cili je nejpravdépodobnéjéi, Ze namérime
hodnotu bez chyby.

V pripadé meéteni délek invarovymi drdty povaZuje se za
nahodilou chybu na pf. é4st chyby v odhadu polohy rysky
vuci déleni, kterd se zminénou jiz osobni chybou tvoif celou
chybu v odhadu polohy rysky. — Stejné se povazuje za na-
hodilou chybu chyba v uréeni vyskového rozdilu mezi rys-
kami.

Jak patrno z uvedeného prikladu meéreni délek, je kazdy
vysledek méreni zatiZen radou chyb. Nauéili jsme se, co jsou
to hrubé chyby a naucili jsme se rozliSovati chyby systema-
tické (stalé a promeénlivé) od chyb nahodilych. Pii vSech dal-
8ich dvahich budeme predpoklidati, Ze vysledky méteni
jsou zatiZeny jen nahodilymi chybami. To tedy znamena:
a) Pozornym opakovdnim méreni jsme se presvedéili, Zze vy-
sledky méfen{ nejsou zatiZeny hrubymi chybami. b) V pecli-
vém rozboru moznosti chyb jsme uvazili viechny myslitelné
prameny systematickych chyb a jejich vliv na vysledky jsme
sniZili na pt. pod desetinu vlivu chyb nahodilych (srovn. kap.
VI, odst. 1).

Abychom nékteré systematické chyby nevynechali, je
dobfe uvaZovati je po skupindch, podle pti¢in, které je vy-
volaly. Prvni, obyéejné poéetnou skupinu tvoi{ chybystro-
jové (na pf. chyby vzniklé nesprdvnym vynesenim rysek na
stupnicich) a chyby teorie, ddle jsou chyby z nesprév-
ného ustaveni mérickych zatizeni (na pt. chyba z vy-
bocen{ dritu z roviny r), pak jsou chyby vyvolané vnéj-
8fmi vlivy (na pf. chyba z nespravného urceni teploty
drdtu) a konecné chyby zavinéné pozorovatelem (na
PF. osobni i nahodild chyba v odecteni).

2. Cetnost chyb podle velikosti. Funkee a zédkon &et-
nosti. Kiivka d¢etnosti. Souvislost s pravdépodobnosti
chyb. Piedpoklddejme, Ze jsme n-krdt zmérili uréitou veli-
¢inu (na pf. délku nebo tihel), jejiZ spravnd hodnota je a, a Ze
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vysledky méfeni a; (¢t =1, 2, ..., n), jsou prosté hrubych a
systematickych chyb. Hodnoty ¢;, které musime k vysled-
kum meéreni algebraicky pricisti, abychom dosli k spravné
hodnoté a, se jmenuji skutec¢né chyby mérickyeh vysled-
ki. Tedy:

a+&=a, &=a—a; (2)

UvazZujme skupinu chyb, které jsou mezi ¢ a ¢ + de, kde
interval de je dostatecné mealy. Predpoklddame, Ze pocet
chyb v této skupiné je priblizné umérny de. To jest, zvétsi-li
se nékolikrat interval de, zvétsi se priblizné stejnékrat i pocet
chyb ve skupiné. Podobné predpoklidame, Ze pocet chyb
v kazdé skupiné je také priblizné imérny poctu n vSech
chyb. To jest, zvétsi-li se nékolikrat pocet viech meérent,
zvetsi se priblizné stejnékrat i pocet chyb v kazdé skupiné.

Za uvedenych predpokladi miZeme tedy psati pro pocet
¢lena v jednotlivych skupindch yn de, kde y je zdvislé na ¢.
Klademe y = @(e), tedy pocet chyb v intervalu od & do
¢ + de jest n @(e) de. Zname-li funkei @(e), zndme rozdéleni
chyb podle jejich velikosti ¢ili zndme ¢etnost chyb podle
velikosti. Funkei ¢(e) se rikd funkce ¢etnosti.

NanaSime-li v néjakém méiitku na osu iusetek velikost
chyb &, kolmo k ni prisluSnou hodnotu y = ¢@(¢) a spojime-li
koncové body poradnic, vznikne kfivka y = @(c), které se
rika ktrivka cetnosti.

Podle toho, co bylo feceno o vlastnostech nahodilych chyb,
plati pro né:

¢(+ &) = p(— &), (3)
pro |& | >[¢& | jest

ol &) < (e l); (3')
@(¢) nabyvd maxima pro &¢=0 a minima pro nejvetsi
moznou chybu ¢ = 4 K. Pro | e | > + E jest ¢(c) = 0.

Ze vzorce (3) je patrno, Ze pro nahodilé chyby je kiivka
Cetnosti soumérnd vzhledem k ose y-ové; ze vzorce (3')
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a z okolnosti, Ze @(0) je maximalni, vyplyva, Ze pro naho-
dilé chyby ma krivka éetnosti tvar zvonovity.

Pravdépodobnost, Ze nahodile vybrania chyba
z mnozstvi » chyb jest mezi ¢ a ¢+ de, je rovna
@(e) de = y de; je tedy rovna elementu plochy omezené
krivkou cetnosti a osou z. Pravdépodobnost, Ze chyba je
v mezich od ¢, do ¢, jest rovna

[gle) de. 4)
Z podminky, Ze pro | ¢ | > K jest @(e) = 0, plyne
-+ )
Jo(e) de = Jope) de = 1. (5)

3. Jak se posuzuje presnost méreni. Stfedni chyba a
priimé&rna chyba.*) UvaZujme o dvou faddch méieni téze
veli¢iny a ozna¢me chyby pro prvni radu

£y, €, e'm, (6)
a pro druhou radu

8”1’ 8”2’ R 8”1z,' (6°)
Predpoklddejme, Ze prislusné funkce ¢etnosti g,(¢) pro fadu
(6) a @.(¢) pro Fadu (6’) jsou sudé funkee, t. j. spliuji pod-
minku (3), a Ze obé krivky ¢etnosti se protinajf jen v jednom
bodé na kazdé strané osy y-ové (obr. 3). Pifsludnou iseéku
mensich

vétsich C© doabso-

oznacme -;- €. Je patrno, Ze pocet chyb

(6)
(6)

Jutni hodnoty nez €, je vice v radé { . Proto povaZzujeme

prvni fadu méteni za presnéjsi.
Abychom nemusili sestrojovati krivky éetnosti a prece

mohli rozhodnouti, kterd z rad méren{ je presnéjsi, uvazu-
jeme takto: Z obr. 3 plyne, Ze pro | € | < £ jest () > gy(e),

*) F. R. Helmert, 1. c. str. 18—20.
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pro | €| > & jest g,(€) < @o(e). Pro jakékoli ¢ bude
[1(e) — @ale)] (87 — | £ |7) = O, (7)

kde ¢ > 0. Pro |e| < ¢ jsou totiz oba faktory
[py(e) — ale)] 1 (81— | £|9) kladné, pro || > & jsou oba
faktory zdporné a pro | € | = € jsou oba faktory rovné 0.

obr 3

Niésobime-li levou stranu vzorce (7) de a integrujeme-li
v mezich od —oo0 do + oo, bude

 Jigr(e) — gule)] - (& — | £ 9 de >0
¢ili
([ gi(e) de— Jpule) de] — [| 2 [ (e) de + [ | el e de > 0.

Podle vzorce (5) vymizi élen s £7 a

&)

fl £ |7,(€) de <_wf

& |7 q(e) de. (8)

veoewyp
(- ¢}

S¢= [l el ple) de (9)
11



mensi. Proto mizZeme presnost rady meéreni posuzovati podle
toho, jaké hodnoty nabyva velicina S,. Je-li §; pro né-
jakou radu méfeni menS3{ nez pro jinou radu, je
prvni rada méreni presné;jsi.

Jaky je vyznam veli¢iny S;? ProtoZe » ¢(e¢) de je pocet
chyb v mezich od ¢ do ¢ + dg, je soucin | ¢ |20 ¢(¢) de roven
souc¢tu absolutnich hodnot ¢-tych mocnin chyb, jeZ jsou
v mezich ¢ a ¢ 4 de. Pak soucin n8; je roven souc¢tu abso-
lutnich hodnot g-tych mocnin vSech chyb a S, je aritmeticky
pramér absolutnich hodnot g¢-tych mocnin vSech chyb,
tedy na pr. pro radu n chyb je

Se=1[l¢el|] :n, (9°)
kde lomend zavorka [ ] znaéi souéet pro1 =1, 2, ..., n.
Nejcéastéji se volig =1a g= 2. Pro g =1 jest

S1=_fls|q9(e)ds=[|e|]:n=s, (10)

kde s je t. zv. primérnd chyba nebo primérnéd hod-
nota chyby e.
Pro ¢ = 2 jest

S, = f82 @(e) de = [€2] : n = m?, (10")

kde m je t. zv. stfedni chyba nebo stfedni hodnota
chyby e.
Je-li tedy primeérna nebo stfedni chyba pro néjakou radu
meéreni mensi, prisuzujeme této radé vétsi presnost.
Opakujeme: ivaha v tomto odstavei predpoklads, Ze uva-
zované funkce Cetnosti jsou sudé funkce a Ze se krivky éet-
nosti protinajf jen v jednom bodé.

4. Stfedni chyba funkece f n8kolika velidin I, l,, [,,...,
uréenych na sobé nezavisle. a) Necht je f = «,l,, kde [, je
meérend veliina a «; konstanta. Je-li skuteéna chyba veli¢iny
l, rovna ¢, jest skuteénd chyba veli¢iny f rovna & = a,¢;.
Podle definice (10’) je tedy stiednf chyba m; déna vzorcem
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&0
my? = f o,%€,% P(ey) dey.
A je-li m, stfedn{ hodnota chyby ¢,, t. j. je-li

[ o)

m,® = f312 @(&,) dey,

—X
je patrno, Ze
m = o,%m,2. (11)

K stejnému vysledku dojdeme, uZijeme-li vzorce m2 —
= [£?] : n. Mysleme si, Ze opakujeme méfen{ veli¢iny I/, ne-
koneénékrat a %e vypoéteme vidycky skuteénou chybu e
a & =& a pak aritmeticky primér mg = [¢f] :n =
= o,% [¢,%] : n. ProtoZe [e,2] : » = m,?, je zase mp® = x,®m,>.

b) Necht f= x,l; + agly + oxgls + ... + xnls, kde 1, L,
by, ..., ln jsou nezdvisle mérené veli¢iny a o, &y, &3, ... kon-
stanty. Oznaéime ¢; skuteénou chybu veli¢iny I; a stredni
hodnotu chyby &; oznaé¢ime m;, (1 = 1, 2, 3, ... n). Skuteénd
chyba vyrazu f jest

Ef = 04& + g€y + g€+ ... + Kk (12)
Jeji étverec jest

n
£ = 0,6, + %% + g6 + ... + .2":2?1'0%8@'87:- (12°)
t,k=

Mysleme si, Ze opakujeme méreni kazdé z veli¢in I, 1,, I, ...
nekonecnékrat a Ze vypobteme vidy skuteéné chyby ¢, &,
&, - .-, déle & a aritmeticky prumér veli¢in ¢2. Podle vzorce
(10') mg = [g/%] : n vypocetli jsme tak étverec stiedni chyby
vyrazu f.

Dosadime-li za &2 ze vzorce (12’), plyne jiny vyraz pro
my?. Predeviim pujde o éleny tvaru [4;%;%] : », které jsou
podle pfedchoziho rovny am?.

Déle ]de o aritmeticky prumér vyrazu Zcx,oc 1€i€x- Chyby

&, & nabyvaji pri tom nezdvisle na sobé vsech nekoneéné
mnoho hodnot.
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Predpoklidéme, Ze ke kazdé kladné chybé ¢ existuje stejné
velkd zdpornd chyba —¢. Viechny mozné souciny &4¢; dosta-
neme tak, Ze zvolime urcité ¢; a ddme probihati chybé ¢
viechny hodnoty. Soucet téchto sou¢inu je g 2e;. Pak zvo-
lime dalsf ez a ddme probfhati ¢; zase v8echny hodnoty atd., aZ
vyéerpame i viechny chyby ¢;. ProtoZe viak ke kazdé chybé

&; existuje chyba —¢;, bude 2¢; = 0, tedy i soucet z X X 1EiEk

bude roven 0 a rovnéz prisludny aritmeticky prumer Bude
tedy celkem

mp = x,°m,® + ag®my® 4 xPmg® + ... + ap?ma?. (127)

c) Necht f= f(l;, 15, L5, ..., 1), kde 1}, L, L, ..., 1, jsou zase

nez4visle mérené veli¢iny. Jsou-li &; skuteéné chyby veli¢in
l;, jest skuteénda hodnota funkce f rovna

fly + €, b+ &, lg+ &5 ..., 1y + €4) & jeji skuteénd chyba

f, + &, I, + &, l3 + &g, ...) — [, by U, ...). O funkei f

predpokldddme, Ze ji muZeme rozvinouti v radu Taylorovu

podle rostoucich mocnin chyb ¢;, a Ze pri malych hodno-
tdch chyb staéi podrzeti cleny linedrni, Ze tedy

f(l1+81, 2‘|"82a 3‘|‘33s---: In + én ifllalz,ls: e lp)

3/ 1+ /80+_fa+ “" , n*)

Parcidlni{ derivace jsou vypocteny pro bod (ll, by, g, -y 1y).
Skute¢nd chyba funkce f se tedy rovna

of of of of
al_131+m32+ al, €31 .- +—“Fn (13)

Srovndme-li s pripadem b), plyne ihned, %e ¢tverec stredni
chyby funkce f jest

*)- J. \;ojtéch: Ziklady matematiky, 5. vydani, Praha 1839,
I, str. 280—286, 398—401. — K. Petr: Podet diferencidlni,
Praha 1923, str. 198 a 325.
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= () + (L et + (o 4+ (o) ot

(13")
Znovu pripomindame predpoklady, za kterych byl odvozen
“vzorec (12") (a oviem i (13')): Veli¢iny 1, ,, I,, ... jsou veli-

¢iny na sobé nezavisle mérené. Funkce ¢etnosti pro
chyby kazdé z téchto veli¢in jsou sudé funkce.

6. Priklady na vypodlet stfednich chyb. 1. Pro veli-
¢inu ! jsme nameérili hodnoty L, by, ..., Iy Je-li stiedni chyba
kazdé z nich rovna m, jakd je stredm chyba m’ aritmetic-
kého primeéru [I]:n? |

Jsou-li skute¢né chyby namérenych hodnot ¢, ¢,, ..., &,, je
skutecnd chyba aritmetického stredu (¢, + &, + ... + &) :n.
Srovndnim se vzorcem (12) plyne, Ze v uvaZovaném pripadé
jexs=1:m,i=1,2, ..., n, tedy ze vzorce (12”) je pro arit-
meticky stied m'2 = m? : n ¢ili

m — . (14)
Vn

2. Pro veli¢inu ! jsme vypocetli z jedné rady méreni hod-
notu /, se stiedni chybou m’; a z druhé rady mérenf hodnotu
l, se sttedni chybou m,. Jak4 je sttedni chyba m; roz-

dilu d =1, —1,?
Jsou-li ¢ a &, skute¢né chyby hodnot I, a l,, je skuteénd
chyba rozdflu !, — I, rovna & — &. Srovnanim se vzorcem
(12) plyne &, =1, x,= — 1, tedy ze vzorce (12") bude

mg = Vm12 + my?. (15)

3. Je-li stredni chyba veli¢iny x rovna m,, jakd je stredni
chyba m; veliiny f = c log z, kde ¢ je konstanta?

Je-li ¢ skuteéné chyba veli¢iny z, je skutecnd chyba veli-

¢iny f priblizné rovna e;—— Zf e, kde 30:{: cil, (M==0,43429

je modul briggickych logaritmi). Pak plyne ze vzorce (13’)
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., cM
my = —— My.

x
4. Sttedni chyba v uréeni denniho chodu hodin s vteri-
novym kyvadlem je m = 4 0,028. Jakd je stfedni chyba

ve vypoctu jedné periody?

Den je priblizné roven 86 400 dob kyvu (vtefin), t. j.
43 200 period. Je-li skute¢nd chyba denniho chodu ¢, je sku-

te¢nd chyba jedné periody ﬁ a prislusnd stredni

m 0,028 4,68
4,32.10¢ 4,32.104— 107

5. V case t; byla uréena oprava chronometru o, se
strednf chybou m, a v case t, = ¢, 4 ¢t oprava o, se stfedni
chybou m,. Jaké je sttednf chyba dennfho chodu chrono-

metru a stfedni chyba opravy o, vypoctené interpolaci pro
cas T'?

— 14~ S
Denni chod th = 22 ; Ol, tedy mep = 't—V”ﬁ2 + my?.

chyba podle vzorce (11) je

Oprava o v case T je rovna o=o0,+ ch (T —1t,) =

= 0, + (T —1¢)=o, LT + o, T—tl. Odtud ply-

0p—04
t t
ne, 7e my = —tl—,l/(t2 — Ty mpe2+ (T —t)2m2

6. Ddny jsou tyto vysledky astronomického uréeni roz-
dfli zemépisnych délek a piisludné pravdépodobné
chyby: Cambridge zdp.- Greenwiche: 4 44™ 30,998 4 0,23s,
Omaha zédpadné Cambridge: 1t 39™ 15,048 4 0,068, Spring-
field vych. Omahy: 25m 08,698 4 0,118. Jaky je délkovy
rozdil Springfieldu zdp. Greenwiche a jeho stredni chyba ?*)

Hledany délkovy rozdil je 41 44™ 30,99¢ | 1b 39 15,045—
— Qh 25m (08,698 — 5h 58m 37 34s.

*) Wright-Hayford: The Adjustment of Observations,
New York, 1906, str. 68.
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Oznaéfme-li skuteéné chyby v uvedenych rozdflech zems-
pisnych délek po Tadé ¢, &,, &5, bude skuteé¢nd chyba rozdflu
Springfield zdp. Greenwiche rovna ¢ + g —¢; tedy
pifsludng stiedni chyba 1,483 .]/0,232 + 0,062 + 0,11% =
— 1,483 . }/0,0686 = - 0,39%, nebot, je-li » pravdépodobns
chyba a m stfedni chyba, je m=r. 1,483 [srovn. I, (29)].%)

7. Je-li sttedn{ chyba veli¢in a, b rovna m, jaks je sttedni
chyba veli¢iny ¢ = Va2 + b2?

Jsou-li &g, &, €, skuteéné chyby veli¢in a, b, ¢, jest podle

‘ oc oc .. ac a a
vzorce (13) e, = 5 + 75 & Pri tom %0 W_ <’
ac b b

= l/a,2_+_bz — re Tedy podle vzorce (13’)

8. Je-li stfedni chyba velic¢in a, b rovna m, jaks je stred-
b

ni chyba m, uhlu «, plynouctho z rovnice tga = —?

a
(Mg = m: Va2 + b2))

9. Uhly B a C rovinného trojihelnfka 4 BC byly zméfeny
se stejnou stiedni chybou m. Jaka je stfedni chyba m,
strany b, je-li strana ¢ ddna bez chyby?

c
sin C
chyby tdhla B a C, plyne ze vzorce (13), Ze skuteéna chyba ¢
strany b je priblizné rovna |

Ze sinové véty je b= sin B. Jsou-li ep, £¢ skutedné

4/ ¢ ob
kde 5B SinC-cosB_ b cotg B, 55-_—-bcotg0.

*) Zm;_éi: 1. kapitola, vzorec (29).
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Tedy podle vzorce (13') je my = bm l/coisg2 B 4 cotg? C.

10. Uhly A a C trojihelnika 4 BC byly zméfeny se stied-
nimi chybami m4 resp. m¢c. Jakd je stfredni chyba m,
strany a, je-li strana b dina bez chyby?

Jde-li o rovinny trojthelnik, je tihel B= 180°—A4 —C

bsin A
= . P 1 énd -
a strana a sm A+ 0) odle vzorce (13) je skuteénd chy
ba strany a r Vnae—a—d +6a kd ] k
Y (0] a— 24 €4 ,30 Eoy € &4, Ec )8OuU SKu-
teéné chyby tdhla 4 a C. Pii tom je
oa bcos A b sin A
0A  sin (A + C) sin?(d+ 0) cos (4 + () =
= a [cotg A —cotg (A + ()] a % = — a cotg (4 + O).

Tedy podle vzorce (13') je
mg=—a Vmﬁ(cotg A —cotg (A + C))® + me?cotg?(4 + C).

6. Vaha méfené veli¢iny. Vaha funkee nezivisle mére-
nych veliin. Pfesnost méfené veliCiny se posuzuje asto
také podle t.zv. vahy (vdha lat. pondus, odtud znacka p),
kter4 je definovana podminkou, Ze véhy dvou mérenych ve-
li¢in se maji k sobé jako prevridcené hodnoty ¢tvercu stied-
nich chyb obou veli¢in. Znaéime-li véhy p,, p, a pifsludné
sttedni chyby m,, m,, jest

Py i Pe=

Zvolime-li za jednotku vahy (p, = 1) vdhu mérené veli-
¢iny, jejiz sttedni chyba je m,, maZeme psati

- 1 i l . 1
p.l= m2 "’ moz’
il z
@ p="% (16) anaocpak m=o2 (16
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To jsou zékladni vzorce, které umotiiuji prejiti od stiedni
chyby méfené veliiny k prislusné vdze a naopak od viahy
ke sttedni chybé. Za jednotku vdhy se volf ¢asto vdha
jednou mérené veli¢iny. Ale nenf to tak vidy (srovnej na
pt. IT, odst. 5b). Pro¢ byla veli¢ina m,?: m? nazvand vahou,
uvidime pozdéji (srovn. II, odst. 3).

Oznaéime vahy métenych veli¢inl, l,, 15, ..., I, po radé p,,
Pas D3, - -+ Pn & Vahu veliCiny f = o l; 4+ ogly + Aglg + ...+
+ &nln pismenem P. Pak muZeme do vzorce (127), déle-
ného m,?, dosaditi vahy, ¢imZ dostaneme vzorec

1 P o o W %p? 17

P p1+P2+P3+ +Pn 1)
To je vzorec pro vahu linearni funkce nezdvisle mé-
renych velicin.

Jelif=f(l,L,1,...,1,), uZijeme vzorce (13'), z néhoz
plyne

1 1 {9f\z 1 [of\ of of
P—pl(all)+}l(5l—z)+pa( )+ T (35)(17)

vzorec pro vahu funkce nezdvisle métenych velicin I;.

v Predpoklady, za kterych byly odvozeny vzorce (17) a (17')
jsou tytéz, jako v odstavei 4, totiZz: Veliiny [,, l,, L, ... jsou
na sobé nezdvisle mérené. Funkce ¢etnosti pro chyby kazdé
z téchto veli¢in jsou sudé funkce.

7. Priklady na vypodet vahy. 1. Je-li vdha jednoho mé-
Feni rovna jednotce, jakd je vaha aritmetického priméru
z n méreni ?

1 1
Z iméry p : 1 = % plyne podle vzorce (14), Ze
m2
= ——— = . 1
P=_—mg=n (18)

Viha aritmetického priméru z nékolika méfeni je
rovna poétu méreni.
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2. Vdhy nezdvisle mérenych ahla BAC, CAD, DAE jsou
po fadé p, = 3, p, = 3, p; = 1. S jakou vahou je uréen thel
BAE )

Jsou-li skutecné chyby mérenych ahla po radeé e,, ¢,, &;, je
skuteénd chyba dhlu BAE rovna ¢, + &, + &. Oznaéime-li
véhu dhlu BAE pl’smenem P, bude podle vzorce (17)

1 = — —|— —|— — a se zvlastnimi ¢isly P = 3

P D D P 5’

3. Vahy nezivisle métenych veli¢in z,, z,, ..., x, jsou po
radé p,, p,, ..., Pu- S jakou vahou P je urcena veli¢ina X =
= 0, %) + Koy + ... + &pZy, jsou-li koeficienty «,...,x,
rovnny bud + 1 nebo —'1 7*¥)

n A2
Podle vzorce (17) jest % = igla-’—i, a protoZe
- 1
xl=oat=...=a,2=1, jest — Z _1;— (19)

4. Jsou-li vahy veliéin z, a z, rovny p, jaka je vdha
souctu nebo rozdilu obou veliéin?

Podle vzorce (19) je hledans véha v. obou pripadech 1p.

5. Jsou-li dhly «, f rovinného trojihelnika zmeéreny s va-
hami p,, pg, s jakou vahou vypoéteme thel y ze vzorce
vy = 180° —

(Py = Papp : (Pa + P5)-)

6. Je-li vdha veli¢iny x rovna p,, jaké je véha p; vehcmy
f=clog x?

1 1 m?
— —— 1l = _z .
mP " mg? Pyne pr= Pz e A pro

cM | . x2
= 5. DI —
toze my = my — - (viz odst. 5, pf. 3), bude p, = p, i

Z amery p;:p, =

*) Wright-Hayford, 1. c. str. 71.
**) Wright-Hayford, 1. e. str. 71.
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7. Jsou-li vdhy veliéin a, b rovny p, jak4 je vaha p, veli¢iny

— Va2 ¥ 22

(pe = p, Vviz odst. 5, pr. 7.)

8. Véhy veliin a, b jsou rovny p; jaké je vaha p, dhlu «,
plynouciho ze vzorce tgx = b:a?

(pa = p (a® + b2), viz odst. 5, pr. 8.)

9. Je-li'vdha veli¢iny x rovna p, jakd je vaha veli¢inyc: x?

(pzt: c?)

10. Je-li vaha dhlu &« rovna p, jaka je vaha veliéin sin &,
log sin &, log cotg «?

p p P
cos? o MZ2cotgta’ M2

8. Normalni zakon ¢etnosti. Mira presnosti. Funkee
chyb. Pravd&podobnd chyba. Extrémni moZna chyba.
Nejdulezitéjsi zdkon cetnosti, kterému se rika normdalni za-
kon detnosti, nebo také Gaussiv zdkon, jest

sin? x cos? a)

@(e) = ceWe.
Veli¢iny ¢ a h nejsou nezavislé, protoze z rovnice (5) plyne

o [ et ds — 1. (20)
Integrzil [e#¢ de pievedeme na Laplaceiv integral

fe—“’ dx = Vn Bude

1.2 1 w_ &)? 1 4= v
fe—’”df::-z-fe (")d(he):Tl/n. (21)

— a0

Ze vzorce (20) plyne pak ¢ == Tedy normalni zékon

Vn

cetnosti je -
] Ple) = o= e (22)
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Velic¢ina h, kterd se vyskytuje v normélnim zdkoné cetnosti
se jmenuje mira presnosti. Uvidime ihned, jaky je smysl
tohoto ndzvu. Vyhleddme si vztahy mezi k a primérnou nebo
stfedn{ chybou.

Podle vzorce (10) bude v pripadé normélniho zakona cet-

nosti
l £ | ——e_""' de = —= | e e 7% dg,
Vn
a protozZe
2 —h*e Je — 1 % (— f2e2) — 1
£e E=—37 | ¢ (—A%*) = 35
0 0
bude
1
S = 8= —=. (23
' hV:rz )
Podobné podle vzorce (10') jest
h 21 2,2
Sy = m? = sz_e—h de = 2 g—h%? Qg —

/= l—/;b

aG

1
= — —37= E d(e—""’ ),
h Vn f
0
a protoze

@ v o}

€ d(e——h*s’) = leg.e M| — [ e deg = — ]_/_E’
2h
0

0 0

bude
1
— ? — A = ——— . 24
S,=m o5 @ také m hv§ (24)
Cim mens{ je primérnd nebo stiedni chyba pro néjaké mé.
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reni, tim vétsi pfesnost mu prisuzujeme (viz odst. 3). Defi-
nujeme-li presnost méreni jako veli¢éinu nepfimo itmérnou
pramérné nebo stfedni chybé, bude pro dveé rady meéreni po-
mér presnosti roven

1 1 1 1

== hy : hy.

m, My 8 8 .

V pripadé normdlniho zdkona cetnosti je tedy pomér pi'es-
nosti roven &, : h, a veli¢ina A se proto jmenuje mérou pres-
nosti méreni.

Podobné lze odvoditi i dalsi vzorce pro 8;a S;.

| :
s == [ e M dg = — —— | 2d(e "), [viz (23)]
V” hVn
0
a protoze
s 1
f g2d(e M) = [32 e—"’f‘] —2 f ge e dg = —Z5
0 0 0
bude S, — 1 _ 25)
h3Vn
Konecéne
2h -
Y 84_6—",6: db‘ B 83 (1( — Rt )’
Vﬂ ok l/n
a protoze
el d(e-—h’e‘*) - e3 e—he | 3 €2 p—het de — 3 Vn
4h3
0 m S
bude ' 3 .
Sy = T (26)

23



Hodnoty 8;, S,, S;, S, maj{ tedy spliovati radu podminek.

2 1 4
8% = ‘;Szy §,? R S, St= 372 S, (27)
Pravdépodobnost, Ze chyba ¢ je mezi x a —x je v pifpadé
normélntho zdkona Cetnosti rovna

+z z hz

V’;:.z f o= f s = o f e—t'dt.

z

Zavedeme-li oznaéeni f e—t' dt = P(x), je pravdépodob-

Vn

nost, Ze chyba je mezi a —z, rovna @(hx). Funkce @(x) se
jmenuje funkce chyb.

Vypocet funkce ®(x).

t2 14 to

X - T + ..., plyne in-

a) ProtoZe et =1 — 3]

tegrac{
@ o x?

P(z) = Vn{ 1!3+2!5—3!7+'“}' (28)

Tato rada konverguje pro kazdé z. Ale pro velkd =z (na, pr.
pro x = 5) konverguje pravé strana s po¢atku pomalu.

z
b) PiSeme-li f e~ dt=e—*'y, bude, derivujeme-li podle z,
0
dy

——pl ] y 3 veye
' — g2 __d — Qxe—2 — .
e e 3 2xe—*'y, cili 3 1+ 22y

Funkce y za¢ind ¢lenem linedrnim v z. PiSeme
y = ox + fxd + yxd 4 627+ ...,

dosadime a srovndme koeficienty. Jest
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x -+ 3px? + Syxt + 7628+ ... =
= 1+ 2«2 + 2fx% 4 2y28 4 2028 4 ...,
tedy

x=1, f=3% y==2.% O6=3.%.% ..
¢ili
¢(x>——e—z'x{1'+ T 208 + o (2200 +

E

357

Tato rada konverguje rovnéz pro kazdé z, ale pro velikd z je
k vypoétu rovnéZz malo vhodni.

(2223 + | } (29)

c) Asymptoticky rozvoj pro funkci @D(x).

x

Integrél f e—t" dt lze psdti takto: ) )y

feru—feruslz - foru

Integram per partes plyne z posledniho integralu

- d ¢2 e 1 1 ooe—’2
—t* T = — | —— ] — -—— - dt =
f Ty [ % ] 2 f 2
7 7 x
a0
N 1 fetdi2 e 1 e—*
T2z 2 203 2z 22 3

1.3 cloe—‘z
T 22ft4 df =
A
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a1 1 1.3 1.3.5 e—‘
= e " (—272_22x3+ )sxs) —-'——f—— dt =

11 1.3 1.3.5\ 1.3.5.7 fet
= € (. _—_ —|'-— _— )+ 24 fts dt

20 223 2345 24,7
‘ atd. |
Tedy
| 1 1.3 1.3.5
D(x) =1 —I/—;- - {l — (2 -+ (2x2)2 2y + } (30)

Podrzime-li prvnich »n ¢leni v zdvorce, ddva ndm prislusny
vyraz hodnotu funkce @() s chybou, jejiZ absolutni hodnota
je mendi nez absolutni hodnota (n 4- 1) -ho ¢lenu ndsobeného

1 e—-’" '

‘Vﬂ o
Pripoj uJeme tabulku funkce (D(x) upravenou z podrob-
neéjsi tabulky Czuberovy**) tak, Ze je moZno povaiovat druhé
diference A? za stdlé a pocitati funkéni hodnoty na pf. podle
4 (x—a)  A*(@—h)(x—a)®
vzorce f(x)= f(a) + T —+ 7 5 , kde

a ]e tabulkové hodnota argumentu nejbliZze niZsi nez hodno-
ta x, b je tabulkovy interval, Af(a) = f(a + h) — f(a
Af@—h) = fa) —fla—h), A=4[4f@) + A/(a — h)],
A*f(@ — h) = Af(a) — Af(a — k).

Presnost meéfeni byvd charakterisovana také tak zv.
pravdépodobnouchybou. Nazyva se tak hodnota 2 = r,
pro kterou je pravdépodobnost @(hr) rovna . Toznaci: Je
stejné pravdépodobné, Ze uvaZovana chyba je co do absolutni
hodnoty men3f ne? r, jako Ze je vétsf neZ r.

*) K. Petr: Podet integrélni, Praha, 1915, str. 299.

**) E. Czuber: Theorie der Beobachtungsfehler, Leipzig,
1891, str. 411—413.

*)

~—
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Tabulka I. Funkce ®(x).

0 '2l!4

COPUNO N WD OV TIR TR WD

B el o i ol ol ot ol el el e QO O OO OCOQOOOOO

-

AP 4P

2@ 12| 0w |1 | o)

0,0000( 226 10,0226/ 225 |0,0451 225 |0,0676|225 |0,0901| 224
1125|223 |, 1348|221 | 1569(221 | 1790/219| 2009|218
2227|1216 | 2443214 26567/212| 2869|210 | 3079|207
3286|206 | 3491/203| 3694|199 | 3893|197 | 4090/194
4284191 | 4475|187 | 4662|185 4847 180 | 5027|178
5205|174 | 5379(170| 5549{167 | 5716|163 | 5879|160
6039|155| 6194152 6346/148 | 6494/144| 6638|140
6778/136 | 6914{133| 7047(128| 7175/126| 7300|121
7421117 | 75638/113| 7651110 | 7761|106 | 7867|102
7969 99 8068 95| 8163| 91| 8254 88| 8342 85
8427, 81| 8508 78| 8586 75| 8661 72| 8733 69
8802/ 66| 8868 63| 8931l 60| 8991 57| 9048 55
9103| 52| 9155| 50| 9205, 47 9252 45| 9297| 43
9340, 41| 9381 38| 9419 37, 9456/ 34| 9490| 33
9523| 31| 9564 29| 9583 28| 9611] 26| 9637 24
9661 23| 9684 22| 9706) 20 9726| 19| 9745/ 18
9763| 17| 9780; 16| 9796, 15| 9811} 14| 9825/ 13
9838 12| 9850| 11| 9861 11| 9872 10| 9882 9
98901 8| 9899/ 8| 9907 8| 9915/ 7| 9922| 6
9928, 6| 9934 5| 9939 65| 9944 5| 9949 4
9963 .

x | P(x) | AD x | D) | AD

2,00 10,9953 |+ 10 2,50 [0,99959| -+ 10
05 63 7 56 69| 7
10 70 6 60 76| 6
15 76 5 65 82 5
20 81 4 70 87 3
25 85 4 | 75 90| 2
30 89 2 - 80 92 2
35 91 2 . 85 94| 2
40 93 2 . 90 96| 1
45 95 1 ' 95 97 1
50 96 ;3,00 98
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Z tabulky funkce @(x) je patrno, Ze hodnota y, pro kterou
@D(y) = ¥, je mezi 0,46 a 0,48. Linearn{ interpolaci vypoéteme
pribliZznou hodnotu 0,477. Pak hledané y = 0,477 + y,
a pri tom

0,477+
1

D(0,477) + —g—_ f et dt = -5

o 477
Ze vzorce (28), uzueme -1i prvnich Sest élend rozvoje, plyne

@(0,477) = 0,5000572 a tedy z predchézejici rovnice

0,477+y
2 [t dr = —0,0000572 = = § . 047",
Vn Vn
0,477
Odtud y = — 0,000064, tedy hledané y = 0,476936 a

hr = 0,476936.

1
PiSeme-li sem A = —— (vzorec (24)), bude
mV2

r = m|/2.0,476936 = m . 0,67449
&
m = r.1,4826. (31)

Podobné plynou vztahy mezi r a s, uZijeme-li vzorce (23):

r = 8|/ . 0,476936 = s . 0,84535
a ' ’
s =r.1,1829. (32)
Priblizné se piSe
r—— {,”.m, m —=— 1,51‘. (33)

Pravdépodobnd chyba je tedy (v pripadé norméiniho za-
kona éetnosti) ptiblizné rovna dvéma tfetindm stfedni chyby.

Extrémni mo%Znd chyba. Podle definice funkce @ je
pravdépodobnost, Ze chyba je v mezich —km a -+ km,
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rovna @(hkm). ProtoZe pak mezi m a h je vztah mh = 1§

[srovn. (24)], je hledand pravdépodobnost rovna (D( )

Pro k = 2, 3 4 jest (D( rovno po radé 0,9545, 0,9973,

)
0,999937 tedy pravdépodobnost. Ze absolutnf hodnota chyby
je vétsi nez 2m, 3m,4m jest rovna

455 27 63
1—0,¢ == R
0,9545 Tor resp. 105’ resp 108

Bylo-li méieni opakovdano 10krat, je podet chyb, jejichz
absolutni hodnota je vét8i nez 2m, roven 0,455, tedy pribliz-
né %. Lze tedy pri 10 mérenich povaZovati priblizné 4 2m
.za extrémni mozZnou chybu.

Podobné, bylo-li méreni opakovano 200krat, je pocet
chyb, jejichz absolutni hodnota je vétsf nez 3m, roven 0,54,
lze tedy pri 200 mérenich povaZovat pribliZzné 4 3m za
extrémni moZnou chybu.

Konecéné pri 800 méfenich lze povaZovati priblizné +4m
za extrémni moznou chybu.
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I1.
VYROVNANI PRIMYCH MERENI.

1. Rizné druhy vyrovnani. V této kapitole si nejprve
uvédomime, o jaké dkoly v t. zv. vyrovndvacim poétu jde.

a) Vyraovndni ptimych méfeni. Pro danou veli¢inu x
jsme namérili hodnoty z,, ,, ..., z,. Podle jakého pravidla
vypocteme z mérenych hodnot vyslednou neboli vyrovnanou
hodnotu? Jak -muZeme posouditi piesnost provedenych mé-
fenf a presnost vyrovnané hodnoty ?

b) Vyrovnani zprostfedkujicich méteni. Mezi dél-
kou L kovového méritka M a teplotou ¢ predpokldadejme jed-
noduchy vztah

L= A+ Bt.

Méritko M bylo srovnano pfi raznych teplotach ¢,, ¢, ..., ¢,.
s jinym méritkem M’, jehoZ délku pri kazdé teploté umime
vypoéisti, a ze srovnéni byly uréeny délky L; srovndvaného
méritka M pro teplotu ¢;, 1 = 1, 2, ..., n, takZe m4 byti

L,;_—‘A—+—Bt,;, b=1,2,,’n (1)
Hledané velic¢iny jsou v tomto pripadé 4 a B. Nejsou méfeny
pfimo, provedend meéreni veliéin L; a ¢, 1 =1,2,...,n.
zprosttedkuji vypocéet hledanych veliéin.

Obycejné je pocet rovnic (1) vétsi nez pocet hledanych ve-
licin, tedy n > 2, a vliv métickych chyb pisobi, Ze nemohou
byti viechny rovnice (1) splnény presné.

Jaké hodnoty v tomto pripadé zvolime za vysledné (vy-
rovnané) hodnoty 4 a B, aby rovnice (1) byly splnény ale-
spon ,,co nejlépe‘? A jak zde posoudime presnost provede-
nych meéreni a presnost vyrovnanych hodnot?

c) Vyrovndni zdvislych méreni. V trojihelniku 4 BC
byly méreny vSechny tfi vnitini thly. Ozna¢ime namérené
hodnoty 4, B, C a jejich hledané opravy z, y, z. Jde-li o ro-
vinny trojihelnik, musi soucet jeho vnitinich Ghla bytiroven
180°, t.j. ;
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x+y+2+ A4+ B+ C—180°=0. (2)
Rovnice (2), které se fikd podminka nebo rovnice z4vislosti,
mus{ byti splnéna presné. Ale k uréeni tii neznamych nestaéi.

Jak uréime v takovém pripadé hledané vyrovnané veli-
¢iny? A muZeme i v takovych pripadech posouditi néjak
presnost méreni a presnost vyrovnanych hodnot?

V dalsich odstavcich uvidime, Ze vyrovnani piimych i zd-
vislych méfeni se d4 prevésti na vyrovndni méren{ zprostred-
kujicich (srovn. III, odst. 7b a IV, odst. 1). Proto zaéneme
8 ivahou o tomto vyrovnéni.

Méme uréiti nezndamé z, v, 2, ... tak, aby byly ,,co nejlépe‘
splnény rovnice

ax+by+cz+...=4L +=1,2,...,n, (3)

~) je-li potet nezndmych mensi nez podet rovnic » a

B) nedaji-li se v8echny rovnice presné splniti Zddnym sy-
stémem hodnot z, 7, 2, ... .

Podobné tdlohy jsou dosti ¢asté, a to nejen v mérickych
védé4ch (na pft. fysice, astronomii, geodesii). Hled4 se na pf-.
primka ¢i krivka, kterd se ,,co nejlépe primyka‘“ nebo ,,co
nejlépe nahrazuje‘‘ fadu danych bodii. Nebo hled4 se vztah
mezi proménnymi, ktery ,,co nejlépe vyhovuje‘‘ danym, sta-
tisticky zjisténym, hodnotdm atd.

Ve vSech takovych a podobnych pripadech musime vyjas-
niti, jaky je presny smysl matematicky neuréitych slovnich
obratt ,,co nejlépe splniti*, ,,co nejlépe nahraditi®, ,,co nej-
lépe se primykati‘, ,,co nejlépe vyhovovati‘‘.

At zvolime jakykoli systém hodnot z= X,y =Y,
z= 12, ... budou — podle podminky f) — aspon nékteré
z hodnot

GiX+b¢Y+CiZ+...—li= V,; (4)
razné od nuly.

Hodnotém V; se ffkd odchylky, rovnicim (4) odchyl-
kové rovnice.

Abychom mohli posouditi, ktery ze dvou libovolné zvole-
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nych systému hodnot z, y, 2, ... ,,1épe‘‘ spliiuje rovnice (3),
musfme srovnédvati v obou ptipadech zbyvajicf odchylky V;.
Ale jak je mime srovnivati? Uvedu t¥i rtizné zpisoby tako-
vého srovndvani.

x) Ve své Mécanique céleste*) navrhuje Laplace uréo-
vati vyrovnané hodnoty z, v, 2, ... tak, aby absolutn{ hod-
nota nejvétsi z odchylek V; byla mensf{ neZ pro jakékoli jiné
hodnoty nezndmych.

Objasnime tento predpis na jednoduchém piikladé pii-
mych méfeni. Nameétili jsme pro danou veli¢éinu z hodnoty
Z,, Ly, - .., Ty. Predpoklddejme, Ze jsme je usporddali podle
velikosti, takze

5l 5 X 2,

V tomto pripadé md byti

T — Xy = 07 (3,)
ale vlivem mérickych chyb bude
r—a;=V;, 1=12,...,n, (4')

kde odchylky V; jsou obycejné malé hodnoty.

Snadno se nahlédne, Ze vyrovnang hodnota z’, vyhledana
podle uvedeného predpisu Laplaceova, musi byti uprostred
mezi-nejvéts{ a nejmensi namérenou hodnotou, t. j. musi
' = 4 (z, + ). V tomto pripadé bude totiZ nejvétsi od-
chylka + 4 (;, + 2s) — 2, = % (¥ — 7,), a nejmensi od-
chylka + } (2, + 2p) — 2= § (¥, — 2,), absolutn{ hod-
noty obou téchto extrémnich odchylek jsou stejné. A je
ihned patrno, Ze pro jakékoli z’, rizné od } (x; 4 z,), by-
chom do8li k vétsfm odchylkdm nez je 4 (25 — ;).

Jak vidéti, nezdvisi v tomto pripadé vyslednd hodnota z’
vibec na tom, jaké hodnoty byly nameéreny mezi x, a .

Ten, kdo se postavi na stanovisko, Ze je nespravné, nedbati
takto — mnohdy — vétSiny naméienych hodnot, musf tento
ngvrh Laplaceiv pro pripad primych méfen{ odmitnouti.

*) Livre III, § 39.
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B) Uvedu jiny vyrovndvact predpis, ktery navrhl Edge-
worth:*¥) Uréiti vyrovnané hodnoty nezndmych z, 9, z, ...
tak, aby soucet absolutnich hodnot odchylek byl co nej-
mensi. M4 tedy byti minimem soucet

S:’._zllaii"f'biy‘{'ciz"F---—'li|- | (5)

UkéZeme na jednoduchém ptikladé, Ze tento ptedpis nevede
vidy k uréité vyrovnané hodnoté.

Mysleme si, Ze jsine veli¢inu x zmérili dvakrat, s vysledky
X, a ,, anecht x, < z,. Pakjest S = |z, — x| 4+ | 2, — 2 |.

Pro x < z, bude § = z, — # + 7, — z, minimum nastane
pro x = z; a je rovné x, — ;.

Pro x > z,bude S = z — 2, + * — z,, minimum nastane
pro = z, a je rovné r, — x,.

Pro ry, <x< 2, bude S=z—2x, 4+ 2y — = x, — 7,
at je x kdekoli mezi x, a z,.

Uréili jsme tedy minimum sou¢tu S, ale toto minimum ne-
nastdva pro jedinou hodnotu z, nybrz pro vechny hodnoty
v celém intervalu {z,, z,», t. j. i véetné mezi.

Jak vidéti, Edgeworthuv vyrovnavaci predpis nevede
v tomto pripadé k cili.

¥) Roku 1806 uvefejnil Legendre vyrovndvaci zpusob,
ktery nazval methodou nejmensich ¢tvercu. JiZ pred
nim uzival viak methody nejmensich étverci C. F. Gauss.

Podle této methody se urcuji vyrovnané hodnoty nezné-
mych z, y, z, ... tak, aby soucet ¢tvercu odchylek byl co
nejmensi. M4 tedy byti minimem soucet

n
S = 21 (@x + by + ez + ... — )% (6)

=
Aby soucet (6) nabyl pro urcity bod z’, %',2,... maxima
nebo minima, musi se jeho prvni parcidlnf{ derivace podle

*) Phil. Mag. 24 (1887), str. 222, a 25 (1888), str. 184. Cituji
podle Whittaker-Robinson: 1. c. str. 259.
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2, 4,2 ...vbodé 2, ¢/, 2, ... rovnati nule.*) Musi tedy byti

ox o’

1 (o8 , , ,

5 (—) == Zai (@i’ + by’ + ¢z’ + ...— )= 0 =za¢vi,‘
.o z ' 1

-‘1— o) - _ D bi(a’ + by’ + e’ + ... —1i) = 0=b;
2 \oy z=z",... 1

1 (8 S : -
7(—) = Zici (a:x" 4 by +c2’' + ... — 1) =0 :zcivi,

0z r=z',...
kde odchylka v; = a;2" + by’ + ¢z’ + ... — ;. Zde a v dal-
$fim rozumime odchylkami vidy odchylky vypoctené z hod-
not 2’, %', 2, ... plynoucich podle methody nejmensich étver-
cd. Na rozdil od odchylek V; vypoétenych z libovolnych
hodnot X, Y, Z, ... oznacujeme je ;.

Zavedeme-li oznaceni za,-z = [a?], Za;b; = [ab], Za;c,- =
i ' ) i
= [ac], Za,;l,- = [al] atd., kde vSude 2 probihd celd cisla

od 1 do n, miZeme misto predchazejicich rovnic napsat:

[a%] 2" 4+ [ab] ¥ + [ac]Z’ + ... = [al],
[ab] &' + [62] y + [bel2' + ... = [bl], (7)
[ac] " + [bely’ + [¢®] 2z + ... = [cl].

1l

Rovnicim (7) se fikda normalni rovnice. Z nich miZzeme
ur¢iti vyrovnané hodnoty 2, ¢, 2’, ... jednoznac¢né, pokud
determinant soustavy (7) neni roven 0. Prozatim to budeme
predpoklddati. Pozdéji ukdZeme, co znaci pro koeficienty
a;, b, c;, kdyZz je determinant soustavy (7) roven 0 (viz I1I,
odst. 4).

Legendre methodu nejmensich ¢tverci nedokazoval. Jen
upozornil na jeji vyhody.

*) J. Vojtéch: Zaklady matematiky ke studiu véd pt¥irod-
nich a technickych, I. dil, 5. vyd., Praha 1939, str. 408—410. —
K. Petr: Podet diferencidlni, Praha 1923, str. 390—394.
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Pro ptimé mérent veliéiny z, pri kterém jsme namérili hod-
noty z;, %, ..., Zn, Mmé byti minimem soucet Z(x — x;)>.

%
Podminka minima je D (z' — 2)=0 &ili na’ — D ;= 0,
) t

tedy =’ = [x] : ».

V piipadé piimych méfeni vede tedy methoda nejmensich
¢tvercu k vyrovnané hodnoté rovné aritmetickému priiméru
viech naméfenych hodnot. Legendre upozoriuje na tuto
prednost methody nejmensich ¢tverci. VSechny naméfené
hodnoty vstupuji do vysledku stejné, nejmensi a nejvétsi
naméfend hodnota neméd prednostni postaveni, jako méla
v ndvrhu Laplaceové.

Jak jsme vidéli, vede methoda nejmensich étvercu k jed-
nozna¢nym vysledkim, at jde o vyrovnan{ méren{ primych
nebo zprostiedkujicich. Uvidime pozdéji, Ze vede k jedno-
znaénym vysledkim i pfi vyrovnani zdvislych méfeni (srovn.
IV, odst. 1). Je to tedy methoda obecnéjsi nez piedpis Lapla-
ceiv nebo Edgeworthiiv. — Jeji uzit{ je také mnohem snad-
néjsf neZ uziti zpisobd pravé jmenovanych. Snadno se lze
o tom presvédciti, pokusfme-li se vyhledati vyrovnané hod-
noty vsemi tfemi zpisoby pro pipad, %e zbyvajici odchylky
maji tvar a;x — l; = v;.

2. Prvni (Gaussovo) zdiivodn&ni methody nejmensich
¢tvercii: Postulat aritmetického priméru vede k methodé
nejmensich &tvercii. Oznaéime skuteénou hodnotu mérené
veliéiny pfsmenem z, naméfené hodnoty z,, z,, ..., 4. Pak
skuteéné chyby jsou eg=xz— =z, 1 = 1,2, ..., n. Pravdé-
podobnost, Ze skutecnd chyba g; je v mezich od g¢ do ¢; + de,
necht jest @(g)de, 1 =1,2,...,n. Pravdépodobnost, Ze
skute¢né chyby pfi n mérenich, provedenych po sobé, jsou
\ mOZiCh <813 & + d8>s <£2’ ) + d£>’ teey <8m €n + d£>, jeSt’
podle pravidla o sou¢inu pravdépodobnost{ rovna

(de)}? p(e,) @le,) - . . @len) (8)
Kdy je pravdépodobnost (8) pti danych z,, ..., z, nejveétsi,
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t. j. pro které x nabude souéin @(g,) @(e,) - . . @(c,) maxima,
nebo jinak receno, ktery predpoklad o sprdvné hodnoté x

bude nejpravdépodobnéjsi? Je-li ¢(g) @(&,) ... @len)
n
maximalni, jest i lg ¢(e;) maximalni. Aby tento vyraz byl
- i=1
maximdlni, mus{ derivace podle x byti rovna 0, tedy
z dlg g(e)
gl de 0. (9)

To je podminka pro maximum pravdépodobnosti (8). TéZe-
me se, lze-li uréiti funkci ¢ tak, aby maximdélni hodnota
pravdépodobnosti (8) nastala vidy pro

xr=[x]:n? (10)
Jinak fe¢eno, aby nejpravdépodobnéjsi hodnotou byl vidy
aritmetickyY primér (postuldt aritmetického priu-
méru).
Rovnice (10) se da psati

> &= 0. (10')
i=1
Podminka (9) prechdzi v (10'), je-li na pr.
dig g(e) _ ke,

de,-
kde k je néjaka konstanta. Odtud

lg p(&;) = Yk e + ky, @(e) = ebr . etk
Protoze pak funkce @ klesa s rostoucim ¢, musi byti konstan-
ta k zdpornd. Pifeme & = — A% a e&i = ¢. Tedy

@(e;) = c . e N, (11)

Aby pfi naméfenych hodnotéch z;, x,, ..., z, byl nejprav-
dépodobnéjsi hodnotou aritmeticky prameér, musf se chyby
zatéZujici méreni nutné riditi norméalnim zdkonem céetnosti,
ovSem za predpokladu, Ze funkce éetnosti pro chybu g ma
tvar ¢(g;) (srovn. I, odst. 8).
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Pak je pravdépodobnost (8) rovna c*(de)® e—h* e+ e +...+op"),
Pozadavek, aby pravdépodobnost (8) byla maximéilni, je
v tom pripadé totoZny s pozadavkem, aby ¢,%2 + &%+ ... +
+ &q2, (t.].soucet ¢tvercti chyb) bvl minimalni; tento poza-
davek vede tedy k methodé nejmensich étvercu.

Jak patrno, nutnost vyrovndvati podle methody nejmen-
Sich ¢tvercu plyne z toho, Ze se chyby zatéZujici méreni ridi
normalnim zdkonem c¢etnosti. A ddle z postuldtu aritmetic-
kého primeéru plyne, Ze se chyby zatézujici vysledky meéreni
fidi normidlnim zdkonem éetnosti, arci za predpokladu, Ze
funkce ¢etnosti pro chybu & ma tvar @(e).

Tedy za uvedeného predpokladu postuldt aritmetického
pruméru vede k vyrovnédni podle methody nejmensich
¢tvercu (srovn. VII, odst. 2a).

3. Vyrovnani pfimych méreni o nestejné vaze. Ozna-
¢ime zase skute¢nou hodnotu meérené veli¢iny pismenem z,
hodnoty plynouci z méfeni z,, ,, ..., , a skuteéné chyby
e—x—xz,i_l2 , n.

Predpoklade]me ze se tyto chyby ridi norméalnim zako-
nem Cetnosti a Ze hodnoty z,, ..., z, nemaji stejnou véhu.
Nejsou tedy stejné presné. Oznacfme prislusné miry ptes-
nosti Ay, k,, ..., k, a vahy p,, D, ..., Pa-

Pravdépodobnost, Ze chyba ¢; je v intervalu {e;, ¢; + de;),
jest —= e—hi'e’ dg; a pravdépodobnost, Ze skutecné- chyby

vn

£y, €y - En jsou po radé v intervalech (g, ¢ + dg,),
<82’ €2 + d82> <3n, €n + d€n> jeSt

k- h”de de, ... de, e (hie’thlal+ thnlen), (12)
e
Ktery predpoklad o spravné hodnoté x bude nejpravdépo-
dobnéjsi? Ten, pro néjz je pravdépodobnost (12) nejvétai,
tedy pro néjz je souet h %%+ hy%,2 + ...+ hplcs® nej-
mensf.
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Mezi mérou presnosti k;, sttedni chybou m, pro jednotku
vihy a vahou p; jsou vztahy p; = my?:mg?, a pfi nor-
mélnim rozdéleni c¢etnosti mg = 1: 2h;2, tedy

e L1/

me ¥ 2

[srovn. I, (16) a I, (24)]. Predchazejici vyraz pro pravdeé-
podobnost bude tedy roven

1 | 2 3

de, de, ... de, = Vp_‘fz 2 P, T gy (PP P00, )
(J2m)m myn
Ktery predpoklad o vyrovnané hodnoté &’ bude nejpravdé-
podobnéjsi? Ten, pro néjz je pravdépodobnost (12) nejvétsi,
tedy pro néjz je soucet
S = pi&® + Pogs® + ... + Pa’en® =
=P (2 — 1) + Do (2 — 2,)° + ... + Pp (2 — 24)? (13)
nejmensi. Aby byl nejmensi, musi derivace podle = byti
rovna 0, t. j.
P2 —2) + P (2" — ) + ... + P (2 — 28) = 0,

cili

. (12)

)Pt Pyt -+ Pan
Pr+ Pat -+ Pn

Vzorec (14), davajici t. zv. obecny aritmeticky pru-
mér, je tyz jako vzorec pro vypoéet téZisté hmotnych bodu
o vahéch p,, p,, ..., py. Tato obdoba vedla k tomu, Ze veli¢iny
p = my? : m? byly nazvédny vahami (viz I, odst. 1, 5). ~

Véhy p,, ..., Py, ptisluiné hodnotdm z,, ..., z,, klademe
obyc¢ejné — podle vzorce I, (18) —rovny podétu jednotli-
vych méreni, z nichZz jako aritmeticky primeér byly vy-
pocteny. To ovSem za predpokladu, Ze o jednotlivych meére-
nich miZeme divodné souditi, Ze nemaji riznou vdhu.

Jestlize nestejnd presnost jednotlivych méreni je charak-
terisovana ne vahami, ale prisluSnymi stfednimi chybami

Xz

(14)
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my, My, ..., My [Vypoctenymi podle vzorce 11, (16')], uZijeme
k vypoétu vyrovnané hodnoty vzorce, ktery plyne ze (14),

2
kdy? tam dosadime p; — :?2. Kraitime-li v &itateli a jme-
i
novateli my?, vyjde
x x x
R .
’ 1 2 My ’
= 1 T (147)
m,? T my? s 7—”;5
Jde-li o dvé méreni, pfejde vzorec (14’) ve
\ r m22x1+ mlzxz ”
& == e (14")

Ze nastane pro = ' minimum soudtu 8, je patrno z toho,
%e druhd derivace vyrazu (13) podle x jest rovna [p], tedy
kladné.*)

Ke stejnému vysledku piijdeme také touto dvahou:

Mé-li méFend velidina z véhu p, pak m4§ veliéina kx vahu

p=F Nebot je-li m stredni chyba veliéiny z, je stredni

2
chyba veli¢iny kx rovna km a I
1 p

Zvolime-li k = Vp, bude P = 1. To znamend: Misto aby-
chom uvaZovali méfenf riznych vah, staé¢i ndsobiti kazdou
odchylkovou rovnici odmocninou pisluiné véhy a pfisou-
diti viem méfenim (a tedy i novym odchylkovym rovnicim)
stejné véhy, rovné 1. V uvaZovaném piipadé pifmych mé-
reni o nestejné vdze jsou odchylkové rovnice v; = x — z;,
véhy p;, 1 = 1,2, ..., n. Misto nich uvazujeme odchylkové

rovnice v'; = (x — x.)l/p, o stejné vaze, rovné 1.

———— — —

*) J. Vojt&ch, 1. c. str. 268—270. — K. Petr, L. c. str. 272
aZ 274.
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Podle predchézejiciho odstavce md byti minimem soucet
¢tvercu odchylek
V2 v+ o+ V= P o+ Pt + -+ Pava®
A z toho plyne zase vzorec (14).
4. Stfedni chyba pro jednotku vahy. St¥edni chyba vy-

sledku. Oznat¢ime stiedni chybu pro jednotku vdhy
pismenem m,. ProtoZe vdha veliiny x; je p;, bude stfedni

hodnota chyby &;rovna M kdei=1,2,...,n (viz I, (16")).
Pi
Ze vzorcd v; = x' — x;, £ = * — x;, plyne, ndasobfme-li p;
a seCteme:

[pv] = [p] &' — [pz], (pe] = [p] x — [p=]

a protoze [pv]=0 [viz (14)], jest [[%)]] =zx—a.
Odtud

1 v,—x—x-}—a:—x-—s,-—[[%]]-:
= [—5]{_1)181—])252_“' + ([p]—pi)si_“'—"pnen}- (15)

Podle vzorce I, (12”) vypoéteme odtud ¢tverec stiedni hod-
noty v;?, ktery oznaéime ;2. Bude

2 2 2
VP = ‘[;}]'5{1712729‘ + ngﬁo__i__ oo ([2i] — Pi)zm_o. +
ol )=
+ .o+ Da? E [P]2 (lp] — 2¢) + ([p] — pi)* Py
_ Mo [Pl —ps
[Pl o
a soucet

,2=m_02 n—1)=myg?(n—1
[p?*] [p][P]( ) = mg® ( );
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"]
n—1

gy 2
¢ili my2 =

Spravncu hodnotu souétu [p9?] nemizZeme vypocisti, protoze
nezndme stiedni hodnoty 92. Jsme proto nuceni dosaditi za
[p9?] ptiblizZnou hodnotu, t. j. soucet ¢tverci odchylek, ndso-
benych prislusnymi vahami [pv?], jak plyne z uvaZované
rady méreni. Bude tedy ptiblizné

[pv?]
. 2 - : 4
P (15)
ProtoZe skuteépd chyba vyrovnané hodnoty =’ = % jest

[[p;]] bude ctverec jeji stredm hodnoty [viz I, (12")]

L{ 2 Mo 2 Mo’ 2 Mo®| _ my*
[p]? Py ﬁl +}’)2 D2 + or T P P-uj [p]
Tedy stfedni chyba vyrovnané hodnoty =« [[Z; ]] jest
priblizné
+ |/ P (16)
V(n—l) (7]

Podobné stfedni chybu vyrovnané hodnoty (14') muZeme
pséti ’

mny my _
V[P] my® | My My’ N
m12+m22—}—... En_z
B 1
1/ 1 1 (16')
m12+ m22+ "+E,?

A stredni chyba ve vzoreci (14”) bude rovna

41



1 _ Mmym,
1 1 Jm?+m® (167)
mi t m

my?

Jde-li o primé, méfen{ stejnych vah (p; = 1), bude stiedni
chyba pro jednotku véahy rovna

my =+ |/ L1, (15%)

n —1

a stfedni chyba vyrovnané hodnoty, t. j. aritmetického
sttedu x’ = [x] :n jest

4

+ |/ | 16
. l/(n_ - 16)

Abychom mohli poéitati s malym1 ¢isly, piseme z; = d 4 %,
kde d je vhodné zvolens ptiblizn4d hodnota. Pak jest

VAl _pd+a_ . E] 7
Twm- wm  tm W
Déle bude i
N I
V=2 —x5= d + — 7] X4 7] i (18)
Pak
2 PR o [P2]
e T R
tedy
o _ 1 AR 2[pd] I
[2v*] = [p] P 7] [p2] + [pa?] = [p2?] ] (19)
Pro ptimé méfeni stejnych vah (p; = 1), bude
¥ =d+ [£]:n, (17")
v; =[] :n— &, . (18)
[v*] = [2*] — [£]? : . (19)



|

5. Dvojice méfeni. a) Délky stran v polygondlni
siti se méri obycejné dvakrit, jednou pfi postupu vpied (p)
a po druhé pii postupu zpét (z). Predpokldddme, Ze jsou
priblizné stejné, a ozna¢ime délku nameéfenou pro i-tou
sttanu pismenem I, resp. ;.

Takovym a podobnym mérenim (na pf. vyskovych rozdila
mezi dvéma sousednimi vySkovymi znackami) se iikd dvo-
jice méreni.

Oznaéime-li l;; — l;, = d; (rozdil, diferenci méieni zpét
a meéreni vpred), budou vyrovnané hodnoty ;' = 4 (! + &)
a odchylky :

Uy = 12‘ (liz - ltp) — Edu Vip = 9 (lu, - lzz == é‘dz
Podle vzorce (15°) bude stfedni chyba jednoho méfeni

d:

+ =

/2

a podle vzorce (16’) stfedni chyba aritmetického priméru
obou méfeni

\ j: 'é'di? (20')

\ :
Uvazujme nynf o rozdflech ly; — l;p = dsprot=1,2,...,n

(20)

Oznacime-li skuteéné chyby veli¢in I, a l;p pismeny: ¢,
a ggp, musi byti l;; + €, = lip + €ip, CGili I — l,,, + (64 —

— &)= 0. Rozdily &; —¢ejp=—4d;, 1=1,2,...,n jsou
tedy skuteéné chyby rozdili méreni zpét a Vpred

ProtoZe jsme predpokléddali, Ze délky stran byly priblizné
stejné, muZeme viem namérenym délkdm prisuzovati stejné
vidhy. Tedy i rozdily d; maji stejné vahy, jez volime za 1.
Pak stredni hodnota téchto rozdfla, praveé protoZe je muzZeme
povaZovati za skute¢né chyby o vdze rovné 1, je podle
vzoree I, (10’) rovna

+ @ (21)
Protoze se vahy maji k sobé jako prevracené hodnoty étvercu
stiednich chyb, budou podle vzorci (20) a (20’) véhy jednot-
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livych méreni rovny 2 a vahy aritmetickych stireda rovny 4,
takZe ptrislusné stredni chyby pro fednotlivda méreni jsou

+ Via?1 : 2n (21)
a pro aritmetické stredy .
+ 3 Vi@ : ». (21”)

b) Lisi-li se znaéné délky stran (trati), musime predpokld-
dati, Ze namérené rozdily maji nestejné viahy. Oznac¢ime
vahu rozdilu d; pismenem p;. Pfi nivelacich na pr. se klade
vaha rozdilu d; rovna 1 : 8;, kde S; je délka trati v km. To
znadi, Ze vdhu rovnou jednotce prisuzujeme rozdilu d pro
trat rovnou 1 km.

Abychom vypocetli v tomto pripadé stredni hodnotu d’
rozdilu pro vdhu rovnou 1, musime nejprve nameérené roz-
dily d ptevésti na rozdily o vaze rovné 1. To se stane tim, Ze je

ntasobime VZ_J, (viz II, odst. 3). Pak uZijeme zase vzorce
I, (10'), takze

d = + V[pdz] ‘N . (22)
Stejné jako v pripadé a) bude stfedni chyba pro jedno meétreni
a vahu rovnou 1 nebo stifedni kilometrovd chyba pro
jedno mérenf

+ Vipd?) : 2n. (22')
A stiedni kilometrovéd chyba pro stied ze dvou mé-
Fenf jest )

+ 3 Vipd®) i n . (22")

6. Piiklady na vyrovnani p¥imyeh mérend. 1. Pro
dobu kyvu kyvadla ¢. 5 bylo naméieno

0,50862228 sec,
245, (188; 217; 305; 278; 247; 328; 211, 159; 316; 307).

Jest vypocisti vyslednou hodnotu, dédle stiredni chybu pro
jednotku vahy (t. j. stfedni chybu jednoho méreni) a stredni
chybu vysledku.
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Polozime d = 0,50862. Pak v jednotkich 10—8 bude
%, — 228, (245; 188;217;305; 278; 247: 328: 211; 159; 316; 307);

odtud [£] = 3029 a ;[£] = 252, tedy vyslednd hodnota

0,50862252 sec. Pak zase v jednotkach 10—8 bude

v; =[x]:n—x=+24,(+7, +64, +35, —53, —26, 45,
—176, +41, +93, —64, —55),

v;¢ = 576, (49;4096; 1225; 2809; 676; 25; 5776; 1681 ; 8649;
4096; 3025). Odtud dostaneme [v%2] = 32683 . 10—18.

Podle vzorce (15”) bude
— 4 /2971 . 10-8 = 4 5,45 . 10— sec.
A stiedni chyba vysledku podle vzorce (16°) jest

- Vafggs 18— + |/327,6. 108 — + 1,6.10~7 sec.

Uzijeme-li vzorce (19°), bude [#2]= 797251 . 1018,
(]2 = 30292 . 10—18 = 9174841 . 10—18, tedy
5[£]2 = 764570 . 10—16 a konecné [v?] = 32681 . 10—18.

Rozdil mezi hodnotou [#2] vypocétenou podle vzorce (19')
a hodnotou vypoétenou primo z odchylek v;, je zavinén za-
okrouhlovdnim p¥i vypoétu v; resp. z’. Hodnota 32681 . 10—1¢
je presnéjsi.

Oznaéime-li chybu ve vysledku, pochdzejici ze zaokrouhle-
ni, pismenem g, budou sprdvné hodnoty odchylek rovny
vi + 2, sprdvné hodnoty jejich c¢tverca v;2 + 2£v + &2
a sprévnd hodnota souctu étvercu odchylek

[v%] + 2€ [v] 4 ne?.
V uvaZovaném pripadé je &=0,42.10—8 [v]=
—5.10—8, tedy 2e[v]= —4,20.10—18. A protoze
.e2=12.0,1764.10—18—-212. 10—16, je 2¢ [v]+ ne? =
—2,08.10—18, Proto byl soudet étverci odchylek, vy-
pocteny pfimo z odchylek v;, o 2 jednotky Ffddu 10—16 vétsi
ne% spravnéjdi hodnota vypoétend podle vzorce (19’). Oby-
¢ejné se omezujeme na piimy vypocet [v2] z odchylek ;.

I
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Aby byl pfi vypoétu prehled, je dobie provadéti vypocet
v tabulce, kterd pocitajicfho sama nuti k porddku.
Predesly ptfklad sestaveny v tabulce bude:

Tabulka II.
&g vi=[ﬁ]'—xi v
n
228 +24 576 "
245 + 7 49
188 + 64 4096
217 + 36 1225
306 —b63 2809
278 —26 ' 676
247 + 5 26
328 —176 6776
211 +41 1681
159 +93 8649
316 —64 4096
307 —b6 3025
[£) = 3029 a1
2[5] = 252 [v] 5 |[v?] = 32683

my = + |/32683:11 = + 5,45 . 10~ sec;
my:jn = 3 1,6 . 107 sec.
Vysledek 0,50862252 + 1,6 . 107 sec.

2. Zdkladna na ¢eské technice v Brné byla méfena po
sobé étyfmi riznymi invarovymi meéritky (drity a pdsmy).
Vysledky méreni*) byly

12004 cm + 0,755 cm, (0,684; 0,659; 0,703).
Vypodisti vyslednou hodnotu, stfedni chybu pro jednotku

*) A, Semerad: Podrobnéd délkova méfeni draty a pasmy
invarovymi, Techn. Obzor 1916, tab. V.
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vahy (t. J. pro méfeni jednim méfitkem) a stiedni chybu
vysledku.
(Vysledek 12004,100 cm 4- 0,020 cm, my, = 4 0,041 cm.)

3. Na stanici Trenk byly naméfeny pro ihel Mednicken-
Fuchsberg tyto hodnoty*)

83° 30’ 36,25"
7,50, (6,00; 4,77; 3,75; 0,25; 3,70; 6,14; 4,04;
6,96; 3,16; 4,57; 4,75; 6,50; 5,00; 4,75;
4,25; 5,25).

Vypocmtl vyslednou hodnotu, stredni chybu pro jednotku
vdhy (. j. pro jedno méreni) a stredni chybu vysledku.

(Vysledek 83° 30’ 34,87" + 0,39", my; = + 1,66".)

4. Pri nivelaci byly zji§tény tyto rozdily dvojic méfrend
vmm: d = —0,6; +0,4; —0,6; —1,2; 4 2,4.**) Prisludné
délky trati v km byly 0,72; 0,42; 0,47; 0,48; 0,51. Jakd plyne
odtud stredni kilometrova chyba pro jedno méfeni a pro
stted z obou méreni? .

K vypoctu uZijeme vzorce (22') a (22”), pri ¢emz vahy p
jsou rovny prevracenym hodnotdm délek trati.

Bude [pd?] = 15,94 a odtud stredni kilometrovd chyba
pro jedno méfeni - V-,lo[pdz] = 4 1,26 mm a stiedni kilo-
metrovd chyba pro stfed obou méreni - } V%[pdz] =
= 4 0,89 mm.

5. Pri uréovani ¢asu byly odvozeny tyto opravy chrono-
metru z pozorovéni 21 hvézd:

—8,788
76, (85; 78; 51; 64; 68; 63; 58; 80; 75; 78, 96; 64;
65; 83; 70; 64; 79; 90; 93).

*) Jordan: Handbuch der Vermessungskunde, I, Stuttgart,
1904 (5. Aufl.), str. 22.

**) Jordan, 1. c. str. 37.
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Za predpokladu, %e véha viech méfeni byla stejnd, vypoctéte
vyrovnanou hodnotu opravy chronometru, jeji stredni
chybu a stredni chybu jédnoho méteni (stfedni chybu pro
jednotku véhy)!¥*)

(Vysledek — 8,745 -+ 0,085, m, = -+ 0,1175.)

6. Gravitaéni konstanta &k byla uréena nékolikrat riznymi
badateli:

Cornu a Baille (1873)......... urcili k = 6668 . 10—
Poynting (1894) ............. 6698 . 10—11
Boys (1894)................. 6657 . 10—11
Richarz a Krigar-Menzel (1896) 6685 . 10—
Braun (1897) ............... 6658 . 10—11

Predpoklddéme, e vahy téchto jednotlivych méfeni jsou
stejné. Vypocététe vyslednou hodnotu pro gravitaéni kon-
stantu a jeji stredni chybu! '

(Vysledek: 6673,2.10—1 - 8,0 . 10—1.)

7. Pro uréitou délku byly naméreny tyto hodnoty:

5000,7 mm pri 6 mérenich, 5007,9 mm pri 15 mérenich,

4997,1 mm pii 6 méfenich, 5002,1 mm pii 8 méfenich,

5001,9 mm pri 15 méfenich, 5001,1 mm pii 8 mérenich.
Vypoététe vyrovnanou hodnotu a jeji stirednf chybu i stredni
chybu pro jednotku vahy za predpokladu, Ze vahy jsou rovny
poctu méfeni!

Zvolime d = 4997,1 a poditdme v pripojené tabulce po-
stupné ve sloupcich: Z; p;, [p); pds, [pz], [p2]:[P];
v; = [pa] : [p] — &i; v; pivid, [po?]; mg, my: |/ ().

*) Wright-Hayford, 1. c. str. 37 a 43.
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Tabulka ITI.

7 Ds Di%¢ Vg v,2 pivi®

+ 3,6 6 21,6 +2,06| 4,2025 26,2150
+ 0,0 6 0,0 +5,66| 31,9225 -191,56350
+ 4,8 15 72,0 + 0,85 0,72256 10,8375
+10,8 15 162,0 —5,15| 26,6225 397,8375
4+ 5,0 8 40,0 +0,65| 0,4225 3,3800
+ 4,0 8 32,0 41,66 2,7225 21,7800
[p] = 58 | [p£]=327,6 [pv?] =650,5850
[p2] : [p] = 5,65

my = + }/650,56850:5 = - }/130,1170 = + 11,4 mm,

my: J[p] = + }/130,1170:58 = -+ 1,50 mm.
Tedy vysledek z' = 5002,75 mm - 1,50 mm.

8. Na Ceské technice v Brné byla zméfrena dvakrit tiZe.
V roce 1926 bylo naméieno 980,9618 dyn, pii ¢emz strednf
chyba byla -+ 1,39.10—3dyn. V r. 1928 bylo naméfeno
980,9606 dyn se 'stiedni chybou - 1,26 . 10—3 dyn. Urcete
vyslednou hodnotu z obou méfeni (s ohledem na jejich vdhy)
a stfednf chybu vysledku.

Podle vzorce (14") bude z' = d +

Mgz, + My
my® + my?
Zvolime d = 980,96 dyn. Pak &, = 0,0018, %, = 0,0006;
m,2 = 1,9321, m,? = 1,5876. Tedy
0,004017
3,52
Stredni chyba vysledku je podle vzorce (16”) rovna
mm, 1,39 .1,26

Vi - mg Va2

x' = 980,96 + = 980,96 4 0,0011 = 980,9611 dyn.

.10—% = L 0,93 . 10—3 dyn.
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Tedy vysledek
980,9611 - 0,03 . 10— dyn.

9. Vysledky méreni rozdflu zemépisné délky mezi Washing-
tonem a Key West a prislusné pravdépodobné chyby byly

1873, prosinec 24  19m 1425  -1-0,044°

26 1,37 37

30 1,38 36

31 1,45 36

1874, leden 9 1,60 46
10 1,55 45

11 1,57 47

Urcete vyslednou hodnotu s ohledem na vahy a prislusnou
sttedni chybu.¥*).

Ve vzorci (14') se vyskytuji v Citateli i jmenovateli ¢isla
7%—12, muzZeme tedy misto nich kldsti imérné hodnoty %2,
nebot m; = 134831',-, [I, (31)].

Pro r; = 3,6 . 10—2 (3,7 . 10—2; 44 .10—2; 4,5 . 10—2;

4,6 .10—2; 4,7.10—2)

bude ’1_2: 772, (730; 517; 494; 473; 453).

Ts

Klademe-li d = 19m 1,38, bude ;= + 0,128, (4 0,07%
+ 0,08%; + 0,15%; + 0,30%; + 0,258; + 0,27*).

; 41
Tedy podle vzorce (14') je [:;] : [%:I = %Tl— = -+ 0,161,

Gili 2’ = 197 1,461s.

A podle vzorce (16) bude stredni chyba hodnoty ' rovna

*) Wright-Hayford, 1. c. str. 72.
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1
L 1483 | 1488 oo

V[ ;1? ] V4211

Tedy vysledek 19™ 1,461% - 0,228s. .
10. Rychlost svétla byla uréena Fizeauem a jinymi takto:

298 000 km + 1500 km; 300 100 km + 1500 km;
298 500 km 4+ 1500 km; 299 930 km 4+ 150 km.
299 990 km 4 300 km;

Jsou-li ¢isla uvedend na druhém misté pravdépodobné chy-
by, uréete vyrovnanou hodnotu a jeji stfedni chybu.¥)

Zvolime d = 299 900 km a za jednotku vahy zvolime
vdhu méteni s nejvétsi pravdépodobnou chybou (-~ 1500km).

M2 My? 3
Podle vzorce p = i 1483% 2 budou vahy prislusné

pravdépodobnym chybdém -+ 300 km a 4 150 km rovny

» . mey*
25 a 100. Pri tom 1 = 14832 1500

my = -+ 1500 km . 1,483.

Bude tedy z; = —1900, —1400, <90, 4200, 430
a prislusna p; =1, 1, 25, 1, 100, [p] = 128.

Tedy pz, = —1900, —1400, 42250, 4200, 4 3000,

¢ili

[p] = + 2150.
Odtud [ﬁtlz + 229 = 4 17, ¢ili 2’ = 299917 km.
[»] 128
Sttedni chyba podle vzorce m, Vf;]- bude
1500 km

——.1,483 = 4 197 km.
128

Tedy vysledek 299917 km -+ 197 km.

*) Wright-Hayford, 1. c. str. 57—58.
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I1I.
YYROVNANI ZPROSTREDKUJICICH MERENI.

k. Vyrovnani zprostfedkujicich méfeni. (Omezime se
na tri nezndmé z, y, z.) Hledané veli¢iny =z, y, z maji byti
uréeny z rovnic

a,-:c-{- b;y—l-ciz:l,-, 3 = 1,2,...,72, (l)

kde /; jsou vysledky méreni; o skutecnych chybéch téchto
rovnic predpokldddme, Z%e se fidi normélnim zdkonem det-
nosti a Ze nemaji stejnou vdhu. Pak pravdépodobnost, Ze
v rovnici ¢-té nastane chyba v mezich (g, & + dg;), jest

. hg .
rovna —— e"''de;, a pravdépodobnost, %e nastanou

/4
chyby, které budou po fadé v intervalech (e, ¢, + dg)),
{es, £g + dep), ..., {&n, €n + deyn), bude zase rovma souéinu
pravdépodobnosti [1I, (12)] resp. vyrazu [I1, (12)].

Pti tom jest aqx + by + ¢z = I; + &, ¢ili
& = @ + by + ez — ;.
Ktery piredpoklad o vyrovnanych hodnotdch z, y, 2, ... bude
nejpravdépodobnéjsi? Ten, pro néjZ je pravdépodobnost
[1I, (12')] nejvétsf, tedy pro néjz je soucet
S = P& + Poge® + ... + Pntn® (2)
nejmensi.
Aby nastalo minimum sou¢tu (2), musi byti prvni parci-
alnf{ derivace podle z, y, z rovny nule, t. j. musi byti
128 &
T _.';pwi . @

pro x = z', y= y', 2= 2’ rovno 0, tedy

n »
Z_'gom (@' + by’ + o2’ — 1) = [pav] =



= [paa) 2" 4 [pab] ¥’ + [pac] 2’ — [pal] = 0

a podobné 188 »
pod _é_é_z;.=2p,-e,-.b,-

i=1

pro x = z’, y = y', z = 2’ mus{ byti rovno 0, tedy

[pbv] = [pab] 2" + [pbd] ¥’ + [pbc] 2" — [pbl] = 0,
a stejné (3)

[pev] = [pac] 2" + [pbe] y' + [pec] 2" — [pel] = 0.
Pri tom
v = aix" + by’ + ez’ — ;. (1)

Véhu p¢ prisludnou ¢-té odchylkové rovnice odha-
dujeme podle toho, jaké jsou chyby méfenych wveli¢in, na
nichZ ¢-td rovnice zavisi, a jaky je jejich vliv na &. Jestlize
jedind mérend veliéina v :-té rovnici byla veli¢ina /;, bude p;
jejf vaha. Nékdy se vBak stdvd, Ze vdhu rovnice uréuje jind
méfrend veliéina neZ I;, jestliZe jejf vliv na g prevaZuje nad
vlivem chyby v I (viz pf. 2 v odst. 9).

Chceme-li ukdzati, zda nastane pro xt = 2', y=y', 2 =2’
maximum nebo minimum, uvaZujeme, jak se méni soucet S
v okolf boduw'z=2', y=¢', z2=2".

Prox=2a2"+§& y=9v +n, 2=2"+ { bude

S =2 pifa; (& + &)+ b (¥ + )+ e (@ + &) — kP =

=1

= D pi{a’ + by’ + &’ — b+ aif + by + ei}? =
=1 = [paa] 2’2 + 2 [pab] ="y’ + [pbb] y'? +

+ 2 [pac] 2’2" + 2 [pbc] y'z' + [pec] 2" —
— 2 [pal] ' — 2 [pbl] y' — 2 [pcl] 2’ + [pll] +
+ 2& {[paa] ' + [padb] y' + [pac] 2’ — [pal]} +
+ 27 {[pab] =’ + [pbd] y' + [pbe] 2’ — [pbl]} +
+ 2{ {[pac] ' + [pbc] ¥’ + [pcc] 2" — [pel]} +
+ [paa] &2 4 2 [pab] &y + [pbb] n® + 2 [pac] & +
+ 2 [pbe] 5 + [pec] L2
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Podle rovnic (3) jsou koeficienty u 2£, 25 a 2{ rovny 0, takze

S = [paa] x'? + 2 [pab] z'y’ 4 [pbb] y'® 4 2 [pac] «'2’ +
+ 2 [pbc] y’:’ + [pec]z'2 —2[pal] 2’ —2[pbl] y' — 2[pcl] ="+

+ [Pl) + 2.pi(ai* + 2abidn + bé® + 2aicikl + o’ +

+ ¢*C?).
Prvni ¢4st vyrazu na pravé strané je hodnota souétu S pro

x=12', y=1y', z=2'. Druhd &é4st je rovna Zp, (@;& +

+ by + 0,5)2, je tedy vidy kladnd. Z toho ]e patmo, ze
sou¢et S je v bodé z = 2/, y = ', z= 2’ mensi neZ pro
viechny body v okoli; je tedy v bodé 2, ¥, 2’ minimum.

2. Re¥eni normilnich rovnic postupem Gaussovym.
Soudtové kontroly. Necht jde o FeSeni tif normélnfch
rovnic o tfech nezndmych z’, ¥, z’. Rovnice jsou

[paa] =’ + [pab) y’ + [pac] 2’ = [pal},
[pab] =’ + [pbb] y’ + [pbe] 2’ = [pbl], (3)
[pac] =’ + [pbe] y" + [pec] 2" = [pel].
Jak patrno, maji soumeérny tvar vzhledem k ihlopriécee,
jdouci ¢leny [paa], [pbb], [pcc].

Refieni soustavy (3) se Gasto provadi t. zv. postupem
Gaussovym. Ndsobime prvni z rovnic (3) po radé éisly
{[pab] : [paal}, {[pac] : [paa]} a odeéteme od druhé resp. treti
z rovnic (3). Tak vylouéime nezndmou 2z’ a dojdeme k sou-
stavé redukovanych rovnic:

{01 — (pat) . P21 4 {ipbe) — (paclEad) = =

[paa) [paa]
— {twtt) — oy 222,
4
(tp0e1 — oty . B o+ {pec) — [pae) oo} = i
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= {[pel) — [pal) {;’Zﬂ}

Zavedeme obvyklé zkratky a piSeme rovnice (4) ve tvaru

[pbb . 1]y’ + [pbc . 112" = [pbl . 1], @)
[pbe . 1] y' + [pcc . 1] 2" = [pcl . 1].

Vyznam zkratek je patrny ze srovndni rovnic (4') a (4).

Ll

Podobné vylou¢ime z rovnie (4') neznamou y’. Vysledna
redukovana rovnice jest

[pbc . l]} L
[pbb . 1]

[pbec . 1] (5)
[pbb . 1]}’ ~

{[pcc . 1] — [pbc . 1] .

={[pcl.l]—[pbl.l].

a zavedeme-li obvyklé zkratky
[pce . 2] 2" = [pcl - 2]. (5')

Vyznam zkratek je zase patrny ze srovndni rovnice (5') a (5).
Docela podobné se postupuje pii libovolném poétu nezni-
mych.

Aby vypocty byly krok za krokem kontrolovany, prova-
déji se t. zv. souctové kontroly. K ¢islim a;, b;, ¢;, I; pri-
pojime souéty

@+ by + ¢i + Ui = s (6)
Pocitdme soucty soucina
[paa), [pab], [pac), [pal), [pas],

[pbb], [pbc], [pbl], [pbs],
[pec], [pel], [pes].

Nasobime-li kazdou z rovnic (6) sou¢inem p;a; a se¢teme pro
1= 1, ..., n, dostaneme

[paa] + [pab] + [pac] + [pal] = [pas].
Podobné
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[pab] -+ [pbb] + [pbe] + [pbl] = [pbs],
[pac] + [pbe] -+ [pec] + [pel] = [pes),  (6)
[pal] + [pbl] + [pel] + [plt] = [pis].

Znésobime-li prvn{ z rovnic (6') ¢fslem [pab] : [paa], odedte-
me-li od druhé a zavedeme-li obvyklé zkratky, dostaneme

[pbb . 1] + [pbe . 1]+ [pbl . 1] = [pbs . 1],  (6"))

kde
[pbs . 1] = [pbs]—[pas].%.
Podobneé jest
[pbc.l]-{—[pco.l]-l—[pcl.l]:[g}gs.l], (6"5)
Kde [ pac]
1] = — . E—.
[pes - 1] = [pos] — [pas] . 22
Tabulka
[paa] , [pab] [pac]
[pab] [b]  Iobe)
_ [pad] | __ [pab]
— [pab] [pab] . [paa] [pac] . [paa]
[pbb . 1] [pbe . 1]
[pac] [pbe] [pec]
[pac] _ [pac]
— [pac] — [pab] . o [pac] - oo
[pbe . 1] [pec . 1]
[pbec . 1] [pece . 1]
— [pbe . 1] — [pbe . 1] %g ﬂ
[pec. 2]

56 /




Znasobfme-li prvni z rovnic (6”) éfslem [pbb . 1]:[pbc.1] a
odedteme-li od druhé, plyne (zavedeme-li obvyklé zkratky):

[pec . 2] + [pel . 2] = [pes . 2], (6")
kde

[pbc/.l]
[pbb.1]

Vifpoéet normélnich rovnic se pro piehlednost provédi
obyctejné ve formuldfi. (Viz tabulku IV.)

[pes . 2] = [pes . 1] — [pbs . 1] .

Soucet ¢isel v prvnich étyfech sloupcich m4 byti v kazdém
rddku formuldfe roven ¢&fslu v tomtéZ rddku a v predposled-
nfm sloupci — oviem aZ na chyby plynouci ze zaokrouhlo-
vani.

IV.
[pal] [pas] Zkouska
[bl] [pbs] >
—tpal] . B2 | — pas) . (B2 .
[pbl . 1] [pbs . 1] .
[pcl] [pcs) "
—[pa) . (2] | —pas] . (2] .
[pel . 1] [pes . 1] .,
[pe . 1] [pes . 1] w
— [pbl . 1] %:-Z-% — [pbs . 1] [[%Z:—H '
[pel . 2] [pes . 2] .,
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Popsanou redukci dosli jsme k témto rovnicim pro ne-
zndmé x' y' 2':

[paa] 2’ + [pab]y’  + [pac]z’ = [pal] (71)

[pab] 2’ + [pbb]y’  + [pbe]z’ = [pbl] (75)

[pac] " + [pbe] y'  + [pec] 2' = [pel] (75)

[pbb . 1]y’ + [pbe . 1]2" = [pbl . 1] (T'y)

[pbc . 11y" + [pec . 1]2" = [pel . 1] (T')

[pec . 212" = [pel . 2. (7)

Z rovnice (7") vypocteme z’' a dosadime do predchazejicich.

Z rovnice (7';) vypocteme y’ a kontrolujeme vypocétem z rov-

nice (7’;). Dosadime do predchédzejicich rovnie, vypoéteme

ze (7,) nezndmou z’ a kontrolujeme vypoétem z rovnice (7,)
nebo (7).

V dal8im vykladu uZijeme jiného postupu, ktery Je vyhod-
ny pri zvlastnich hodnotach prostych élenti rovnic (3). Pise-
me rovnice (7,), (7,) a (7;) ve tvaru

1 [pab] y + ol __ [pal]
(paal’ T [paa]© T [paa]’

(phe.1] , _ [pbl.1]

[pbb . 1] 1] ~ [pbb.1]’

o [pd . 2]

[pec . 2]

K prvni rovnici piiétéme druhou, ndsobenou é&fslem A,
a treti, ndsobenou ¢islem 4,. Dostaneme

x+([m]+ ) +(M+A[Pbc l]+A2)z—

(8)

[paa} [poa] T [pbb 1)
[pal] [pbl . 1] [pel - 2]

— et ST el
~paa) T [pbb. T4 fpec 2

Zvolime ¢isla 4,, A, tak, Ze koeficienty u y' a 2’ v této rovnici
jsou rovny nule, t. j. vypoéteme 4,, 4, z rovnic

[pab) [ pac] [pbe . 1]
ipaa) T = fpaa) T M b 1]

o8
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Pak bude
, _ [pal] [pbl . 1] [pel - 2]
=4 A4, 4 A, ——.
[paa] " 1 [pbb 1] T [poc. 2)
Prictéme ke druhé z rovnic (8) treti, ndsobenou ¢islem B,.
Uréime-li B, tak, Ze

[pbc . 1]

(10)

(pbb 1] T By=10, (%)
bude [pbl . 1] [pcl . 2]
e, g U2 10/
Y= b 1) T e 2) o
Treti neznama plyne z rovnice
’r [pCl * 2J ”

3. St¥edni chyby neznamyeh x', y’, 2’ a stfedni chyba
linedrniho vyrazu @ = f, + f,&' + f.y' + f13’. Refime-li

norméln{ rovnice (3) pomoci detgrminanti, dostaneme

~ [pal], [pab], [pac]  [paa], [pab], [pac]
' = [pbl], [pbd], [pbe]! : -[pab], [pbb], [pbe] (11)
pel], [pbe], [pec];,  [pac], [pbe], [pec]
a podobné ¥, 2’

Uvazme, Ze [pal] = p,a,l, + poagls + ... + Ppanls & stejné
pro ostatni ¢isla z prvniho sloupce v prvnim determinantu.
Tento determinant muZeme tedy rozloZziti v » determinantu,
z nichZ prvni bude miti jako nésobitele /;, druhy [, a posledni
Ix. Je tedy patrno, Ze o', ', 2’ se daji psati ve tvaru

x’ -— “lll + “2l2 + wE e + aﬂl”’
y: = 1l1 + ﬂalz+ oo+ ,Bnlm (11°)
2 =yph+ ydo + -+ Valn,

kde «,, ...,y, nezédvisi na l;, 1 =1, ..., n).

Jsou-li skuteéné chyby veli¢in [, ..., [, po radé ¢, ..., &,
jest skuteénd chyba na pt. veli¢iny x’ rovna a6, + ... + xpép.
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Ptisuzujeme-li veliéinam I, ...,Il, po radé véahy p,, ..., pu
a oznac¢ime-li stredni chybu pro jednotku véhy pismenem m,,
je podle (I, odst. 6) stfedni hodnota veli¢iny /; rovna m, : V;,

Predpoklddejme, Ze chyby ¢; sleduji normélni zdkon cet-
nosti. Pak stredni chyba m, vysledku z’, jehoZ skuteéns
chyba je a6, -+ ... + open bude rovna [(I, 12")]

2 2 2
il/le 2+ a2 : 4 ...+oc,,27—:i- = mol/[%].

‘Oznaéime-li Jeste véahu veli¢iny 2’ znackou p,, je
mo To®:p] = my: |/pyr [viz L, (16')].
Podobné stredni chyba m, veli¢iny y' je rovna
my 18 : 9] = my: |y,
a stfedni chyba m, veli¢iny 2’ je rovna

my V[Vz:p] = My 11/1—’:’,
kde znaci p,, p véhy veliéin y’ a 2’.

Soucty [a?:p], [2:p], [¥*:p] uréime takto: Nasobme
norméln{ rovnice (7) po radé ¢isly @y, ¢y @15 & sectéme.
Bude

x' {[paa] @, + [pab] @ + [pac] @3} + ¥’ {[pab] €, +
+ [pbb] @y 1+ [Pbc] @5} + 2’ {[pac] @y, + [pbe] @2 +
+ [pee] @i} = [pal] @y, + [POI] @12 + [pel] Qs

Uréime-li ¢isla @;, @;a, @15 Z rovnic

[paa] @y, + [pab] @y, + [pac] @3 =1,
[pab] @, + [pbb] @2 + [Pbc] @3 = 0, (12)

[pac] @, + [pbe] @2 + [pec] @3 = 0,
bude

x' = [pal] @; + [pbl] @12 + [pcl] @13 =1, (110,@1; + P10:@12 -
+ 116,@13) + o (P20.Q11 + P2bo@o + PoCis) + - +
~+ Uy (Pr@a@y1 + Pnba@e + Pnchm) .
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Srovndnim s rovnicemi (il') plyne |
o = Pia@yy + Pibi@e + Dicirs, t = 1,2, ..., 0. (12')
Odtud

o : Py = (i + e - PieiQue)@i@ur - bira - ¢iis)
Tedy ° |
[a? : p] = {[paa] @, + [pab] @ia + [pac] @13} @11 +

-+ {[pab] @, + [pbb] @2 + [pbc] @5} @1 + {[pac] @+
. + [pbc] @2 + [pec] @i} @is-

A 'pod.le rovnic (12) jest [«2? : p] = @y;-

Soucet [«? : p] je tedy roven velic¢iné ¢;,, plynouci z rovnic
(12). Abychom @, uréili pfimo z koeficienti normdlnich
a redukovanych rovnic, uzijeme postupu vyloZeného na konci
predchézejictho odstavce. Jen musfme uvdziti, Ze zde misto
[pal], [pbl], [pcl] jest 1,0, 0, tedy misto [pbl . 1] jest nyni

— [pab] : [paa] = A4,, (13)
[viz (4), (4') a (9)], misto [pcl.1] jest — [pac] : [paa]
[viz (4) a (4)] a misto [pecl . 2] bude nyni
— [pac] : [paa] — 4, [pbc . 1] : [pbb . 1] = A, (13')
[viz (3), (5') a (9)]- Tedy z rovnice (10) vyplyva
1 4 ap
Ou= [paa) T [pbb.1] ' [pecc.2]

Abychom uréili soucet [82 : p], ndsobime normélni rovnice (3)
po tadé Cisly @y, @ye, @25 a secteme. Urcime-li Cisla @y, @y,
@3 7 TOVNIC

[paa] @y + [pab] @y + [pac] Qo = 0,
[pab] @y + [Pbd] Qo + [Pbc] Qs = 1, (12,)
[pac] @ + [Pbc] Qo + [Pec] Qo3 = O,

y' = [pal] @y + [pbl] Qe + [Pcl] Qoy

(13")

_+_

bude

61



a odtud

Bi = PiailQs + PibiQss + Pici@es, 1 =1,2,...,n, (12'))
& [8% : p] = Q-
Soudet [#2 : p] je tedy roven veli¢iné @,,, plynouci z rovnic
(12,). Abychom jej urcili pfimo z koeficientii normélnich
a redukovanych rovnic, musime uvaziti, Ze zde misto [pal],

[pbl], [pel] jest O, 1, O, tedy misto [pbl . 1] je nyni 1 a mfisto
[pel . 1] je O; odtud plyne, Ze misto [pel . 2] bude nyni

— [pbe . 1] : [pbb . 1] = B,. ) (14)
Tedy z rovnice (10’) bude
1 B,?
Qo= i m 1. 14’
27 [pbb .11 ' [pcc . 2] (149
Abychom koneéné uréili soucet [y? : p], ndsobime normélni
rovnice (3) po radé Cisly @y, @30, @23 a seCteme. Uréime-li
¢isla @y, @59, @33 2 TOVRIC

[paa] @, + [pab] @5, 4 [Pac] @3 = O,
[pab] @s; + [pbb] Qg + [Pbc] Qg3 = O, (12,)
[pac] @, + [Pbe] @y + [Pec] Qg = 1,

2 = [pal] Qs + [pbl] Q32 + [pcl] Qss,

bude

a odtud
Vi = PiiQs, + Pibi@se + Dici@ss, 1 =1,2,...,m (12'y)

[¥% : p] = Qss.
Soucet [y? : p] je tedy roven veli¢iné @y, plynouci z rovnic
(12,). Abychom jej uré¢ili pifmo z koeficienti normalnich
a redukovanych rovnic, musime uvaziti, Ze zde misto [pal],
[pbl], [pel] jest 0,0,1, tedy misto [pbl.1] jest 0 a misto
[pcl . 1] bude 1; odtud plyne, Ze misto [pcl . 2] bude nyni 1
a tedy z rovnice (10”) jest

@3 = 1 : [pcc . 2]. (15)



MuzZeme tedy psati

P mo — ] - _.l__ -41.2 A22
" Ve "o [m«z]jL [pbb . l]Jr [pec . 2]’
my
= e = 16
M ey [pbb T [pcc 2]’ (16)
m

== === mo .
Vo [pec . 2]
Pri tom A,, 4,, B, plynou ze vzorcu (13), (13’) a (14).
Z rovnic (12°) a (12’,) pro «; a §; plyne:
i : i = (Pia@u + PdiQie + Dicils) (2i@ + bi@ey +

+ €ilss) = (PisaQy1 + Pi2ibi@re + Di2iCiQs3) O + (Piad@n+
+ pibidi@,e + PibiciQy3) Qoe + (PiaiciQyy + Pibici@ys +

+ Picicilr3) Qas-
Sed¢teme-li pro viechna ¢ =1, ..., n a pouZijeme-li rovnic
(12), bude

[af : p] = Q-

Ale jest také

aifls : ps= (ai@y; + 0@+ ctha.) (Pi2i@a1+ PibiQ@es + DiCi@s3) =
= Q11 (Psa@iQy; + PiaibiQye + PiaiciQys) + @12 (PiabiQy +
+ PibibiQss + PibiCiQas) + @ra (PisCiQsy + DibiciQ20 1+ PiCiCi@ss)-

Secteme-li zase pro vSechna i a pouZijeme-lirovnic (12, ), bude
[xf : Pl = Qo
Z toho je patrno, ze @,, = @,,. Stejné plyne
Qi3 = Q51 & Qo3 = Py (17)

Stredni chyba linedrniho vyrazu @ = f, + f,2' +
+ foy' + f37'. Dosadime-li sem za z’, y’, 2’ ze vzorcu (11'),
bude

= fo + flzazl =+ szﬂtl + faZ)’i’z =

=1
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%
= fo +izl(f10‘i + foBs + fsyi) L.

Podle vzorce [I, (127)] bude tedy ¢tverec stfedni chyby vy-
razu P roven
M2

=3 o+ e+ fond e
2]l )
+w1[“ﬂ]+f2[ J"f‘fzfa[ ]+
+faf1[“—5”]+13/2[ ]+/3[ ]}

A zavedeme-li veli¢iny @,,, @2, - - -, @53, bude

me? = mp? {{,({,@11 + 1:@12 1+ [:@13) T fo(1Q21 + fo@22 +
+ [3@2s) + f3(/€s + 2@se + 1@)}- (16")

Veliéiny @,,, Q1o - - -, @33 Plynou z rovnic (12), (12,) a (12,).

4, Co znamend anulovini determinantu 4 soustavy
normalnich rovnie? Je-li v soustavé (3) 4 = 0, existuji
¢isla 2, 9, 2, jeZ nejsou viechna rovna 0, a jez splnujf rovnice

[paa) & + [pab] g + [pac) & = O, |
[pab] & + [pbb] § + [pbe] 2 = O, 3)
[pac] £ + [pbe] ¥ + [pec] 2= 0.
Nyni uvaiujme o hodnotich t; = ag + by + ci, ¢ =1,
2,...,n. Nésobfme.li je pw;, pib;, pic; a selteme-li vidy
pro vSechna %, bude
[pat] = [pbt] = [pct] = 0.
Nésobime-li hodnotu #; sou¢inem p,t a seCteme-li pro vse-
chna 2, dostaneme

[pt?] = [pat] 2 4 [pbt]y + [pct] 2,
64



tedy podle predchdzejicich rovnic [pi?] = 0, t. j. musf
ti=ag+ by +eg=0, i=12 ...,n (18)

Je-li tedy determinant A4 = 0, musf mezi koeficienty odchyl-
kovych rovnic (1) byti vztahy (18).

Naopak jsou-li mezi koeficienty odchylkovych rovnic (1)
vztahy (18), plynou z nich, ndsobims-li je psa;, pib;, pici & se-
¢teme-li pro vSechna ¢ rovnice (3’), kde v8echna ¢fsla &, 4, 2
nejsou rovna 0. To viak vyZaduje 4 = 0.

Jsou-li mezi koeficienty odchylkovych rovnic (1) vztahy
(18) a predpokléddme-li na pf. Z & 0, piSeme

G=—ai— — b L,
r r

tedy z odchylkovych rovnic (1) bude
a’: .
a; (x—?-z) + b; (y—%—z) — ;= v

Z téchto odchylkovych rovnic nevypocfteme tedy hodnoty
nezndmych z, y, z, nybrz jen hodnoty vyrazi
% Y
r——z a y—-—-z

Zmensuje-li se determinant A, zvétSuji se koeficienty @,
Qs @33- Ze vzorcu (12), (12,), (12,) plyne totiZ

0 — L | el twbe)| o _ 1 |[paa), [pac]|
4 | [pbe], [pee] A4 | [pac), [pec]
Op = — | [Paa), [pab] | (19)
® 7 4 | [pab), [pbb)

Ze vzorct my = my)/Qyy, My = M)/ Qae, My = my)/Qgs & ze
vzorci (19) je patrno, jak roste stfedni chyba vyslednych
hodnot, zmenSuje-li se determinant A.
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5. St¥edni chyba m, pro jednotku vahy. Protoze vidha
i-té odchylkové rovnice jest p;, bude sttedni hodnota chyby ¢;

rovna m, : Vf): Ze vzorcu
vi=a;x’ + by + ¢z’ — Ui, &= ax + by + cz — 1,
(viz III, odst. 1), kde »; znaci odchylky a ¢; skuteéné chyby
1-té odchylkové rovnice, plyne
vi—e&=a; (' — )+ b (¥ —y) + ¢; (' —2).
Prvni ze vzorcu (11°) jest =’ = ol + aols + ... 4+ xpuly,
pri ¢emz z rovnic (12 ) a (12) plyne

[ax] =1, [bx] = 0, [cx] = 0,
tedy

[va] = [ax] 2’ + [ba] ¥ + [e] 2’ — [lo] = 2’ — [lx],
coz je podle prvniho ze vzorci (11) rovno O.

Niésobime-li tedy rovnici v; —¢; = a3 (' — x) + b (' —
— y) 4 ¢; (2’ — z) po radé o; a seéteme pro vsechna 2, bude

—[oe] = ' — x a stejné — [Be] = ¥ — y, — [ye] = 2’ —=.
Odtud. .

vy = & — a; [ae] — b; [Be] — c; [ye]l = — & (aix; + biff; +
+ eiyy) — & (@ixy + bify + ciya) — .- + & {1 — (@i +
+ bifli + civi)} — .- — en (@ixn + bifin + ciyn).

Ze vzorce [I, (12")] vypocteme ctverec stredni hodnoty v;,
ktery oznac¢ime ;2. Bude

V"= » (az“1+ bzﬂ1+ Cz)’l) + D (az0‘2+ zﬂz"‘ 0172) -+ ...
1 2
2 2
o S (L (g o By ey} e L (@i

+ bifn + ciyn)® = my? {%2 rOf] + 2a:b; [%] + b [éf] +

L P p
" 2 1 :

* 2"'@""1‘[?“2"] + 2b;c; [ﬁ + ¢? [)L] e 2y
p p P Pi Pi
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—2b, B g, ”‘}
Ps pi
éili

pivi? = mg? {pad [f] + 2pad; [0—‘;]+ 2pidé [%f] T

+ 2piaicy [ ] + 2pibycs [ﬂy] + pici? [ 2] + 1 —2a;0; —

— 2bif; — 2¢c;y4}-
Pak bude soucéet

[~ 2 2
%= m? (g | 5] + 2 1900 | 22] + 1o | 2] +
1 2'
+ 2l 2] + 2 b 2] + toee [;_ +
+ n— 2 [ax] — 2 [6B] — 2 [ey]}.
Utijeme-li oznageni Qy;, @y, - - ., @s (viz III, odst. 3), bude

[p9?] = my? {([paa] @y, + [pab] @y, + [pac] @) +
+ ([pab] @z, + [Pbb] Qos + [Pbc] Qys) 4 ([pac) @5, + [Pbe] @+
+ [pec] @g) + 7 — 2 [ax] — 2 [b8] — 2 [ey]}-
Uzijeme-li vzorca (12), (12,) a (12,), dostaneme
[p9%] = m¢® {3 + n — 2 [ax] — 2 [68] — 2 [cy]}-
Ze vzorcu (12'), resp. (12';). (12';) ndsobime-li je a; resp.
b; a ¢; a sedéteme-li pro vSechna ¢, plyne [ax]= [b8] =

= [ey] = 1, tedy
[p0?] = mg? (n — 3)

a odtud
me — [p9?] (20)

* T n—3°

Spravnou hodnotu souétu [p9?] nemizZeme vypodisti, protoZe
nezndme stiredni hodnoty #%;®. Jsme proto nuceni dosaditi za
y [pv?] ptibliZnou hodnotu, t. j. ten soucet étverci odchylek

5* 67



nasobenych prisluSnymi vahami [pv?], ktery plyne z uvazo-
vané rady meéreni. Bude tedy priblizné

[pv?]
2; ’
My’ = g - (20)
V pripadé k neznimych bychom odvodili stejné
[pv*]
2 _e ¢t "

V kapitole II—IV predpokldddme, Ze se chyby, které zaté-
7uji méfeni, ¥idi normélnim zdkonem déetnosti. Vypodet
chyby m, pro jednotku véhy v tomto odstavci je viak zaloZen
na vzorci I, (12”), ktery byl odvozen za predpokladu obec-
néjstho (viz I, odst. 4). Plati tedy vzorce (20') a (20”) nejen
v pripadé, ze se chyby veliéin /; fidf normélnim zékonem
cetnosti, nybrz i tehdy, jsou-li na sobé nezdvislé a je-li jejich
funkce ¢etnosti sud4 funkce.

6. Vypolet soultu [pvy]. a) Pim4 cesta. Dosadime hod-
noty z', ¥', 2/, vypoétené z normélnich rovnic (3) do levych
stran odchylkovych rovnic

aix’ + by’ + e’ — ;= v (1)

Tak vypocéteme odchylky v;, odtud v#, pw® a soucet
D pwd = [pv?]. Tento zpisob je sice zdlouhavy, ale posky-
tuje soudasné i jednotlivé odchylky v;. Z jejich priibéhu usu-
zujeme, maji-li vlastnosti nahodilych chyb ¢i je-li na nich
patrny néjaky systematicky vliv (viz kap. V).

b) Neprimé cesta.

«) Z rovnic (1’) plyne
[pow] = 2ps (@i’ + by’ + o2 — L) = D(pasx’ + pibey’ +

+ pice’ —piki) (@i’ + by’ + e’ — ) = ([paa] 2 + -
+[pably’ + [pac]z’ —[pal]) '+ ([pab] #’+[pbb]y'+- [pbe] =’ —
—Ipbll) ¥’ + ([pac] =’ + [pbe] y' + [pec) 2’ — [pel]) =’ —
— [pal] z' — [pbl] " — [pel] 2" + [pll]-
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ProtoZe ', y', 2’ splnuji normalni rovnice, jsou prvni tii
¢leny rovny O a tedy "

[pvv] = [pll] — [pal] &' — [pbl] " — [pel] 2".  (21)

" B) Vyloudime-li z tohoto vzorce pomoci redukovanych

rovnic hodnoty «', 3, 2, dojdeme k novému vzorci. Protoze
jest '

[pab] , . [pac] , _ [pal]

T paa)? T [paa]® = [pea)’

bude, vylouéime-li 2/,

(8)

_ (pl] — (pat] P __ (1pbi) — [pat) P22 o —
[pov] = Cpll] — (pal] 2 — (i) — [pol] tpaa) ¥
. [pacly ,
— (tpetl—tpal) 22) 2

a zavedeme-li zkratky [pbl . 1] a [pel . 1] [srovn. (4') a (4)],
bude |

[pvv] = [pl] — E:Zli; —[pbl . 11y —[pcl.1]7.
Protoze je dale
y,+Lpbc.l] z,:[pbl.l] ()

| [pbb . 1] [pbb . 1]’
bude, vylouéime-li ¥,
o [pal?  [pbl.1}?
[pvo) = [pll] — 2 — o — ([el - 11—

[pbec . 1]\ ,
—[pbl . 1]. (pbb 1] z

a zavedeme-li zkratku [pcl . 2] [srovn. (5') a (5)], jest

oo [pal [pbl] ,
[pov] = [pll] — ¢ — oy — el 217
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A protoze

%

. . 2]
~ [pec.2)’
dostaneme koneény vzorec ve tvaru
[pall®  [pbl.1}  [pcl.2]?
= [pll] — — — ;
ool = P8 fpaa) " [pB 1] " [pos 2]

7. PFipad dvou neznamyeh a pFipad jedné neznamé.
a) V pripadé dvou nezndmych prejdou rovnice (1’) v rovnice

’

4

(8)

(22)

a;x’ + by’ — l; = v;.

Normalni rovnice jsou

[paa] &’ - [pab] y' = [pal],

[pab] & + [pbd] ¥’ = [pbi].
Redukované rovnice jsou

[paa] «* + [pad] y' = [pal],

[pbb . 1]y = [pbl. 1].

Stredni chyba m, = moVQ;I, my = mo]/Q_-zz, pri cemz @,
Qo 2 @9, @5 plynou z rovnic

[paa] @, + [pab] @y = 1,
[pab] Qn + [Pbb] Q12 = 0,

[paa] Qa + [pad] Qo = 0,
[pab) @y + [pbb] @y = 1,

nebo ze vzorcu

resp.

1 4 [ pab)
=+ St kde 4, — — P%)
U= aa) T ipee 17 M4 AT T (paay ®
. 1
Q”_[pbb.l]'

Soudet [pvv] se poéitd bud ptimo z odchylek v;, nebo neprimo
ze Vzorce
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[pvv] = [pll] — [[pall}zx’ —[— %z;blll ].z’ =
pa poc .
= [»ll] — — .
P2 [paa] ~ (pbb - 1]
Sttedni chyba pro jednotku vdhy plyne ze vzorce
[pv?]
n—2

2 .
mo—'

b) V pripadé jedné nezngmé prejdou rovnice (1’) v rovnice
ax’ —1l; = v;.
Norm4dlni rovnice jest [paa] 2’ = [pal].
Stredni chyba m, = moVQ;, kde @,; plyne z rovnice

1
a =1, ted = —.
[paa] @1, y €u [paa]

Soucet [pvv] dostaneme ve tvaru

[pvv] = [pl] —E%ﬁzx' =

Sttedni chyba pro jedndtku véhy plyne ze vzorce
| . . [p¥*]
O = pn—1"

Jesté jednodussi pripad, kdy a; = 1 (pfimd méfeni nestejné
vahy), vede ke vzorcim

e, 1 (ol
"=y =y l= =T

iz 11, (19 2

[viz I, (19)] LY

Nejjednodussi piipad — pfimé méreni stejné vahy — vede
ke vzorcum

(4] JUl

n

x =
) n

 Qu= —, [pw] = [pll] —
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[viz II, (19')] a
[vv]

n—1"

moz —_—

8. Redukece odchylkovych rovnic na linearni tvar.

Necht mezi méfenou veli¢inou m a nezné.myml X, Y, Z jest

vztah
(X, Y, Z;tu, w) = m,

kde ¢, », w jsou veli¢iny, jejichz hodnoty uréujeme pomoc-
nymi mérenimi. Ke kaZdé skupiné hodnot t&;, ug, wy, ¢ =
=1, 2, ..., n, méfime p¥islunou hodnotu m;. Méme tedy pro
tri nezndmé X, Y, Z rovnice

f(X» Y’ Z; ti’ U, ?.Ui) = my,

jejichZ pocet je n.
Obycejné zndme predem nebo ziskdme predem priblizné
hodnoty nezndmych (z,, ¥,, 2,) & hleddéme malé chyby =z, y, z,
jeZ nutno k pribliznym hodnotdm algebraicky pricisti, aby-
chom dostali sprévné hodnoty neznémych (X = z,+ =,

Y=yt 9, Z=12+2)

Predpoklédejme, Ze zndme takové piiblizné hodnoty, Ze
muzZeme v Taylorové rozvoji funkce f(z,+ z, ¥, + ¥,% + 2;
¢, u, w) podle rostoucich mocnin z, y, z zanedbati ¢leny dru-
hého a vyssich rddu, Ze tedy muZeme s dostate¢nou presnosti
pséti

)

f(x0+x! y0+ y9z0+z t u,W)_

== f(%o, Yo, 203 ¢, U, 'w)+( ) x + (6f) ( )

= d + ax + by + cz,

kde a, b, ¢, d jsou funkce ¢, u, w nebo konstanty.
PiSeme-li je$té ms; — d; = l;, mdme k uréeni x, y, z zase

» linedrnich rovnic
a;x + by + ciz = I, (1)
s nimiZ jsme se dosud zabyvali v této kapitole.
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9. Priklady na vyrovnani zprostfedkujicich mé&¥eni.
1. Uréiti stredni vysku zdvitu jemného stavéciho Sroubu.
Z4vity byly potteny olejem a otiStény desetkrét na papir.
Zmérena v kazdém pripadé vzddlenost krajnich otisténych
édrek na dvacetinu mm a zjiStén prislusny pocéet zdviti.
Dosli jsme k témto éislim

| podet zdviti
122 | 121 | 121 | 120 | 121 | 121 | 121 | 120 | 111 | 114
vzdélenost v mm

85,20]84,60( 84,60 83,90|84,45)|84,60|84,5583,96/|77,70| 79,85

Klademe priblizné stredni vySku zdvitu z, = 0,7 mm, pfesné
z = 0,7+ &, Tak dostaneme z prvni dvojice ¢isel odchyl
kovou rovnici
122 (0,7 + z,) — 85,20 = v;, nebo 122z, 4 0,20 = v,.

Stejné z ostatnich dvojic

12124, + 0,10 = v,, 1215, + 0,15 = v,

1212':0 '+" 0,10 — 'va, 1202':0 + 0,05 == 'vs

1202, 4- 0,10 = v,, 1114, 4 0,00 = v,

1212, + 0,25 = v;, 1143, + 0,15 = vy,

1212, + 0,10 = v,, |
Podle (III, 7b) bude 4, = [al] : [aa], pti tom [aa] = 142 2086,

[al] = — 144,20, tedy #,—=— — 0,0010. Odchylky v setindch
mm jsou
- +17,8; —2,1; —2,1; —2,0; +12,9; —2,1; +2,9; 417,0;
—I11,1; +3,6.

Odtud soucet ¢tverci odchylek je 438,06,
— | /438,06 : 3= 4 6,98 (v setindch mm).
A stfedni chyba vysledku
m, _ 698
Viaal J/ 142206

+ 1,9.10—2 (v setindch mm).
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Tedy vysledek
= 0,6990 mm - 1,9. 10—¢ mm.

2. Urdéiti konstanty Reichenbachova ddlkomeéru.*)

obr 4 -

Reichenbachuv ddlkomeér je
vodorovné ustaveny daleko-
hled, jehoZ nitkovy,kriz m4
tvar patrny z obrdzku 4. D4l-
komérem zamérujeme na svis-
le postavenou délenou lat a ur-
éujeme polohu horniho a dol-
niho vodorovného vldkna vuci
obrazu laté, jinak Fe¢eno uréu-
jeme Gteni pri hornim a dol-
nim vldknu. Rozdil obou ¢teni
ozna¢ime d. Z podoi)nosti troj-
uhelniktu pak plyne (z obr. 5),
vzddlenost laté od predniho

ohniska objektivu je timérna d [rovnd se (f :8).d = kd].
Vzdélenost svislé osy stroje od prednfho ohniska objektivu
se jmenuje mald konstanta c¢. Tedy vzddlenost D,laté od
svislé osy stroje je rovna ¢ + kd, kde k = f:s, velkd kon-
stanta, byvd blizka 100.

*) Srovnej Helmert, 1. c. str. 89—94.

Tabulka
d D a b l 8
1,2661 | 126,014 1 1,2661 + 0,047 2,3131
1,0830 | 108,029 1 1,0830 + 0,226 2,3080
0,8434 84,049 1 0,8434 40,014 1,8574
0,6002 60,069 1 0,6002 + 0,159 1,7692
0,3593 36,089 1 0,3593 -+0,076 1,4353
0,1183 12,109 1 0,1183 -+ 0,004 1,1223
[aa] [ab] (al] [as]
6 4,2703 + 0,525 10,7963



obrd

Maji se uréiti hodnoty ¢ a k ze Sesti dvojic hodnot d¢ a D;
sestavenych do 1. a 2. sloupce nisledujici tabulky. Prvni
a posledn{ dvojice vede k rovnicim

¢+ k.1,2661 = 126,014,
¢+ k.0,1183 = 12,109,
z nich# plyne k- 99,2, ¢ = 0,37.

Klademe-li ¢ = 0,37 + z, £ = 99,2 + y, plyne z prvni
dvojice hodnot d;, a D; vztah 0,37 4 x 4 (99,2 4 y) 1,2661 =
= 126,014, ¢ili

z + 1,2661y = 0,047.
. Stejné pro ostatni dvojice. Koeficienty a, b, I téchto rovnic
jsou sestaveny ve 3., 4. a 5. sloupci tabulky. V 6. sloupci
jsou vypoétena é&fsla 8; = a; + b; + I; a v dalSich sloupcich
potfebné souéiny a jejich souéty.

V.

bb bl bs v v?
1,6030 0,0695 2,9286 40,078 0,0061
1,1729 0,2437 2,4996 —0,112 0,0126
0,7113 0,0118 1,56665 -+ 0,082 0,0067
0,3602 0,0954 1,0569 —0,079 0,0062
0,1291 0,0273 0,6157 —0,013 0,0002
0,0140 0,00056 0,1328 + 0,043 0,0018
[bb] [bl] [bs] 0,03356

3,9906 0,4382 8,6991 ,
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Souétové kontroly
[aa] + [ab] + [al] — [as] = 0,0000
[ab] + [bb] + [b] — [bs] = 0,0001
ukazuji, Ze koeficienty normdlnich rovnic jsou vypodéteny
sprdvné. V dalsi tabulce je provedena redukce normélnich
rovnic se sou¢tovou kontrolou.

Tabulka VI.
z Y
6 4,2703 | 40,6256 10,7953
4,2703 |43,9905 | +0,4382 | 8,6990
4,2703 |4 3,9906 | +0,4382 | 8,6990
4,2703 |+ 3,0393 | 40,3736 7,6832.
0,9612 | 40,0646 | 1,0158

Z redukované rovnice
0,9512y = -+ 0,0646
plyne y = + 0,0679, a z prvni normdlni rovnice tedy
z = 0,0392. Odtud c¢—=- 0,409, k= 99,268.
V predposlednfm a poslednim sloupei tabulky V jsou
vypoéteny odchylky v;, jejich étverce a [vv] = 0,0335.
Podle vzorce
[vw] = (U] — [al] x —[bl] ¥
(viz III, 7a), uvdzime-li, Ze
[l] = 0,0841, [al] = + 0,5250, [bl] = + 0,4382,
x = 0,0392, y = 0,0679,
plyne [vv] = 0,0338.

Podle vzorce
[al]? [bl.1]%

" [aa] [bb.1]
uvéiime.li, fo

=
(viz III, 7a),
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[aa] = 6, [bl.1] = 0,0646, [bb.1] = 0,9512,

bude [vw] = 0,0338.
Pak [viz III, (207)] jest

mo = & "I/n[ﬁ]z =+ /10,0338 = + 9,2 . 10—

Odtud
_my_ _92.10—*

A protoZe
. 4, ___[ab]
On= [aa] T [bb.1] kde 4, = " [aa]’

bude @,, = 0,6992, tedy

my = m, /@1, = 9,2 . 10—2)/0,6992 = +- 7,7. 10~
Vysledek
c= 0,409 + 7,7.10—2,
k= 99,268 + 9,4 . 10—2.

Presnéji uréime obé veliciny c a k, jestlize ¢ zmérime pfimo.
Bylo zméreno 0,335 a nejistotu v této hodnoté odhaduje
Helmert na 0,003. Vypocet nezndmé k z nameéfenych Sesti
dvojic d; a D; provedeme za dvou riznych predpokladu.

x) Predpokldddme, Ze odchylkové rovnice maji stejnou
vahu. Pak prvni rovmice ¢ + k. 1,2661 = 126,014, klade-
me-li ¢ = 0,335 a £ = 99,2 4 y, prejde v 1,2661y = 4 0,082
a stejné ostatn{ rovnice. Koeficienty novych odchylkovych
rovnic jsou sestaveny v 1. a 2. sloupci tabulky VII. Ve
3. sloupei jsou vypoctena ¢isla 8y = b; + I4 a v dal8ich sloup-
cich potfebné souliny a jejich soucty. Souctova kontrola
[bb] + [bl] — [b8] = — 0,0001 ukazuje, Ze koeficienty. nor-
mélni rovnice 3,9906y = -+ 0,5876 jsou vypocteny spravné.
Odtud y = + 0,147, tedy ¥ = 99,347. V dal8ich dvou sloup-
cich jsou vypoéteny odchylky v;, jejich ctverce a [vv].
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Pabulka VII.

b l 8 bl bs v o8
1,2661 | 40,082 | 1,3481 |4-0,1038 | 1,7068 | 40,104 10,0108
1,0830 | 40,260 | 1,3430 0,2816 | 1,45646 | —0,101 102
0,8434 | 40,049 | 0,8924 0,0413 | 0,7627 | 40,075 56

10,6002 40,194 | 0,7942 0,1164 | 0,4766 | —0,106 9 112
0,3693 { +0,111 | 0,4703 0,0399 | 0,1690 | —0,058 34
0,1183 (| +0,039 | 0,1573 0,0046 | 0,0186 | —0,022 53

40,5876 | 4,5782 | 0,0417
Ze vzorcu

[vv] = (U] — [bl] y = [U] — [bI]* : [bb]

(odst. III, 7b) dostaneme [vv]= 0,0417, resp. 0,0416,
nebot [II] = 0,1281. Odtud

vo 0,0417
a
9.1.10—2
my:—mé: ’—_—_()—=i4,610_2
J/[0b] 1/3,9905
Vysledek

k= 99,347 - 4,6 . 10—2.

f). Oznacéime-li skuteéné chyby ¢isel D a d pismenem ¢ a ¢,
jest skuteénd chyba odchylkovych rovnic rovna ke’ — e.
Jsou-li pifslusné hodnoty stfednich chyb rovny m a m’, bude
¢tverec stredni chyby odchylkovych rovnic k2m'2 + me.
Helmert odhaduje m < 0,05, m’' = 0,002, takZe

m? < 0,0025, k*m'2 = 99,22.4.10—¢ = 0,039,

coz je skoro 16krit véts ner m2. Rozhoduje tedy o véze
odchylkovych rovnic v tomto pripadé ¢len k?m’2.

ProtoZze vdha je nepfimo imérnd étverci stfedni chyby a
podle provedenych zkousek je stfedni chyba m piimo
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timérnd vzdilenosti laté, tedy priblizné piimo imérnd dél-
kam d, mizeme jako vahu kldsti veli¢inu 1 : d2. Ndsob{me-li
kazdou rovnici 1,2661 y = + 0,082 atd. odmocninou jeji
védhy, tedy veli¢inou 1:d = 1:b, dojdeme k témto rovnicim
o vaze vesmés rovné 1 (srovn. 11, 3):

y = + 0,065 y=+ 0,323,

y = + 0,240 y = + 0,309

y_+0058 y = + 0,330.
Z nich plyne y=}.1,325 = 4 0,221, k= 99,421. Pak
v = + 0,1566; —0,019; + 0,163; —0,102; — 0,088; —0,109;
[v] = + 0,001; [vv] = 813 . 10—%. Stejnd hodnota plyne ze
vzorce II, (19’). Pak

10—4 —
my = -+ V813 o _ =4+ 102|271 =452.10—2
Vysledek
k= 99,421 4 5,2 . 10—2.
3. Pro nezndmé z, y jsou diny tyto odchylkové rovnice
xj: y—l.;,: Vg, g == 1,2, o vy 2n,

v m rovnicich jest u y znaménko +, ve zbytku znameni —.
Vypocisti vyrovnané hodnoty neznimych a jejich stredni
chyby.

V tomto pripadé je [aa] = 2n, [ab] =0, [bb] = 2n,
[al] = [I]. Je-li s, a s, aritmeticky stfed hodnot /; pro ta ¢,
pro néz je v odchylkové rovnici u y znaménko + resp. —,
jest [al] = ns, + ns, a [bl] = ns, — ns,.

Normélni rovnice tedy jsou

2nx = ns; + ns,,
2ny = n8; — ns,.

r=1%(8 + &), y= 14 (8 — ).
Protoze [vv] = [U] — [al] x — [bl] y, [viz III, (21)], bude

[ov] =[] — 4 (8; + 8)*n — F (8; —8p)2n = [I12] — n (8,2 8,2).
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Tedy stiedni chyba m, pro jednotku vahy je

_ [2] — » (8,% + 85°)
My = £ 2 (m—1)

a strednf chyba vyrovnané hodnoty x a y je mov_2;
4. Dokaite,‘ie n odchylkovych rovnic
r+ by +cz—li=wv; ovazel, i=1,2,...,n

vede ke stejnym vyrovnanym hodnotdm pro nezndmé y, z
jako n odchylkovych rovnic t. zv. redukovanych:

{bi-—&]-}y—k{- [Z]} { —%]}=v,-’ové,zel,

1=1,2,...,n
Norméin{ rovnice k danym odchylkovym rovnicfm jsou

nr+ [bly +[c]z —[I] =0,
[b] z + [6%] y + [be] z — [bl] = O,
[e] # + [be] y + [c*] 2 — [cl] = O.

Odtud redukované rovnice prvnfho fddu budou

o gb_]*} {[b g [b][c]} { 410 } o
L (23)

r [b][c] [c]? [c][I]) _
yl[bC]— n} {[2]——} {[cl]— m }.—O.

Z redukovanych odchylkovych rovnic dojdeme k norméilnfm
rovnicim.,

BN [, B[ (€]
A - -4

Bl f, ] _
[{ Y ] =4 (23")

Y

AL
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f SCITARC) Y B
brotote o [y | Loy B

BN _ e g 101, [BF
[y = oo+ ] -

obr  [b]? bJ
- ey L
a déle
. L] __[cl(b]  [b]le] | [b]lc]
o] - w20,
_ rp Lb]le]
'—[bc]— n

podobnou tpravou ostatnich koeficienti dokdZeme, Ze rov-
nice (23) a (23’) jsou totozné.

Jak se v tomto pripadé vypoétou stfedni chyby nezné-
mych y a z? Podle vzorcu (16) jest

"‘“V[bb it [cc 2] ""’V[cc 2]’

[be . 1]
[bb.1]"

Veliciny [bb . 1], [bc . 1] jsou koeficienty u y a z v reduko-
vané rovnici prvntho féddu, t.j. v prvod z rovnic (23) nebo
(23'), a veli¢ina [cc.2] je koeficient u z v redukované
rovnici druhého rddu. Stfedni chybu m, pro jednotku
véhy vypocteme ze vzorce (20”) t.j. my= V[vz] : (n—3).
Pri tom soucet [v%?] je podle (21) roven [vv]= [U]—
— [I] * — [bl] y — [cl] z. Vylou¢ime-li odtud a z prvni nor-

pti demZ

B =—
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malni rovnice nx + [b] ¥y + [¢] z— [{] = 0 zase nezndmou z,
dostaneme

2
[vv] = [U] — [—g— — Yy {[bl] —[—l—];[é]} - {[cl] —

n

[l][c]}

nebo podle predchazejici ivahy

=] - -
-9

5. Z grafu, ukazujiciho pravdépodobnou vysku syna v za-
vislosti na vySce otce, byla vynata tato ¢isla (v palcich)

S = 65,7; 66,8; 67,2; 69,3; 69,8: 70,5; 70,9,
O= 62; 64; 65; 69; 70, 71; 72.

Predpokldddme-li mezi S a O vztah S = x + O, urdete vy-
rovnané hodnoty koeficienti z a y a jejich stredni chyby.*)
Normalni rovnice jsou

T+ 473y=  480,2,
473z 4+ 32 051y = 32 494,6.
Odtud
y = 0,622 4- 0,008, » = 33,3 + 0,5.

6. Pro casy T, T,, ..., Ty, vyjddrené ve dnech, byly uréeny
opravy hodin o0, ...,0,. Uréiti odtud opravu hodin
0o = x + yT pro libovolny ¢as T'; y je denni chod hodin.**)

Méreni vedou k rovnicimz 4+ y7T' —0; = 0,1 =1, 2, ..., n.
Normadlni rovnice jsou

nx + [T]y = [o],
[T] z + [T%] y = [oT].
*) Whittaker-Robinson, 1. c. str. 214.

**) P. Pizzetti: I fondamenti matematici per la critica dei
risultati sperimentali, Genova 1891, str. 136—138.
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Citdme-li T pro jednoduchost od stredu [T] : n, ktery polo-
zime rovny 0, prejdou norméini rovnice ve tvar

ne = [o] ,
[T%] y = [oT].

Stredni chyby budou tedy
My = My :Vﬁ, my = mo:V[_T?J.

Abychom vypocetli stiedni chybu opravy o= z + yT,
uzijeme vzorce [III, (16’)]. V uvaZovaném piipadé jest

1 1
/o:()» h=1, szT, Qu:',;: Q12=Q21=O, Q22= Ta

(T2
1 T
me = mol/ - + Za)
7. Mezi teplotou T ebonitové tyée a odeétenim z na stup-
nici je vztah

Tedy

2= A + BT + CT®.

Vyhledati koeficienty B a C a jejich stfedni chyby ze Sesti
dvojic méfeni.*)

Tabulka VIII.

z |12,47|15,28|18,27| 21,00| 23,81] 28,23
T |14,44]20,14]25,52] 30,30 | 34,92| 40,73

ProtoZe nezalei na vypodtu koeficientu 4, uZijeme postupu
vyloZeného v pifkl. 4, t. j. odvodime redukované odchylkové
rovnice. Aby koeficienty u C neprevySovaly mnohokrit
koeficienty u B a prosté ¢leny, délime kazdy stem a sou-
éagné misto C zavedeme nezndmou ' = 100C.

*) Srovn. B. Ku&era: Zékladové prakt. fysiky, II, str. 4.
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Tabulka

Y .2 R L) | VY N )} bra
n n n

—13,25 | —6,36 | —7,37 | —26,98 | 175,56
— 186 | —4,39 —4,56 | —16,50 | 57,00
— 217 | —193 —167 | — 567 | 471
+ 270 | +0,79 +116 | + 485 | 7,29
+ 7,23 +3,75 +307 | +1495 | 52,27
+1304 8,14 18,39 | +20,57 | 170,04
166,87

Normélni rovnice budou
466,878 + 256,99C" = 276,73,
256,998 + 144,38C" = 154,02.
Redukovand rovnice prvniho fddu

2,92C" = 1,69.
Odtud . i
C’' = 0,579, C = 0,00579, B = 0,274.

A stredni chyby
me = -+ 0,00088, mp = 4+ 0,049.

8. Ur¢iti methodou nejmensich étverca ‘prvin'ch pét koe-
ficienti ve Fourierové radé.

Odchylkové rovnice zde budou
a -+ bsin xx + ccos xx + dsin 23 + e cos 2x;, — lp = vy,

k=0,1,2,...,n—1. (24)
Jak vidime, je v tomto pfipadé vyhodné voliti z; = gﬁ k,
kde k=0, 1, — 1, t. j. uréiti I pro hodnoty x;,, jez

rozdéluji perlodu 27: na n stejnych dllu Normélni rovnice
budou
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b’c’ bl b’s c’c’ c’l c’s
+ 84,27 |4+ 97,656 |+ 357,48 40,45 |} 46,87 | 4+ 171,69
+ 33,14 [+ 34,43 (4 124,58 19,27 (4 20,02 | + 72,44
+ 4,19 |4+ 3,41 |4+ 12,30 3,72 |4+ 3,03 |4+ 10,94
+ 2,13|+ 3,13 |+ 12,566 0,62 |+ 0,924+ 3,87
+ 27,11 |+ 28,70 {4+ 108,09 14,06 |+ 14,80 | + 56,06
+ 106,16 |+109,41 |+ 385,69 66,26 |+ 68,29 | + 240,70
+ 256,99 |+276,73 |4+ 1000,60 | 144,38 |+154,02 | 4+ 555,40

an -+ b [sin xx] + c[cos xz] + d[sin 2x%] + e[cos 2xz] — [Ix] =0,
a [sin xx] 4 b [sin? 2] + ¢ [sin 2z cos z;] + d [8in xp 8in 2x:] +
+ e [8in xg cos 2x3) — [l sin z;] = O,
" 4 [cos 2] + b [cos 2z sin 73] + ¢ [cos 22x cos k) +
+ d [cos 2x; sin 2x;] + e [cos? 2x;] — [Ix cos 22] = O.

2 |
Zminéné volba hodnot = -;—’ k, k=0,1,...n—]1

zjednodusi posledni rovnice takto:

na = [lk], %n b= [lk sin x,,], {;n c = [lk CcoS t;tg],
Fnd = [l 8in 22;], inl = [I; cos 2x;]. (25)
Abychom to ukézali, uvaZujme o souétech

Vyraz 8, + iS,, kde i = +|/—1, bude roven
n—1 . 2n

Sy 408, = Den’,

k=0

coZ je geometrickd fada, jejiZ prvni ¢len je roven 1a podil

.2
el —
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Tedy 1 — gili2a

Zn
l—e 7
Protoze
etl2r — cos 2nL + i 8in 2nL = 1, je S, + S, = 0,
¢ili S;=8,=0.
., 27 '

Jmenovatel 1 — o neni roven nule, pokud L neni na-
sobkem éfsla n. Z toho je patrno, Ze na pf.

[sin § g 8in lyz] = — 4 [cos (I; + I,) 2z —cos (;, — ;) ] = 0,
pokud I, = I,, kdeZto pro I, = I, jest '
[sin? [, 2] = 4.

Stejné je
[sin I, 23 cos L] = 4 [sin (, + by) xe+ sin (I, — 1) 23] = 0,
a to at je I, & I, nebo I, = I,. ‘

Koneéné je
[cos I,z cos lyxg] = 4 [cos (I, + 1) xx + cos (I, —1,) xx] = 0,
je-lil, = 1,. A pro 1, =1, jest

[cos? [ x] = ¥n.

Oznaéime-li zase pismenem m, stfedni chybu pro jednotku
véhy, bude stfedni chyba veliéiny a rovna mo:V; a stfedni
chyby v8ech ostatnich koeficienti b, ¢, d, ¢ jsou rovny m(,Vﬂ

Veli¢iny @,,, @se, @33 atd. plynou totiZ z rovnic

=1 In@p=1 InQyx=1 atd

Tato tloha se vyskytuje v praksi casto. Uvddim na pft.:
Urcovani periodickych chyb v déleni kruhu, uréovéni perio-
dickych chyb mikrometrickych Sroubu, uréovéni vlivu bliz-
kych hmot na tdaje torsni vdhy podle zpisobu Schweyda-
rova.
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9. Urciti vyrovnané hodnoty pravouhlych souradnic (z; y)
bodu P, jestliZe byla zméfena se stejnou vahou jeho vzdéle-
nost od bodi (0; 0), (7; 0), (0; 6) a bylo naméfeno po radé
6,40; 4,47; 5,38.%)

Zvolime priblizné hodnoty z, = 5, y, = 4. Pak z rovnice
V6 + 2+ (@ + 52 —6,40 =0,
uvazime-li, Ze -
V41 4+ 102 + 8y + ... = |41 (1 + %0x+ ;TJ+
V‘H (1 + s+ Ay + -

plyne
0,78« 4+ 0,62y + 0,0031 = 0.

Stejné i druhé dvé rovnice

— 0,45z 4 0,89y 4+ 0,0021 = 0,
+ 0,93z — 0,37y -+ 0,0052 = 0.

Odtud vyrovnédnim podle metody nejmensich ¢tverci plyne

x=— — 0,004, y = — 0,002,
tedy vysledek

x, + x = 4,996, y, + vy = 3,998.

10. Na nékolika bodech, jejichZz pravoiihlé soufadnice
(x4; y;) zndme, byly méfeny smeéry k témto zndémym bodum
a k jednomu bodu, jehoZ souradnice (x; y) hleddme (hledany
bod). Jak postupujeme pti vypodétu vyrovnanych souradnic
x, y?

Nejprve vypocteme t. zv. smermky smeéru od daného bodu
na jiny dany bod, t. j. uhly, které sviraji uvazované smeéry
8 kladnym smérem osy -ové. Na pf. pro smérnik 0y, od bodu
(2,; ¥;) na bod (z,; y,) bude

27U

tg o = 2

*) W‘i;itta,ker-Robinson, L. c. str. 214—215.
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Protoze pri méreni sméri nemuZeme déleny kruh presneé
orientovati, na pr. tak, aby smér od stfedu kruhu k rysce 0°
sméroval ve sméru rovnobéiném s kladnym smeérem osy
z-ové, musfme k mérenym smérum S;, (s bodu (z;; %,) na bod
(z¢; y¥¢)) pripojiti t. zv. orientaéni konstantu o,, aby z rady
smeéru vznikla fada smérnfka, tedy
0y = 8y + 0, 0, = 03 — Sys.
JestliZe na pr. v bodé (z,;; y,), kromé sméru na hledany bod
(z; y) byl zaméfen jen jeden smér na néktery dany bod,
méme pro orientaénf konstantu o, jen jednu hodnotu. JestliZe
jsme zamérili nékolik sméri na dané body, méame pro orien-
taénf konstantu nékolik hodnot a jejich aritmeticky prumér
klademe jako jejf vyrovnanou hodnotu. Pfipojime-li pak
orientac¢n{ konstantu k sméru namérenému pri zaméreni na
hledany bod, dostaneme t. zv. orientovany smérnfk S,, s bo-
du (z,; ¥,) na hledany bod (zx; y).
Nyni vypoéteme pribliZzné souradnice z,, y, hledaného
bodu ze dvou orientovanych sméri, a to takto: Ze soufadnic
(z; 1), (%a; ¥3), z michZ oba orientované sméry vychédzej,

\

vypotteme vzddlenost téchto dvou bodia 8, = 20 _
| xa — xl . v -
= ———", pak ze sinové véty uréime strany 8,8y &
COS 05

koneéné ze vzorcu

Ty — Ty == 8,9 COB Sy, Yo — Y1 = 819 8in Sy,
nebo

To — Ty = 859 CO8 Sog, Yo — Yz = 859 8iN Sy

priblizné soufradnice z,, y, hledaného bodu a ze vzorce

' .?/O—yi
tgoi= o — X3

priblizné hodnoty smeérnfkd ¢'; z danych bodi na hledany.
Déle uvézime, Ze pro definitivni smérnik g; bude
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_ Y%+Ay—y
xo+ Az —z;’

kde Az, Ay jsou hledané opravy pfibliZnych soufadnic.
Odtud

tg o;

0; = arctg f:j: jg ~—- ‘::’
a rozvineme-li v fadu Taylorovu,
o; = arctg Z: :‘Z: +a; Az + b; Ay = o';+ ag Az + b; Ay,
kde
4y = — ?/o—‘zyi’ by = Lo — Zi

840
pri tom 8, je délka strany mezi bodem (z;; y;) a (7y; ¥,)-
ProtoZze definitivni smérnik o; se m& rovnati-orientova-
nému smérnfku Sy;, dojdeme k odchylkovym rovnicim

0; — Soi = a; Az + b; Ay + l; = v,
kde
li =0 ’i — Soi-
Z téchto odchylkovych rovnic podle methody nejmen-
8ich ¢tverci vypolteme neznamé Az, Ay a jejich stredni
chyby.



IV.
YYROVNANI ZAVISLYCH MERENL.

1. Vyrovnani zavislych méfeni (pfevedenim na vy-
rovnédni zprostfedkujicich mérenf). UvaZujme o této
tloze: Nezndmé X, X,, ..., X,, pro néz jsme namérili hod-
noty M,, M,, ..., M,, maji presné spliiovati ¢ podminek

fl(Xl’ X2’ s XQ) - 0’ /2(X1’ X2: LS ] XQ) - 0’ S
fo(X; X, ..., Xp) = O; (g\> o). (1)
Obyéejné zname predem, nebo ziskdme predem, priblizné
hodnoty nezndmych x4, Ty, ..., Zo, takze

Xi=2+ 2, Xog=Tog+ 2y, ..., Xog= Zpg+ .

O opravach z,, ,, ..., x, predpokldddme, Ze jsou tak malé,
ze lze zanedbati jiZ éleny obsahujfci jejich soudiny a Ctverce,
Pak z méreni plyne g rovnic X; — M; = xj + x; — M; =0.
¢ili

x; —1; =0, kde l;=M;—x, j=1,2,... 0. (2)

Misto podminek (1) mazeme psati priblizné

0 0 o0
fo(%10) T30, - - -» Teo) +("ﬁ) Ty + (5{;”2) Tot -+ (5{‘5‘) zp= 0,

ox,

0 0 e/o
nebo
Qg %y + oy + ... + QgeTe =ago, §=1,2,...,0, (3)
kde /
of
Ag; = (-8—:1‘:’_,-)0’ Agg= — [g(T19, Zag- - > Too)-

Rovnice (3) maji byti splnény presné, proto nejsou viechny
nezndmé nezdvislé. Z rovnic (3) muZeme vyjddriti na pr.
%y, Xy, ..., T; jako linedrni funkce nezndmych =z,.i, Z,49,
..., Xy, jejichZ pocet je p — o
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xy = A1%oq1 + Aypp¥ore + ... + A1,06%, + Aio,
e = Aa1%g41 + AoeZoro+ ... + Ao 6%, + Ao, (3')

Lo = Aalxa+1 + Aa2xa+2 + ...+ Aa,o—axo + Ao

Méme tedy uréiti o — o nezavislych nezndmych tak, aby
bylo splnéno pokud moZno pfesné g rovnic:

Anx, 1+ Aroxoio+ .o+ A1 6%y + A1o— 1 =0,
A21x¢1+1 +'A22xa+2 + oo '+' A2,e——axg + A20 i l2 - O

Aalxa+l + Aa2xa+2 + —I" Aa ,o—o%e + AaO —l - O

Lo+l — la+1 = 0, (2,)
Tgr2 — lgi2 = 0,

ProtoZze pocet nezavislych nezndmych (¢ — o) je mensi nez
pocet téchto rovnic (g), nebude obecné lze nalézti takové
hodnoty i1, 542, ..., ¥,, aby vSechny rovnice (2') byly
splnény. At dosadime za 4.1, Z442, - .., Z, jakékoli hodnoty,
budou levé strany rovnic (2’) rovny malym veli¢indm v;.
Tedy -

Anxop1 + d12%gr2 + - + A1,00% + 410 — Ul = vy,

An®s11 + Aggoro+ - + Ago—a®e+ Aog— Uy = Vg, )
Lo+1 — la+1 = Vg+1, (2 )
x, —Il, =,

Predpoklddejme, Ze vaha j-té rovnice je p;. Hodnoty vah
odhadujeme v tomto ptipadé obycejné podle sttednich chyb
méfenych veli¢in M;, vypoétenych primo z méfeni, nebo
podle vysledki podobnych méreni dfivéjsich. Mame-li davod
k tsudku, ze vdhy jsou stejné, klademe je obycejné rovné 1.

Tim bylo prevedeno vyrovnéani zdvislych méreni na vy-
rovnéni zprostfedkujicfch méreni. Vyrovnané hodnoty z', 1,
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Z'gy2, ..., &, uréime jako v kap. III tak, aby byl minimélni
soucet z pivi?. Z podminek pro minimum (derivace podle ne-
=1

zndgmych z';,,, 2’549, ..., ', maji byti rovny nule) plyne
o — ¢ normalnich rovnic, z nichZ vypoéteme nezdvislé ne-
zndmé 2’11, &' 542, ..., ¥, Dosadime-li tyto vypoctené hod-
noty za Z,41, o492, .- -, L, do rovnic (3'), dostaneme vyrov-
nané hodnoty 2y, 2/, ..., @',.

Stfredni chyba pro jednotku vahy plyne stejné jako v kap.
III ze vzorce (20")

2 2

my = V“"W | [pv] )
e—(o— )

Lomend zavorka znaéi soudet ¢lenu p;v;* pro vsechny hod-

noty indexu j=1,2, .., p.

2. Vyrovnani zavislyeh m&Feni uzitim koreldt. Casto
se v8ak uZ{vé pfi vypoétu vyrovnanych hodnot 2y, 2’ ..., &/,
jiného postupu.*) Tyto hodnoty maji ¢initi soucet

0 e
2.0 = 2 p; (5 — )
i=1 i=1

minimem a pri tom maji presné splnovati podminky (3).

Podminka minima jest

’zp, ‘i — 1) da’y = 0. (5)

Ale protoze vehcmy x'y, ..., ', musi presné splnovati rov-
nice (3), nejsou priristky dz’; nezdvislé, nybrz musi vyho-
vovati ¢ podminkdm

ag, dz’s +aydx’s+ ...+ agdx’',=0,9g=1,2,...,0. (6)
Z téchto rovnic a z podminky (5) vylou¢ime ¢ z4vislych pri-

*) J. Vojtéch, 1. c. I, str. 411—413. — K. Petr, 1. c. str.
414—418.
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rustku a poloZime koeficienty u nezdvislych piiristki rovny
nule. '
Predpoklddejme, Ze na pr. determinant
¢ aiy, @12, -« alc;‘
A = a?la aze, ..., A2q + 0.

| @515 Ag2;s + - -y Qgg

Nésobme rovnice (6) po radé koeficienty 2k, 2k,, ..., 2k,,
a odeétéme je od rovnice (5). Bude

; c
ZI{P;' (2’5 — ) — kyay; — ky@pj — ... — kottgj} da’; = 0.
’=
Uréeme tak koeficienty k&, k,, ..., ks, kterym se rikd kore-
l4ty, aby faktory udz’,,...,dz’; byly rovny nule. To je za
uvedeného predpokladu o determinantu 4 mozné.

Pak ale zbyvéd podminka

o
D {0y (2 — 1) — kyayj — kyy; — ... — ko) da'j = 0,

j=a+1
a protoze priristky da',is, ..., da’, jsou nezdvislé, musi
jejich koeficienty byti rovnéZ rovny nule. *
Celkem tedy musi byti
Dj (x',- — l,) — klal,- — k2a2,- —_— gy ka(loj = 0,
i=12,..,0. (7)
Levé strany téchto podminek jsou parcidlni derivace funkce

F=mp (2 —hL)?+ 0 (%— 1)+ ... + P (¥ — 1) —
— 2k, (@30, + @19%p + ...+ 1T, — Ayp) — (8)
— 2k, (ay, 2, + gy % + o ATy — agg) — '

Podminky (7) tedy vypocteme, anulujeme-li parcidlni deri-
vace prvniho fddu funkce F podle proménnych z,, z,, ..., 2,.
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Zvolime-li za priblizné hodnoty pro neznamé ', ..., 2/,
naméirené hodnoty M,, M,, ..., M,, jest zj,= M;, tedy
l;=0.

Z rovnic (7) plyne

xiz—zkﬂaw_l_l?’ j=12,...,0. (7')
Pig=1

Tyto vzorce vyjadruji neznamé z';, ', ..., ', pomoci ko-
reldt k,, ..., k,. Dosadime-li odtud za z’; do prvnf z rovnic (3),

plyne
a .
—4 (@ k; + anky, 4 .. 4 agiks + Lpy)

1

am (“12 1+ Gk + o+ agks + Lpy) +

-------------------------

a
e (ale 1+ ook + - + Gooks + lgPe) — a9 = 0,

a uspora,da,me-h jako linedrni funkei koreldt k,, k,, ..., &,
bude

b [ ]+ 3 [ V“”] ot by [“”“"’] — ayo+ (@] = 0.
P P

Pj 3
Aby se vzorce zjednodusily, zavedeme pro prevracenou hod-
notu vah znacku ¢; = 1:p; a vynechdme druhy index j,
podle néhoZ se tvori souéty naznacené lomenou zdvorkou.
Pak bude predchdzejici rovnice a ostatni rovnice, které ply-
nou, dosadime-li do dalsich rovnic (3):

Iﬁ [9a,®] + ka[ga,a.] + ...+ ks [qa'laa] —a -+ [a,l] =0,
kl [qa2a1] + k2 [qa'22] + s + kO‘ [qazaoJ _a20 + [a’2l] = O, (9)

ke, [qaoay ]+ ky[qacag) + ...+ k,[qas?] —agg+ [ad]=0.

Zvolime-li z;y = M;, bude l; = 0 a v rovnicich (9) odpadnou
cleny [a,l] = [a] = ... = [a,] = 0.
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Témto rovnicim se fikd norm4élni rovnice pro kore-
laty. Z nich vypocteme koreldty na pr. Gaussovym postu-
pem (III, 2). Pak ze vzorci (7') plynou nezndmé z';, ',
I

Vy;oéet normélnich rovnic (9) pro koreldty se zase kontro-
luje soucé¢tovou kontrolou. Pripojime ke koeficientim
z rovnic (3), t. j. k ¢islim

all, alz’ [N} o, alo’ )
@915 Aggy - - -5 Bgg, (10)
aal, aﬂ, ey aae,

souéty jednotlivych sloupcu, s;, 8, ..., 8, takze je

o o
8= D0y, &= 2 Ggy, atd.
Cog=l g=1

Nésobime-li na pr. sloupce (10) po radé ¢isly ¢,a,5, g2, - - -
¢o%10, budou soucty v jednotlivych rddeich [ga,?], [ga,a,), ...,
[qa,a,]), [qa,8], a pri tom

[qa,8] = [ga,] + [ga,a,] + ... + [92,0,]-
Tak jsou kontrolovany koeficienty prvni normalni rovnice

pro korelaty. Podobné se kontroluji i koeficienty ostatnich
normalnich rovnic, pro nez

[ga.s] = [ga.a,] + [ga,®] + ...+ [qa.a,],

[ga.8] = [ga.a,] + [gaca,] + ... + [qa.°].
Korelaty ky—1, kg—sg, - - ., k, se pocitaji vidy ze dvou riznych
redukovanych rovnic. Tim ovérime spravnost vypoétu ko-
relat. Sprdvnost vypoétu nezndmych z',,z',,..., 2, ze
vzorcu (7') ovérime, dosadime-li vypocétené hodnoty do pod-
minek (3).

3. Vypolet soultu [ pvv]. a) Soucet [pvv], kterého potie-
bujeme k vypoétu stiredni chyby m, pro jednotku vdhy, mi-
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Yeme pomta.tl pftimo z hodnot 2';; vypocteme odchylky
v; = x'; — I}, étverce v, , pak souéiny p;v;? a utvorime soucet
pro viechna j=1,2,..., 0.

b) Neprim4 cesta.
«) Utzijeme-li vzorce (7), muZeme psati

[pow] = me — l)? =

i=1

e
= 21 (kyayi + ... + koaoj) - q; (kyay; + -« . + kotlgj) =
)=

= ky {k;[ga,a,] 4+ k;[gaa;] + ... + Kk, [qaya5]} +
+ ky {k, [qa.8,] + Kk, [qasa5] + ... 4+ ks [90:0,]} + --- +
+ ks {k; [qasa,] 4 k; [qasas] + .. + k, [qa.a,]}-

UZijeme-li rovnic (9) a poloZime-li I; = 0, bude

[pvv] = aoky + agky + ... + Bapks (11)
MuZeme tedy pocitati soucet [pvv] podle vzorce (ll) z hodnot
korelat.

f) Podobné jako ve vypoétu [pvv] (viz III 6), miZeme vy-
loué¢iti koreldty ze vzorce (11) a z normélnich rovnic (9).
V tomto pfripadé je misto [pll] nyni 0, misto koeficienti
- [pal], - [pbl]’ - [pCZ] a’td' je nyni + a’lﬂ! + azo’ + am: R
misto [paa] je nyni [ga,a, ], (t. j. koeficient u k, v prvn{ z rovnic
. (9)), misto [pbb . 1], [pbl . 1] nyni [ga.a, . 1], [@s - 1] (koefi-
cient u k, a prosty ¢len v prvni redukované rovnici prvniho
rddu) a misto [pcc.2], [pcl.2] nyni [ga,ay.2], [ag . 2]
(koeficient u kg a prosty ¢len v prvnf redukované rovnici
druhého tddu).

Pak podle vzorce [III, (22)] plyne

Oy [ag - 1]? : '
po] = ——— 4+ ——— 4 —Z— — ... (11%)
Lpoe] [ga,a,] * [gasa, . 1] * [gasa; . 2]
z koeficientii a prostych élenti normdlnich a redukovanych
rovnic.
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4. Stfedni chyba linearni funkee vyrovnanyeh hodnot.
Chceme vypoéisti stifedni chybu funkce @ = f, + f,2'; +
+ fo’s + ... + fo'e. K tomu cfli musime vyjddriti @ jako
linedrni funkci mérenych velicin M; nebo veli¢in /;. Bude

D= fo+ D fix's = fo+ Zl{fﬂjaglkvaai + fili} =

i=1

= fo+ 2 klgaf] + (1]
g=
Zavedeme velid¢iny h,, h,, ..., hy, které splnujf rovnice

hy [90,8,] 4 by [qaya,] + - .. + ko [qa,2,] = [ga4f],
hl [qaza’l] + h’2 [qa2a’2] + ome + ho‘ [qa'z“a] = [qazf], (12)

by (9808,] + Pg (98085 + ... + o [9208,] = [8.f]-

Nésobime-li rovnice (9) po Fadé ¢isly &y, hs, ..., by, seCteme-li
a prihlédneme-li k rovnicim (12), dostan:me

b [goaf] + Ky (gaf] + -+ ko lgaof] = 2. ko [gaef] = anoh +
+ aghy + ... + aghs — hy [a)l] — by [azl]‘ — ... — by [a)l],

tedy
¢= /0+ a10h1+ a’zoh2+ + a‘ooha""'

e
+_Zl(f,~ — hy@yj — holpj — ... — hag;) U
7=
ProtoZe stredni{ chyba j-té z rovnic (2) je rovna m, : V;,-,

bude podle vzorce [I, (12”)] étverec sttedn{ chyby funkce &
roven

4
Me? = my? ‘Zl @i (f; — byy; — hoflg; — ... — hoyj)?. (13)
j=
Vzorec (13) mézeme jeSté upraviti takto:
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0
2:141 (fj — ey — ... —hoyy) (fj —Payy — . - . — hollyg) =

= [gff] — 2h, [gfa,] — 2k, [gfas] — ... — 2h, [gfas] +
+ bk, {h, [qa,a,] + Ry [qama,] + ... + ks [ga,a0]} +
+ hy {k, [qa5a,] + b, [qa.0,] 4 ... + kg [gagac]} +

+ ko {hy [9a.a,] + by [qaca,] + - ..+ ks [9a.a]}-

Uzijeme-li vzorcu (12) a slou¢ime-li, jest

jzl%' (fy — M@y — hottyj — ... — hottg;)? =
= [gff] — hy [gfa)] — ke [gfac] — ... — ko [gfas],
tedy
me? = my? {[qff]— h, [gfa,]1— h, [gfas] — . ..— hq [gfa,]}. (13')

Podobné jako v (III, 6) o vypoétu [pww], miZeme vylouditi
veli¢iny A, hs, ..., h, ze vzorce (13’) a z rovnic (12). Jen misto
p je nyni g, misto ! jest f a mistoa, b, c,...jenynia,, asas, ...

Misto vzorce [II1, (22)] bude tedy
M¢2 — m02 (g[ﬁ] _ [qalf]2 [qazf__l]z [qasf ) 2]2 . )

[ga,a,]  [gasa,.1]  Tgasas . 2]

. (137)
Pri tom [ga,a,], [ga,f] jest koeficient u &, a prosty élen v prvni
z rovnic (12), [ga.a, . 1], [ga.f . 1] je koeficient u k, a prosty
¢len v prislusné prvni redukované rovnici prvniho fddu,
[qagag . 2], [qasf - 2] je koeficient u kg a prosty élen v prvni
redukované rovnici druhého rddu atd.

Jde-li na pf. o jedinou podminku

a1 &y + Qs + ... - Q1T = @y,

bude také jedind veli¢ina A, a prisluSnd rovnice (12) jest

by [98,0,] = [ga4f],
takZe Ctverec sttedni chyby linedrni funkce vyrovnanych
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hodnot @ = f, + f;a’; + fo2's + ... + },2', bude podle vzor-

ce (13’) nebo (13”) roven
[ga, /1
med = my? — =2\ 14
of = my { [aff] [Wl]} (14)
Necht jde o 0 podminek tvaru
“’:1 4+ ?l:1 + 2:1 = Gy9,
x2+y2+22=a20, (15)

z'e+ y’a + 2= Aoy
vahy méfenych veliéin oznaéime p,, p'y, p";; Pa, P's, 0"a; - - ;
Do P'a» P"s- Chceme uréiti stredni chybu vyrazu

D= fo+ El(fax’a + oo+ 1702"0)-
g=
Zavedeme c¢isla hy, hqy, ..., by, kterd splnuji rovnice (12),

hg(@o+ @0+ 9"0) = (Gofo + @'of o + 9"of"0), 9=1,2,...,0.
Pak ze vzorce (13’) plyne

me? = mozozl{(%faz + @'of'* + q"f"®) —

_ (gofe + dof's + @ol o) '
99+ 9+ 4%)

Chceme jeité vypodfisti, jakd je prumérnd hodnota poméru
vihy méfené hodnoty k vdze vyrovnané hodnoty. Oznaéime
vahu méfené hodnoty M; pismenem p; a vahu (stfedni chy-
bu) vyrovnané hodnoty z’; pismenem P;(m;). Mdme tedy

1 & p;
uréiti primérnou hodnotu — z b
ei=1P;

(15°)

1
Protoze 2 = Z:; a podle vzorce (13’) jest



..2
m;

7;;2' = ¢ — M@y — hoQjly; — ... — hoqisj,
bude
Pf_ 1815 — Noloj — . . . — Noloj,
a

e Di . e e e
F= —Zhla,l,-— thaz,-—...—Zhaaa,-.
=171 =1 j=1 j=1

Pri tom podle vzorcu (12) jest

h,[qa,a,] 4 hylqaia,s] 4. ..+ holga,a,] = gjay,

hl[qa’zal.] + hz[qa'zae[ +...+ ha[qazao] = {05,

h,lqa.a,] + holqasa,] + ...+ holqas.as] = ¢iaq;.
Odtud na pf.

2104, [9a4a,), - .., [9242,]

1 @i, [qa.a,], - .., [qa.as
hlaﬁquﬂz,u[qzaz] [42“],

qiaO‘ialf’ [qa'oaz], = oy [qadad]

kde A’ je determinant predchdzejici soustavy linedrnich
rovnic; tedy

0 ‘ [9a,a,], [9a,a,), - - -, [92,0,]
> hyay = 1 '[gaya,], [90:8,), -- -, [9222) | __ ,
_Jblal’_Tl.....‘ ................ -
=
; [qaoal], [qaoaz], ey [qa’oa’a] ,
Podobné -

e 0 e
zh2a27=1’ Ty Zhdaoj=l, tedy z&= 0—o.
i=1 i=1 j=1P,'

Podet séftanct p;: P; jest p. Prumérnd hodnota poméru
véhy méfené hodnoty k vaze vyrovnané hodnoty jest tedy

e & —_—
1 z p’ — Q G. . (16)
e j=1 P 0
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b. Priklady na vyrovnani zavislych mé&feni. 1. V troj-
thelniku ABC byly méfeny hly 4 = 61° 07’ 52,00",
B = 176° 50" 54,00", C = 42° 01’ 12,15". Jejich vdhy jsou po
radé 3, 2, 2, sféricky excess ¢’ = 2,11". Provésti vyrovnéni.

Oznaéime-li opravy dhli z,, z,, 25, m4d byti 3z,2 + 2x,% +
+ 2,2 minim4ln{ a pfi tom m4 byti pfesné splnéna podminka

T, + T+ 23 = -+ 3,96". (17)
Funkce .

F = 332 + 22,2 + 2a,2 — 2k, (x, + 2, + 25 — 3,96")
nabude minima, kdy#

1oF _10F_10F
2 ox, 2 ox, 2 omy

tedy kdyZ
3’y = ky, 22y =k, 22’y = ky;
dosadime-li do rovnice (17), bude &, (¥ + ¥ + 1}) =-43,96".
To je normélni rovnice, kterou bychom mohli pfimo napsati
podle prvni z rovnic (9): ¥, [ga,a,] = a,4. Odtud %, = 2,97".
Pak
'y = 3y = + 0,990", 2’y = }k, = 4 1,485" = ',

Vyrovnané tihly budou:

A+ x’l = 61° 07’ 52,990",

B+ 2 2 = 76° 50’ 55,485",

C + 2’y = 42° 01’ 13,635".
Stredni chyba pro jednotku vihy je m, = j:l/[pvv] : 1, kde
vy = a';, tedy [pvv] = 3z',2 + 222 + 2242 = 11,7611. Po-
dle vzorce (11) je [pwv] = a, ok, = + 3,96" . 2,97" = 11,7612.

Pak my = 4 3,43".
Ctverec stiednf chyby pro z, je podle vzorce (14), do né-

hoZ dosadime fy=f,=...=f,=0a f, = 1, roven
¢,? ¢ (22 + g5)
Mg 2= mg? {g, — = i 2 :

* 0 {1 91+42"|‘93} 0 ¢+ 92+ 95
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odtud
mg? = jmy?, mg, = + 1,72°.
Podobnsé je

myg — ’noz qﬂ (q2 + qB)

,  my= 5=+ 1,92" = m,.
¢+ 92+ ¢ y =1 V * z

To jsou stredni chyby vyrovnanych dhla uvaZovaného troj-
tihelnika.

MiZeme je vypocisti také piimo takto: Jsou-li 44, 4B,
AC skuteéné chyby dhla 4, B, C a tedy

180°+ ¢ —A—B—C
G+t
bude skuteénd chyba ve vyrovnaném hlu 4 + 2’, rovna

k1=

44 4 AB- 4 AC
A4 — =
: ¢+ 92+ s h
_ %+ 944 —q4B—q d0
H+9+49
A protoZze stredni hodnoty 44, 4B, AC jsou -7—n_1, o ,
P1 ¥VD:

V_. ¢ili my Vql, mol/qz, mqua, bude étverec strednf chyby vy-
rovnaného dhlu 4 4 z’, roven podle vzorce [I, (12°)]
%2

(O + ¢+ 6)?

(g2 + 25)* @1 + @1%02 + 0:%%:) =

¢1 (g3 + 95) .
¢+ 2%+ 9

Podobné jest Gtverec stfedni chyby pro vyrovnany thel
B + 2/, roven

— 7”,02

s 92(1+ %)
¢+ 95+ 9

My
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a pro uhel C 4 x'; jest
m.2 7 (1 + 92)
0 ]
¢+ 92+ 95

Véhy vyrovnanych ihli jsou po fadé rovny

W+t 1+ 6+ ©t+%B+ 49

(Gt s% ot GGt

V uvaZovaném zvlaStnim pripadé budou rovny &islum 4,
¥, ¥

2. Na stanovisku bylo méfeno » dhli «,, &,, ..., x,, tvori-

cich dohromady plny thel. Jakd je vdha jednotlivych vy-
rovnanych hla, je-li vdha kazdého méreného vhlu rovna p?

V tomto pripadé je
F = px® + px® + ... + prs® —
— 2k (%) + Zo+ ... + Ty — ayy),

kde alo = 3600 — “1 — “2 _— .. — XKy. P&k \
xl . xr . . xr . kl
1 2 cr n D ’

a dosadime-li do podminky ', + 'y + ... + &' —a;y = 0,
bude ‘
k Q10D

=—azh=ay=..=ap=—.
Stredni chyba pro jednotku véhy je
’ ’ 7 or n
My = - Vp (') + 22 + 2'y?) = ky 1/72 “10V’£"

Abychom vypocetli ¢tverec stredni chyby vyrovnané hod-
noty x; (a vyrovnaného dhlu «; 4 z;), poloZime ve vzorci
(14) f; = 1 a misto ostatnich f klademe 0. Pak

mz.2=m2 q._ ; q72 — Zm,2' 1 - p —
J L A R A S 2 \p o

—_— 2
= my* ———,

pn
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tedy

My, = L mol/np;l = i‘%’l/n—l.

Véha vyrovnaného dhlu bude pn:(n — 1).
Stfedni chybu vyrovnaného uhlu «; + 2’; miZeme poci-
tati také primo: '

360° —x, —Xg — ... —&
, ’ 1 2 n__
&+ Z'j = & + =
n
_ 300" & &y %, Al
n n n n n
L Xn
n n

ProtoZe stiedni chyba jednoho méreného thlu je my: l/z—), je
stfedni chyba vyrovmaného thlu «; 4 z’; podle vzorce
[1, (12"] rovna

1 (n—1)  (n—1)2 1 n—1
mol/nz . L szOVIm'

3. Mezi body Brest, Greenwich a Paifz byly v r. 1872
uréeny tyto rozdily zemeépisnych délek:

Brest—Greenwich .... 17m 57 154,8 vdha 10,
Greenwich—Paiiz ... 9m 21,120, vdha 7,
Brest—Pariz ........ 27m 18,190, vaha 9.

/
Urciti jejich vyrovnané hodnoty, jejich stfedni chyby a
véhy nejprve obecné a pak ¢iselné.*)
Oznaéime délkové rozdily
Wp o= W + Ty, Wy _p = Wy + %, Wp _p= Wy + x5,
m4 byti
w + &+ Wy + Ty = w5 + Z3, tedy x + 2, — 23 = a,,

m— | S p— @ 1

*) Wright-Hayford, 1. c. str. 166.
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kde
Gy = W3 — ) — wy = — 0,084".
Funkce
F = p2® + px,® + pss® — 2ky (2 + 2 — 23— ayy),
odtud

’ kl ’ kl ’ kl [

xl—z’ 2= 5y’ xs——;a-.

Dosadfme-li do rovnice
, ’ ’ ’r _ alo
', + 'y — x'yg = a,y, bude k,; PP
tedy
. @101 e - @192 ’
¢+ 91+ 5 ¢+ 921 g5
x’a —_ @493 )
1 + 92+ ¢s

V uvaZovaném zvlastnim pripadé jest
k, = 0,2378, z', = — 0,0248, z’, = — 0,034%, x'3 = + 0,026

a tedy vyrovnané hodnoty délkovych rozdili jsou
17m 57,130%; 9m 21,0868; 27™ 18,2168.
Sttedni chyba pro jednotku vahy bude

my = + 1/1’1""12 + po’s® 4 pyxg’? =
— + |/1,994 . 10—2 = - 0,141~
Podle vzorce (11) je
’ [pvv] = a ok, = 1,991 . 10—2.

Jako v 1. pi'ikla.dé jsou stredni chyby vyrovnanych veli¢in
x',, &'y, ¥'3 TOVy

i V91(92+93) - l/%(%‘l"%) - V43(91+92)
° 91+92+93’ ° G+ %+ ‘ ¢+ 92+ 95
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a vahy danych délkovych rozdila jsou

Gh+9%+9B G+t VQ1+92+€13.
@+ e) B@+3%)" 6+ )

V uvaZovaném ¢iselném prikladé jsou stiednf chyby 40,038,
%0,0415, --0,039® a vahy po radé 3%?, 338, 3338,

(

4. V trojthelniku 4 BC (obr.
6) jsou vnitfni dhly méfeny
s vahami p,, p,, p;. Je-li dana
délka strany AB = ¢, o které
predpokldddme, Ze je bez chy-
by, a je-li m,stredni chyba pro
jednotku vihy, jaké jerelativ-
ni stfednf chyba délky a = BC
a vysky v,?

Oznaéime-li Ghly 4, B, C
obr 6 a jejich opravy z,, 2, 5, bude

jako v 1. prikladé

F = p,x,% 4 p,x,2 + pgag® — 2k, (2, + Z + X3 — a,),
kde

(

A= 180+ ¢ — A4 —B—C.
Hledéme predevsim stiedni chybu veliéiny
C ‘
@ = — -5 sin A.
Jsou-li 44, 4B, AC skutecné chyby v dhlech 4, B, C a jest-
_lize skutetnou chybu v a oznaéfme Aa, jest

oa oa
Aa—ézAA—{— a—CsmC.

A protoze

oa c
34~ sinC cos A=acotg A,
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oa c

aC ~ ~ sim2C
bude, zavedeme-li zkratky
¢, = cotg A, c; = cotg B, c¢; = cotg C,

sin 4 cos C = —a cotg C,

relativni chyba

b = 4;=01AA—03A0.
ProtoZe tedy jde o stredni chybu vyrazu ¢,2’;, — cy2's, staci
pouZiti vzorce (14), kde poloZfme f, = ¢, , =0, f; = —¢;.
Bude tedy

my? = my? {91612 + gs0s® —

(¢1¢1 — g563)? .
¢+ 92+ 95

Pro p, = p; = ps; =1 bude

m¢2 — mos {clz + 632 . (¢ —3 63)2} _ 27:;202 (612 + c,65 + cs2).

Jde-li o trojihelnfk rovhostranny, je.

¢; = ¢3 = cotg 60° = 1

'8
a tedy _
: mqj = My V'ﬁ_ '
Chceme jesté vyhledati sttedni relativni chybu ve vysce
c

Vo= .- 58in A sin B.
Vetomto pripadé je
AV _ 6, A4 + ¢, AB— ¢, AC.

~ Y

Pijde tedy o stfednf chybu linedrniho vyrazu
D, = 0,7y + &'y — 57y
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UtZijeme-li zase vzorce (14), bude

(161 + a2 — 44C3)?
o = Mo { T T Tt et |

Je-li uvaZovany trojtihelnik rovnoramenny a métime-li oba
thly pri zékladné stejné presné, jest ¢, = ¢,, p, = p, a tedy

(2916, —gs¢s)*
my 2 = my? |2¢,¢,2 c3® — =
o, 0 {2Q11 + gs¢3 2ql+q3 '
(€ + ¢5)? 2(c; + ¢5)*
S et BT 2m
V tomto pripadé je
¢, = cotg A = cotg (90 — }C) = tg 1C, .

takZe
¢, + ¢; = tg $C + cotg C = tg 3C +

1+ tg24C 1
 2tg$C  sinC’

1 —tg23C
2tg 4C

tedy

m.o— M |2 .
®  sinC | p,+ 2p,

5. Od vrcholu P, je veden podél poledniku bodu P, retéz o
trojihelnika (obr. 7), s vrcholy P,, P,, ..., P, 1, v nichZ byly
meéfeny vSechny ihly se stejnou presnosti. Jakd je stfedni
chyba: a) ve strané s, = P;P,.;; b) v thlu, ktery svira
strana 8, s polednikem bodu P,; c) v primétu P F,., Cary
P,P, ... P, do poledniku bodu P,.*) (Vypoity providati
jakoby body P, P, ..., Pyy1 leZely v roviné.)

Délku P P, oznacéime 8, a predpokldddme o ni, Ze byla
zmérena bez chyby. Méfené thly v g-tém trojahelnfku jsou

*) A. R. Charke: Geodesy, Oxford 1880, str. 225—227.
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Ay, B,, C, a jejich opravy

%4, Yg, 2. Podminks z g-
tého trojihelnika bude

Ty + Yo + 29 = gy, (17")
kde
ago= 1800— 4,— B, — (.

Funkce F' je v tomto pri-
padé

F=2 @&+ 9+ %) —
g=

— 2ky (%9 + Yy + 2 — aygo)-

Anulovanim derivac{ podle

g, Yo, 29 Plyne z'y=1y'p=
= 2'y = k;. Dosadime-li do
podminek (17’), bude
Yo= 'y = 2'g = {ay,
tedy vyrovnané hodnoty

uhli v g-tém trojihelniku
jsou

A,+ 'y, By+ 4y, Cp+ 2.

Oznadéime-li stfedni chybu pro jednotku véhy (t. j. v jednom
méreném uhlu) pismenem m,, pak podle vzorce (15’), kde
klademe na pr. f,=1 a ostatni f rovna 0 a ¢, = 9=
= q¢"¢ = 1, plyne stiedni chyba ve vyrovnaném whlu

0] Y
m, - ’ 7 — m ¢
° an W t+9s1+9 ovg

a) Abychom odvodili vztah mezi skuteénymi chybami
AA4;, ABy, 1= 1,2, ...,9 a piisluSnou skuteénou chybou
strany s,, vyjdeme z véty sinové
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Sin ‘Bl smBz...Sint
sin 4,sin 4,...sin 4,

8,=

A, jest thel proti dané strané s,, B, proti prvni hledané
strané s, atd.

Ze zménénych hodnot hli bychom vypodetli

sin (B,+4B,)sin (By+A4B,) ...sin (B, + 4B,)
0 sin (4, +A44,)sin (4,+A4,)...sin (4,+44,)
Logaritmovanim plyne odtud

8g+ A8y =

log (8, + A8y) — log 8y = Z{log sin (Bg + 4B;) —
—- log sin (A, + 44;)}
a z predchézejici rovnice ,
g
log 8, — log 8, = 2 {log sin B; — log sin 4},
i=1
tedy
g
log (8, + As;) —log 8; = Z {log sin (B; + 4B;)—log sin B;} —
i=1

g
— Z {log sin (4; 4+ 44;) — log sin A4;}.
i=1
Rozdil
log (8 + As,) —log 8, = M log w —

As,

— M log (1 + A"’) M.

Oznacime-li znackami 04; 0B; tabulkové diference pro
log sin a jednu vtefinu v misté A4, resp. B;, jest

log sin (B; + AB,) — log sin B; — AB; (SB,;
a

l()g sin (A,, + AA.) — ]()g sin Aii AA,' 6A,-,
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tedy

44 _ z(AB; 8B; — AA; 04,).
30 t=1
Pijde tedy o stredni chybu vyrazu
As, 1 & ,
d— == 71?.-; (y's 0B; — ' 8Ay).

UtZijeme zase vzorce (15’), v némz klademe
9o — q', = q”, = l, f' = — 6A,;, /', = + 6B.', ]‘”g = (.
Pak

e g — 04+ 0B;)?
Mo’ = %igl {6A,-2+6B.-2—( 3+ )}=
2
— Z—‘;E 2 (342 + 6A; 6B; + 6B?).

Tedy stfedni relativnf chyba ve strané 8g ]est

mo
M t=1

Z (8A2 + 84;0B;+ 6By2). (18)

Pii tom AA4;, AB;, AC; a tedy i m, znadi podet vtefin, tedy

prosta cisla.

b) Oznadfme-li thel, ktery svird strana s, s polednikem
bodu P,, pfsmenem «x, (azimut bodu P,, ¢ftany od severu

pres vychod na zdpad), bude

azimut sméru PP, roven o, = 180° 4 &y + C,,
azimut sméru P,P; jest o, = — 180° + x; — C,,
azimut sméru PyP; jest 3=  180° 4 x, + C,,
azimut sméru P, Py jest o,= — 180° 4 a3 — C,,

azimut sméru P,P; ; jest

g = (—1)7—1 180° + a1 + (—1)—1 C,.
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Odtud
iy = {1830 F gt CL— Cot Cy— Cyt ...+ (— 110,

. 0° . .. sudé
Ve vzorci klademe {l 80°° je-li g {lich ¢

Predpokldddme-li, Ze azimut prvnf strany («,) byl zméren
bez chyby, bude skuteénd chyba v o, rovna

Axg= AC; — ACy + ... + (— 1)y91 AC,.
Piajde tedy o strednf chybu vyrazu
D =2—2+ ..+ (—‘— 1yp—12',,
a uZijeme-li vzorce (15'), plyne
Me,2 = moz;(‘ﬁ‘g);

stredni chyba v «; bude proto rovna

me | 39-

-

c) Primét
PoF,y1 = 8yc08 g+ 8; CO8 x; + ... + 85 COS &g
Skuteénd chyba v prumétu PoF,,; je rovna

g

zl(As,, CoS &g — 8, 8in &g Aixy).
g=

Vidéli jsme, Ze
g
Nsy = % > (8B; AB; — 6A; AAy),
i=1
Aoxg= AC, — AC, + ... + (— 1)y—1 AC,,
tedy skuteénd chyba v primétu P,F, ., je

o g
> {-"—"c"“ %0 > 6B; AB; — 84; Ad; —
g=1 M t=1

— 8y8inny (AC;, — ACy + ... + (— 1)7—1 AC’,)}.
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Oznaéime délky prumétu od F, do F,,,, t. j. s cos &y +
+ ...+ 8, cos &, pismenem P, a délky praméti do pi{mky
kolmé k poledniku, t. j. s, sin &, + ... 4 8, 8in &,, pismenem
Q, (proo = 1,2, ..., o). Pak miZeme pséti skuteénou chybu
v primétu P,F, ,:

(6B, 4B, —64,44,) 3/ Lo\ (6B, AB,—b4,44) T~ F1 +

M
+ (6B; AB;— 64 AA3) M 2 4.4
+ (6B, 4B, — 84, 44,) P “MP o=l __Q.,4C, +

+ Qo — Q1) 40, — (Qo — Qo) 4C4+
+ L (aa - @:—1) (_" 1)6—1 Aoa-
Piijde tedy zde o stiedni chybu vyrazu

&, = (—x'104,+Yy,0B,) £3 — z'1§a -+

"Ul

+(— 204, +y 2632) L+ 2, (Q,—@Q)+
t (—a'sBA,+ 5408, _LJ‘;_Pz — 2y (Qo— Q) +
+ (_ x’oaAa + y’oaBa) P —MPU—I

— 24 (Qo — Qo) (— 1" 1.
‘ProtoZe ¢, = ¢’y = q¢"y = 1, bude podle vzorce (15'):
(fo+ Fat 1)
m 2—%22{(/0 + 4+ 1P — : ; 0}'

g=

Dals{ vypolet se doporucuje provddéti ¢iselné.
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6. V fetézci péti podobnych rovnoramennych trojihelnfki,
v nichZ dhly pii vrcholech jsou 38° a uhly pti zdkladné 71°,
je dédna zidkladna s, prvniho trojuhelnfka. Je-li m, sttedni
chyba jednoho méfeného thlu a predpokldddme-li, Ze byly
meéreny vSechny uhly v trojihelnicich a Ze byly vyrovniny,
jakéd je relativni stfedni chyba strany sg?

Podle vzorce (18) je stredni relativni chyba strany sg
rovna

%“-Vl; (6738° + 638° 871° + &%71°).

ProtoZe 638° = 26,9.10—7, §71°=17,2.10—7, bude stfedni
relativni chyba strany s, rovna 1,31 . 10—5my,

0 7. Ve ¢étyrihelniku ABCD
(obr. 8) je dana ihlopticka

2= AC a byly méfeny uhly
(1), (2), (3); (1), (2'),(8') s va-
hami rovnymi po radé p,, p’,,
P"1; Doy D'y P"o- Uréiti stredni
relativni chybu thlopricky
7 ¢ BD = Z.%)

V tomto pripadeé je

7%= AD*  AB? —

94D . AB cos [(3) + (3')],
a

— 2

AD = sin (2), AB = sin (2').

2
sin (1) sin (1’)
Abychom vypocetli, jak zavisi chyba v délce Z na chybéch
A1, 42, ..., A3’ méfenych thld, postupujeme takto: De-
rivujeme vyraz pro Z? podle (1). Jest

——*) Jordan, l. c. ITI, Stuttgart 1907 (5. vyd.), str. 163—186.
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dZ - ddD -~ d4D
Z.&(_l_) — AD . d_(l_) — AB cos [(3) + (3')] -d_(ﬁ ’
dAD : ¥
W = s o @) oo () = — Aoty (1) =
= — ADc,,
edy '
dZ m— = <D ' '
Z 0= ADc, {AD — AB cos [(3) + (3')]},

a protoZe (viz obr. 8)

AD — ABcos[(3) 4+ (3')] = Z cos a,

je
dZ ——
an= — AD ¢, cos .
Podobné je
dZ — dZ 2D _/ ’
i@ = + AD ¢, cos «, a — ABc';cos o,
dZ 1D ./ ’
W).z + ABc'ycos &',
kde
¢, = cotg (2), ¢/; = cotg (1'), ¢’; = cotg (2').
Déle
ZdZ _— = ,
@) = + AD . AB sin[(3) + (3')],
a protoze

ABsin[(3) + (3')] = Zsina

(viz obr. 8), je
dZ —

(—1—(5) = AD sin «.

8%
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Podobné

dZ —
-= ABsin«’.
a3) B sin «

Pijde tedy o vypocet stfedni chyby pro vyraz

@ = fi(1) + f1(2) + 1"13) + fo(1') + [2(2') + ["5(3'),
kde
fi= —AT)-c1 cosx, [,=-+ A-I_)-c2 cosx, ;= AD sin «,
fo= — ABc¢', cos &', f'y= + ABc’;cosa’, [y = ABsin«’.
Pri tom podminky jsou

(D) + @)+ B)=ay, (I') + (2') + @) =
Podle vzorce (15°) bude
My? = My’ {91f12 + P+ P+ G+ 4 P g R —
. (@h + s+ &) (sz2 + ¢fs + Q”J"z)z}

41+q'1+q”1 2+Q2+92

Jde-li o kosoétverec, budou thly (1) a (1’) stejné a rovnés
uhly (2), (3), (27), (3') budou stejné; a také x = o', tedy
=i /1 = F 2 f’ 1= = f" 2 Predpoklédé,me li dile, Ze
Py = Do, P’y = P"y = P's = D", bude vyraz ve sloZené zdvorce

) ”n 2
2 {qlff IPAUSTLIN 28 i ds) }

Dosadime li sem f,=— ADc,cosa, f;= + ADc,cos «,

= AD sin & a uvaime-li, 7e ¢, = cotg 2«, ¢, = cotg (2) =
tg «, jest vyraz ve sloZené zdvorce po upraveé

AD* ¢qq, - AD: 1
sin?x ¢, + 2¢';, sin?«x (p'; + 2p,)

my AD 1
m, = —
Z  ginax ) 2p,+ P,

a tedy
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A protoZe v piipadé kosoétverce jest AD cos x = 37, jest -

mZ _ mq 1
Z  sin2x l/2p1 + 7', (19)

Zavedeme-li misto ihlu x pomér Z : z = v, bude

227 427 v

tedy

m 2
2p, + 7'y

2v

8. V retézci trojuhelnika (obr. 9) je dana strana ¢ prvni-
ho trojihelnika a byly méfeny vsechny ihly se stejnou
sttedni chybou m,. Jest vypocisti stfedni chybu souétu
8 =8 + 8, + ... + 8, za predpokladu, Ze trojihelniky jsou
rovnostranné.*)

Protoze v tomto pripadé pujde o 2rn — 1 podminek tvaru
(15) a v8echny vihy p jsou stejné a rovné 1, bude

2n—1

m2 =mg > {(f? + f'® + /') — 4 (fu + f'o + 17923} (15")
g=1

*) Jordan, l. c. str. 159—161.
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Musime tedy uréiti velic¢iny f,, f4, /g, t. j. koeficienty
u d4,, dB,, dC, ve vyrazu

2n—1

S = z (fo ddg + f'g dBy + [7¢ ACy).
g=1

Podle véty sinové vypocteme

8 8§ sin C, sin By

"= b a= e m A ma, o B
L L
N L

Derivujeme-li podle A4,, obdrzime
ds; = — sm:A sin B, cos 4, dA1 = — §, cotg 4, d4,,

ds;, = — s, cotg 4, dA4,.
Podobné, derivujeme-li podle A,, dostaneme
ds; = — s, cotg A, dA,, ..., dsy = — g5 cotg 4, dA,
a stejné pro ostatni uihly 44, 4, atd. Tedy
f = —cotg 4, (8, + 8+ ... + 8,) = — ns cotg 60°,
fo = —cotg Ay (83 + ... + .9,.) — (n — 1) 8 cotg 60°,

fs = —cotg A3 (83 + ...+ 84) = — (n — 1) s cotg 60°,
4——cotgA4(sa-|—...+s,,)=—(n—2)scotg60°,

I

f2ﬂ—l= I COtg A21|—18n = — 8 cotg 600.

Derivujeme-li podle B,, obdrZime

de = sin 4,

cos B, dB; = s, cotg B, dB,

118



a stejné :
d82 =I .82 COtg .Bs d.Ba, d83 — 83 COtg Bs st, “ony
ds,, = 8y cotg By, 1 dBj, ;. ‘
Pro sudé indexy u- B jest

ds, = s, cotg B, dB,, pro g =2, ..., n,

ds; = 8, cotg B,dB,, pro ¢ =3, ...,n atd.
Tudi?

f'y = 8,cotg B, == 8 cotg 60°,

f's = cotg B, (.92—}— .+ 8,) = (n — 1) 8 cotg 60°,

f's = 8 cotg 60°,

f's= (n — 2) 8 cotg 60°,

f's = 8 cotg 60°,

f'e = (n — 3) s cotg 60°,

f'2n—1 = 8 cotg 60°.

Uhel C, obsahujf s, 8, - .., 85, tedy /", = (n — 1) 8 cotg 60°;
ihel C; a vSechny thly se sudymi indexy neobsahuji Z4dné
8y, tedy f"ex = 0; whel C3; obsahuji s, s, ..., 8, tedy
f’s = (n —2) 8 cotg 60°; podobné f"; = (n — 3) s cotg 60°,
f's = (n — 4) 8 cotg 60° atd.

Vidime, Ze

h+ 1+ [’y = 8 cotg 60° (— =0
fot fa+ ['a=scotg60° (=n+ 14+ n—1)=0,
fs+ f's+ ['s = 8 cotg 60° (—
fa+ [ o+ ["a= 8cotg 60° (—
Tim vzorec (156”) prejde v
2n—1

/ myt =mg* 2 (1 + [+ 1)
Déle jest

2n—1

z fo = 8% cotg2 60° {n® 4+ (n —1)2 4 (n—1)*+

g=1

+mn—22+ (n— 22+ ... + 12 4 12},
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A protoze
124+ 22 ... 4 nt=3n(n+1)2n+ 1),

124224 ... 4 (ﬁ—l)2=-}(n—l)n(2n—l),

jest

tedy

Podobné

a
2n—1

D 1 = % 8% cotg? 60° n (2n? + 1).
g=1

D = 8® cotg? 60° {12 + (n — 1) +
g=1

+ 12+ (n—224 ... 4 124 1%} =
— } ns? cotg? 60° (2n2 — 3n + 7),

2 [ = s*cotg? 60° {(n — 1) + (n — 20 + ... + 1%} =
g=1

proto
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my? = my%s? cotg? 60°

= 182 cotg? 60° (n — 1) n (2n —1);

4nd —3n2 4 5n
3 .

9. Vyrovnani nivelaéni
sité. PrFi nivelaci mésta byla
nivela¢ni sit pfipojena na bo-
dy A a B zdkladni nivelacni
sité, jejichz vysky jsou V4 a
V.V obr. 10 znac{ 8ipky stou-
pini trati. V; jsou name-
fené rozdily vysek a v; pri-
slu$né hledané .opravy. Uko-
lem je vyrovnati tuto .nive-
laéni sit. Opravené rozdily
vySek maj{ splnovati tyto pod-
minky: Z obrazce I jest




Vi+ v — (Va4 v) — (Va4 v3) = 0,

vy —V—V=2a, kde a,=—V, 4+ V,+ V,.
Podobné jsou podminky plynouef z obrazca II, III a IV:

¢ili

Vp— Vg — V5 =0y, A= —V,4+ V4 ¥,

Vst Vg—V, =0 ag=—V;— Vg4V,

vs+ v,—vg=a, a,=—V,—V, 4+ V,
Podminka pevného vyskového rozdilu mezi body A a B jest

Vst vs+ Vet vs=Vp— Va4
¢ili
vyt vs=ag ag=Vg— V41— V;— Vi,
Prosté ¢leny a,, ..., a; vyjadiujeme obycejné v mm.

Osm nezndémych oprav v,, ..., v nemize byti uréeno uve-
denymi péti podminkami. Ale ptistupuje jesté podminka, aby
soucet Ctverci oprav ndsobenych prislusnymi vahami byl
minimdin{ (viz IV, odst. 1). V ptipadé nivelaci se podle zkuSe-
nost{ predpoklddd, Ze vdhy jsou nepfimo tmérné vzdaleno-
stem. PiSe se obycejné p;=1 : s;, kde s; jest délka prislusné
trati v km. To také znamend, Ze vdha rovna 1 prislusi trati
rovné 1 km. M4 tedy byti minimem soucet

D%+ Deve® + .. - Pt

a pri tom maji byti splnény podminky

v, — Uy — Uy = a,

’02—’04—'05= az,
Vg + Vg — v, = ag, (20)

Vg + U3 — Vg = Gy,

'03 "‘I— v5 - as.

Funkce F [viz (7)] v tomto pripadé jest
F = pw®+ pvg® + ... + pgvg® — 2k (v — v, — v3—a;) —

— 2ky (vy — vy — V5 — ) — 2ky (v5 + Vg — v; —a3) —
— 2k, (v3 + v — vy —ay) — 2k; (v; + v5 — ay)-
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Anulujeme-li parcialni derivace podle jednotlivych v;, bude

Pv, = ky,
Doy = — ky + ky,
Pgvy = — ky + kg + ks,
. PaVy = —ky, (21)
Psvs = — ko + k3 + ks,
Pevs = ks,
Pavq = — k3 + Ky,
Pels = — ky.

Dosadime-li tyto rovnice do podminek (20) a piSeme-li
g; = 1 : p;, bude

ky (91 + 92 + qs) — koo — kogs — ksqs = @y,
— kyqs 1+ K2 (92 + 94 1+ 95) — Kags — ksq5 Ay,
— kogs 4+ k3 (95 + 96 + 97) — kg7 + kg5 =
—kygzs — ks, + ky (g3 + 97+ g8) + ksgs = ay,
— kygs — koqs + kegs + kogs + ks (g3 1+ g5) =

Ke stejnym rovnicim bychom dosli podle vzorcu (9). Koefi-
cient [ga,%] se rovnd souctu prevriacenych hodnot vah pro ty
trati, jez se vyskytuji v prvni podmince. Podobné [qa,?],
[gas%] atd. V koeficientu [ga,a,] jest qa,a, prevracend hodnota
vdhy pro trat, jeZ se vyskytuje « podmince prvni a druhé
a znaménko je bud + nebo — podle toho, jsou-li znaménka
ua, ia, stejnd ¢iruznd. Tak je na pr. [qa,a,] = — g2s [qa,a5] =
= ( (protoZe Zddnd trat se nevyskytuje soucasné v prvni
a tret{ podmince) atd.

Sem staci kldsti ¢; = 1 : p; = 84, jsou to tedy linedrni rov-
nice se znamymi ¢iselnymi koeficienty.

Z téchto rovnic vypocteme koreldty k,, k,, ..., k; (na
pt. postupem Gaussovym). Pak z rovnic (21) vypocteme
opravy v, ..., vg.

Pro kontrolu dosadime do podminek (20), jeZ mus{ byti
splnény aZ na chyby plynouci ze zaokrouhlovani.

Stredni chyba m, pro jednicku vdhy — jmenuje se také
stfedni chyba kilometrova, protoZe vdha rowvnd 1 prisludi

I
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trati dlouhé 1 km — se vypocte podle vzorce (4)

mo = L}/ }{pe?]
Vyrovnand vyska na pr. bodu C jest V4 + Vg + vg. Pred-
pokldddme, Ze vysku V4 zndme bez chyby. Pak stfedni
chyba vyrovnané vySky bodu C bude rovna stiedni chybé
opravy vg. Podle vzorce (13') jest

My,2 = My? (¢g + qahs) = Myqg (1 + hy), (22)

nebot jen fg = 1 a ostatni f jsou rovna 0, takZe [ga,f] = 0
(¢len gqa,f je soulin prevracené hodnoty véhy, pifslusného
koeficientu v prvni podmince a prislusného f), '

lgaaf] = 0, [goaf] = 0, [qayf) = — g, lgasf] = 0.
Staci tedy vypoéisti h, z rovnic (12), jez zde budou:

hy(qy + @+ 93) — hogy — hygs — hggs =0,
—hgs + by (@2 + 94+ 95) — hsgs —hsgs = 0,
—hogs 1+ hy (g5 + 96+ 97) — h4g7 + hsgs = O,
— Mgy — Mgy + Ry (95 + 97 + 96) + hsgs = — g5,
— Paq3 — hogg + hsqs + hygs + kg (g3+95) = O,

a dosaditi do vzorce (22).

10. Vyrovnani trigono-
metrické sité. Ve ctyrmihel-
niku byly méfeny na kazdém
vrcholu sméry vidy ke vSem
tfemzbyvajicim vrcholim. Vy-
rovnati tuto sit! (Viz obr. 11.)

Ozna¢ime nameérené hodno-
ty S 1=12,...,12. Vy-
poéteme-li na pr. uhly v troj-
thelnfku A BC (8,—8;, Sg—38,,
Se — Sg), uvidime, Ze jejich
soucet neni presnéroven 180°+
+ excess ¢, trojuhelnika 4 BC
(potitdme jako na kouli). Je obr 11




tedy patrno, Ze musime nameérené hodnoty S; opraviti o hle-
dané opravy 8;. Pak podminka, Ze soucet vyrovnanych ihlu
v trojihelnfku 4 BC mé byti 180° - ¢,, bude

— 81+ 8, — 84+ 8¢ — Sy T 8 = Gy,

Podobné z trojihelniki ACD a ABD:

— 8+ 83— 87+ Sg— 810+ 813 = 4y,
ay = 180° + &, + S, — 83 + 87— S+ Syo— Sz, (23y)

— 8) + 83— 85 1 8¢ — 810 1+ 81 = ay,
ag = 180° + g5+ 8; — S5+ S5 — Sg + S0 — Si1-  (235)
Podminka, ktera by plynula z trojihelnika DBC, se d4 odvo-
diti jiz z téchto tfi podminek, nepodala by tedy nic nového.
Podle sinové véty sférické trigonometrie vypocteme
sin AC ze sin AB v trojthelniku ABC, dile sin AD ze

sin AC v trojuhelniku ADC a koneéné sin AB ze sin AD
v trojihelniku A BD. Tak se dé odvoditi dalsi podminka

sin (Sg — Sy + 8¢ — 84) sin (Sg — 8, 4 85 — 8.)
sin (Sg — S5 + 8¢ — 85) sin (Sg — Sg + 89 — 8g)
8in (Sy; — Syo + 813 — 810)
8in (81 — Syo + 812 — 8y)
Tuto podmfinku prevedeme na linearni tvar tim, Ze ji loga-
ritmujeme a jednotlivé séitance log sin (Sg — S, + 84 — 8,),
log sin (Sg — 8, + 83 — 8,) atd. nahradime priblizné stej-
nymi vyrazy log sin (Sg— S,) + a’ (84 — 8,), log sin (Sg —
—8,) 4 b’ (8 — 8,) atd., kde a’, b’ jsou logaritmické dife-
rence pro log sin a 1” v misté ihlu 84 — S,, 8 — S, atd. D4
se tedy posledni podminka psati ve tvaru

@g548¢ + Q45595 + Ayr68¢ T+ Agr787 + 4,858 T
+ G4,989 + Tg10810 T Cen1d1 T+ Bnedie = Q- (23)

V uvaZovaném pripadé mame 4 podminky a 12 nezndmych.
Ale ptristupuje jeSté podminka, aby soucet ¢tvercui oprav
8,2+ 8%+ ... 4+ 8,2 byl minim4dlIn{ (viz IV, odst. 1).
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Funkce F v tomto piipadé bude

F=s82+8*+...4+82—2k (—s8+8—...—a) —
— 2k (@gy485 + Bg5585 + - — By).
Anulujeme-li derivace podle s,, s,, ..., 8;,, dostaneme rovnice

8 = —ky — k;, 8y = —ky + kyay,q,

8 = ky — ky, 8g = —ky + ky + kya,,g,

83 = ky + ky, 89 = ky + k404, (24)
83 = —ky + k4a4,,, 810 = — kg — k3 + k4a4,10,

8= — k3 + k4ay4,s, 811 = k3 + kyay,y,

8¢ =Ky -+ ks + k4,6, 812 = Ky + kya4,5-
Dosadime-li odtud do podminek, budeme miti étyti normalni
rovnice pro korelaty:

6ky — 2k, + 2ks + kg (— a4,&+ Qg6 — Q58 T Ays9) = O,
atd.

Muzeme je zase kontrolovati primo z rovnic (9).

Normalni rovnice reSime na pt. zpisobem Gaussovym. Tak
vypocteme koreldty k,, k,, kq, k4. Pak z rovnic (24) plynou
OpPravy 8;,8s, ..., 8;5. Vypotet kontrolujeme dosazenim do
podminek (23).

Stredn{ chyba pro jednotku vdhy bude podle vzorce (4)

rovna
+ V30

Stredni chybu jednothvych vyrovnanych sméri, nebo jaké-

koli linedrni funkce vyrovnanych smért, pocéitdme zase jako

v pr. 9 podle vzorce (13’), pii éem% koeficienty 2 plynou

z rovnic (12)..



V.
POSTUP PO PROVEDENEM VYROVNANI.

Po vyrovnéni se éasto tdZeme, maji-li odchylky vlastnosti
nahodilych chyb. Uvedeme nejprve podle Helmerta*) nékolik
kriterii pro nahodilost chyb a zptsob, jak odhadnouti pres-
nost téch kriterii.

1. Zkousky znamének. a) Soudet znamének v dané radé
chyb nebo odchylek.

Ozna¢ime fadu uvaZovanych chyb (nebo odchylek) ¢,
&g, - -+, En. dejich znaménka oznaéfme V,, V,, ..., Vy, t. j.
klademe Vi = 41, m4-li chyba (nebo odchylka) znaménko
+. Pri tom nutno vSechny chyby poéitati ve stejném
smyslu a ne tedy na pi. nékterd & povaZovati za chyby
méfenych dhli a jind jako chyby rozdilu (360° — méfeny
uhel). Pak je soudet znamének v dané radé s = V, + V, +
~+ ...+ Va. Mysleme si méfeni, z nichZ vzeSla kazdd chyba
nebo odchylka ¢;, 1 = 1, 2, ..., n, opakovédna nekoneénékrait.
Maji-li ¢; vlastnosti chyb nahodilych a nechdme-li chybu ¢,
nabyti viech jejich nekoneéné mnoho hodnot, a nezdvisle na
ni chybu ¢, nabyti zase viech nekoneéné mnoho jejich hodnot
atd., a utvorfme-li vidy piisluiné s pro vSechny mozné kom-
binace hodnot chyb, bude aritmeticky praimeér vSech téchto
souctu 8 roven 0, protoZe k uréitému pocétu pripadu ¢; se zna-
ménkem -+ musime poéitati stejny pocet pripadu e; se zna-
ménkem —.

MuzZeme tedy rici: Pramérné je soucet znamének v radé
nahodilych chyb nebo odchylek roven 0.

Aby odhadl presnost tohoto kriteria, to znamené, aby né-
jak odhadl meze, v nichz miZeme ve skuteéném piipadé ce-
kati soucet s, uvaZzuje Helmert podobné, jako kdyZ se hled4

*) F. R. Helmert: U'ber die Genauigkeit der Kriterien des
Zufalls bei Beobachtungsreihen. Sitzb. der k. preuss. Ak. der
Wiss., Phys.-math. Classe, 1906, str. 594—612.

126



prumérnd hodnota chyb (srovn. I, odst. 3 a 4). JenZe zde jde
o primérné hodnoty odchylek od primérné hodnoty. Jako
tam se uvazujif véechny mozné hodnoty chyb, uvazuji se zde
vBechny rozdily mezi hodnotami, jichz miZe nabyti soucet
s=V,+ Vo+ ...+ Vaq a jeho aritmetickym prameérem
rovhym 0. A jako tam se poéitaji ¢tverce vSech moznych
hodnot chyb a jejich aritmeticky prameér je (pribliZné) roven
¢tverci sttednf chyby, pocitaji se zde viechny moZné hodnoty
¢tverce

(Vi+ Vot+.. .+ Va—02=V2+ V2 4+ ...+ V2 +
+ D ViVi=4d

L,k=1

(1)

Odmocnina aritmetického priméru hodnot (1) je pak stfed-
ni odchylka souétu 8 od jeho primeéru 0.

ProtoZe aritmeticky prumeér souc¢tu 2'V;Vi se rovnd 0
(plyne jako v I, odst. 4) a aritmetické primeéry hodnot ¥V;?
jsou rovny 1, bude aritmeticky prameér vyraza (V, 4+ V, +
+ ...+ Vp—0)2 roven n. Je tedy Vn stfedni odchylka

souctu 8 od jeho prumeéru 0.

Je-li absolutnf hodnota souc¢tu s vétsi nez Vn, predpokldda
se, Ze pusobi néjaké systematické vlivy a Ze tedy chyby nebo
odchylky nejsou nahodilé.

b) Zmény znamének v radé chyb nebo odchylek.

Jestlize uspordddme vySetfované chyby nebo odchylky
podle néjaké proménné ¢ (na pr. podle ¢asu, teploty atd.), jeZ
nabyvala pri riznych méfenich riznych hodnot, a o niz tu-
Sime, Ze méla systematicky vliv na vysledky méreni, a uk4-
ze-li se, Ze pro prvni polovinu vSech méfeni takto usporada-
nych maji odchylky znaménka kladnd a pro druhou zdporna,
soudime, Ze odchylky nemaj{ vlastnosti nahodilych chyb.

K obecnému kriteriu pro zmény znamének v faddch naho-
dilych chyb nebo odchylek se dojde takto:

Oznaéme pocet sledi v radé znamének V,, V,, ..., Vq
pismenem f a poéet zmén pismenem w. Pak jest f — w =
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=V, Vo+ VoV + Vg V4 ...+ Va1 Vy, nebot V; V;, 4
je +1 pro sled a —1 pro zménu.

Pro nekoneéné mnoho pripadi, uvazovanych v odst. 1a, je
prumérnd hodnota vSech f — w rovna 0, protoZe pro kazdy
souc¢in ¥V;V;,; na kazdé dvé kladné hodnoty (4 1) . (4 1),
(—1).(—1) pripadaji dvé zdporné hodnoty (+ 1).(— 1),
(—1). (+ 1).

Tedy: Primérné je rozdil sledu a zmén v radé nahodilych
chyb nebo odchylek roven 0.

Aby vypocetl, jakd je stredni odchylka rozdilu f — w od
jeho prumeéru 0, uvaZuje Helmert zase o ¢tverci rozdila

(Vl V2+ V2V3+ e + Vn.—l V”_O)2:
= V12 V22 + V22 V32 + te + Vn—l2 Vnz + zV'i—-l V’.2 VH- 1 +
t=1

n
+ > Vi ViV Vs,
i=1

kde . >1 4+ 1.,

Aritmeticky prameér téchto étverca je n—1 (viz la),
tedy V n — 1 lze povaZovati za stiedni odchylku rozdilu
f — w od jeho primeéru 0.

Je-li nékterd chyba nebo odchylka rovna 0, mozno pfi vy-
poc¢tu souétu 8 a rozdflu f — w klésti prislusné znaménko

jednou jako kladné, po druhé pak zdporné a vziti stred. Ke
stejnému vysledku v8ak dojdeme, kdyZ ve vzorcich

s=Vi+ Vot ...+ Va,
i f—w=V1V2+IZ2V3+...—I_ Vn_an
klademe prislusné ¥V; rovné 0.

Na stiedni odchylky V;z_ resp. Vn — 1 nem4 existence nu-
lovych. chyb nebo odchylek Zaddného vlivu, protoZe pravdé-
podobnost jejich existence je nekoneéné mald a prumeérné
hodnoty ¢étvercu V2, V2 V;11% jsou stejné rovné 1, jako
" kdyby se nulové chyby nevyskytovaly.
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2. Zkoulka soudétem skuteénych chyb nebo aritmetic-
kym pramérem skutednych chyb. Necht je funkce éet-
nosti pro chyby ¢; sudou funkef, a jako v odst. 1a mysleme
si opakovédna nekone¢nékrdt méreni, z nichZ vzeSla kazdéd
chyba ¢;. Nechdame-li kazdou chybu ¢; nabyti v8ech jejich ne-
kone¢né mnoho hodnot nezdvisle na ostatnich ¢, utvorime-li
soutet & + & + ... + &, pro vSechny moZné kombinace
hodnot chyb a pak aritmeticky primeér vSech téchto soucti,
bude prumér roven 0, nebot aritmeticky praimeér pro kazdé e;
je roven 0.

Tedy primérnd hodnota souétu [¢] je rovna 0, nebo pru-
meérnd hodnota aritmetického priméru [¢] : n je rovna O.
Znacdime-li pfsmenem m stfedn{ hodnotu chyby ¢, t. j. veli-
¢inu danou priblizné rovnici m? = [&?] : n (srovn. I, (10')), je
¢tverec stiedni odchylky souétu [¢] od jeho primérw 0 roven
n . m?. UkdZeme to, uréime-li étverec rozdilu (g 4 &5 +
+ oot e —0)2=1¢2+ &2+ ... + €,2 + Zeier pro neko-
neéné mnoho hodnot ¢, &, ..., &, jako v odst. la, a hledé-
me-li aritmeticky prumér vSech ¢tverca takto vytvorenych.
Je roven mm?, predpokliddme-li, Ze vSechna meéreni byla
stejné vihy.

Stredni odchylka souétu [¢] od jeho pruméru O je tedy rov-
na mVn = 4 V[se] a stiedni odchylka vyrazu [¢] : 7 od
jeho priméru O je podobné 4 m : Vn =+ V[ee] n. Je-li
hodnota [e], ([¢] : m) vné mezi T |/[ec], (F |/[ec] : n), pred-
pokldd4 se, Ze v chybéch ¢ jsou skryty néjaké systematické
vlivy.

Pro odchylky musi byti vidy splnéno [v] = 0, v pripadé
odchylek tedy nemd smyslu zkouska vyloZend v tomto
odstavei.

3. Zkouska srovnanim soudtu &tvered kladnych chyb
a soudtu &tverch zapornych chyb. UvaZujme o vyrazu

Viel? + Vog? 4 ... + Vyes? (2)
Je-li funkce ¢etnosti pro chyby &; sudd funkce, probihd-li ¢;
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vSech nekoneéné mnoho hodnot uvazovanych v predchéze-
jicich odstavcich, je-li V; = -1 a je-li 4 znaménko chyby
i, bude soucet vsech hodnot V;e? pii stdlém 7 roven O.
Tedy prumeérnd hodnota vyrazu (2), vypocétend ve stejném
smyslu jako v predchézejicich pfipadech, bude rovna 0.
- Ctverec sttedni odchylky soudtu (2)°od jeho priiméru 0
bude roven nm'4, kde m’ plyne priblizné ze vzorce

m'* = [e4] : n.
Tento vysledek se odvodi stejné jako v odstavci 2, uvazu-
jeme-li o vSech moZnych étvercich

(Vlelz + V2£22 + ...+ Vn£n2_0)2 —
= V12 {_-,‘14 + V22 824 + ...+ 'Vn2 8”4 4 z V'i Vk 8i2 ka.

ik=1

Tedy: Primérng hodnota vyrazu V, 2+ Vel 4 ... + Vyep?
je rovna 0, nebo primérnd hodnota sou¢tu étverciu kiadnych
chyb se rovnd primérné hodnoté souctu étverci zdpornych
chyb. Stredni odchylka vyrazu (2) nebo rozdilu ctvercu
kladnych a zdpornych chyb od priiméru O jerovna - m’zv n=
= -+ V[e—“] Je-li rozdil souctu ¢tvercu kladnych a zdpornych
chyb vné mez{ & 1-/ [e4], predpokldda se, Ze v chybach ¢; lze
oc¢ekdvati systematické vlivy.

4. ZkouSky E. Abbeho. a) Vlastni zkouska E. Abbe-
ho. Jestlize systematické vlivy zatéZuji kladné i zdporné chy-
by priblizné stejné, bude vysledek vySetrovani podle odst. 2a 3
negativni. Proto se doporucuje srovnavati dvé funkce chyb,
z nichz v jedné jsou tuSené systematické vlivy co moznd
potlaceny, kdezto ve druhé pisobi v plné mifte.

E. Abbe doporuéuje usporddati chyby e, &,, ..., &4, podle
proménné, jejiz systematicky vliv tuSime, a utvoriti souéty
A=¢&®+ &+ ... + &,

B= (g —¢&)+ (2— &)+ ... + (en—1—¢n)® + (en — &)
V souétu 4 se tuSené systematické vlivy plné uplatnuji, v B
se uplatnf obycejné jen v poslednim ¢lenu. Utvorime jesté
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vyraz
0: A —-%B: 8182+ 8283+ oo + Ensl-
Jsou-li chyby € nahodilé, bude primérnd hodnota vyrazu C,
vypoltend jako v predchdzejicich odstaveich, rovna 0. A
¢tverec stiedni odchylky vyrazu 4 — 4B = C od jeho pri-
méru 0 se vypoéte zase 8 pomoci étverce
(6162 + €63+ --- + &ngy — 0) =
= £%6,% + &%42 + ... + &p%6,%2 + 2 (5,8.%5 + .. .).
Primérnd hodnota, vypoctend jako v drfvéjsich odstaveich,
bude nm¢, ¢ili sttedni odchylka vyrazu A — 4B = C od jeho
prumeéru O jest 4 m2Vn

b) Upravens zkousSka E. Abbeho.
Na misté vyraziu 4, B, C, uvaZuje Helmert vyrazy A*,
B*, C*, kde
A* = (e + &% + .. Tt el — 3% (812+8n),
B* = (6, — &) + (e —&)2 + .'. + (en—1 —&n)?,
CF* = A* — }B* = g16; + &85 + oo+ Ep—1&n.
Zasge se d4 ukézati, Ze primérnd hodnota vyrazu C*, vypoéte-
né jako v predché,ze]icmh odstavcich, je rovna 0 a odchylka
vyrazu A* — 1 B*¥ = C* od jeho priméru 0 ]est + m2Vn—l
Vyboduji-li éisla 4 — 4B a A* — 4B* z mezi F m2Vn

a F m2Vn — 1, predpokldd4 se zase, Ze existujf systematické
vlivy, zatéiujicf chyby &;.

b. Jak zjistime, Ze se odchylky od aritmetického primé-
ru ¥idi normalnim zékonem é&etnosti? Z odstavce (VII,
2b, «) plyne, Ze se odchylky naméfenych hodnot od jejich
aritmetického pruméru ridi normdlnim zikonem céetnosti,
jestliZe se jim tidf skuteéné chyby jednotlivych méreni.

Zkousku, Ze se odchylky ridi normdlnim zdkonem cetnosti,
provddime takto: Nejprve se presvédéime, Ze pocet kaZdého
druhu znamének je priblizné stejny (v mezich uvedenych
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v odstavei 1). Pak zjistime, kolik odchylek m4 absolutni
hodnotu v mezich

0—0717 0’1—032, cey 039_1703
nebo 0—0,2; 0,2—04; ...; 1,8—2,0,
nebo 0—0,4; 0,4—0,8; ...; 3,6—4,0,

.podle toho, jsou-li odchylky priblizné v mezich od —1,0 do
+ 1,0, nebo od —2,0 do + 2,0, nebo od —4,0 do + 4,0.
Cfsla, kterd takto zjistime z pozorovani, srovndme s pii-
slunymi ¢éfsly teoretickymi, vypocétenymi za predpokladu,
ze se odchylky ridi normélnim zdkonem a Ze prfi tom
h=1: mov2, kde m, je stredni chyba pro jednotku védhy pti
uvaZované fadé méteni [viz I, (16’)]. V odst. VII, 2b, «)
je dokdzdno: Je-li normdlnf zdkon, kterym se ridi skuteéné

chyby -h—_ e~ "¢ je normalni zdkon, kterym se ¥df odchyl-
7

ky v od aritmetického priuméru

h n —h? B vt
V— n — l € n—1 ’
T

kde n je pot¢et méfeni. Pak pravdépodobnost, Ze odchylka je
mezi —x a - z, je rovna

Y frn

Zavedeme-li proménnou

n
yzhl/n—lv

ptejde predchdzejici vyraz v tento tvar:

n
h 7-'—_'I£

2 f g
=1¢ "7,
Vn()
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co? podle definice funkce @ [viz I, (8)] je rovno

q»(xh]/n n l').

Theoreticky pocet odchylek, které maji absolutni hod-
notu v mezich od 0 do 0,1 (0,2, 0,4), jest tedy

ofora)/iZ)- ol /i)
el o)/l

Dale theoreticky pocet odchylek, které maji absolutni hod-
netu v mezich od 0,1 do 0,2 od 0,2 do 0,4 nebo od 0,4 do 0,8

jest : .
r 072 | n \ O’l i n Y
w{dj(mo]/E /” — 1 —2 (mon?Vn —1/)
resp.
r 0’4 i n \ 0’2 n \‘
—_— —_ — >y
ntqj(mov2 /n—-l} ¢(mov2 l/n—l}
resp.
( 0,8 n 034 n
oz i) —2 el )

A podobné déle.

ProtoZe n i m, zname, vypocteme snadno potiebné hod-
noty argumentu funkce @, prislusné hodnoty funkce @ inter-
polujeme z tabulky v odstavci I, (8) a hledany teoreticky
pocet odchylek plyne jiZz podle predchotho snadno.

(Srovn. pr. 3 v odst. 7.)

6. Jak zjistime, Ze se chyby v uzavéru trojihelnika Fidf
normilnim z&konem ¢&etnosti? V odstavei (VII, 2b, §) je
dokdzdno: Chyby v uzdvéru trojihelniku se fid{ normdinim
zékonem éetnosti, jestliZze se jim ridi skute¢né chyby jednot-
livych vhla.
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Zkousku, Ze se chyby v uzdveéru ridi normalnim zdkonem
cetnosti provddime podobné jako v odstavci 5. Jen musime
nyni uvéziti, Ze podle odstavce (VII, 2b, ) je normélnf zdkon
¢etnosti, kterym se ridi chyby v uzédvéru,

h %_h: ]
ngz e .
Pak pravdépodobnost, Ze chyba v uzavéru je mezi —x a + z,
je rovna

oh eg,
Vg é .
0

h
Zavedeme-li proménnou y = 75—.—6, je predchézejici vyraz

I

roven
L3

Vys®

Zname-li tedy na pr., kolik chyb v uzdvéru ma absolutni
hodnotu v mezich 0—0,2; 0,2—0,4; atd., vypoc¢teme hodnoty

0,2
argumentu — = a jeji dvojndsobek, trojndsobek atd., pak
m,

0
prisluiné hodnoty @ a z nich teoreticky poéet chyb v uzdvéru,
jejichZ absolutni hodnota je v uvedenych mezich

ez el 2 =]

7. P¥iklady. 1. VySettiti, maji-li odchylky od aritmetic-
kého st¥tedu v prikladé 1 z (II, 8) vlastnosti nahodilych chyb.

Odchylky, v jednotkdch 10— sec, jsou rovny po radé
+24’ +7: +64’ +359 —53; —26: +5: "'"76: +41’
+ 93, —64, —56.
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Odtud plyne s = + 2, V;c,_ = 4 3,5. Soucet znamének se
rovni +2, stredni odchylka souctu s od jeho priméru 0 je
+ 3,5 (srovn. odst. 1a).

Déle je f —w =+ 1, /n—1= + 3,3. Rozdil sledu a
zmén je roven +1 a stfedni odchylka rozdilu f — w od jeho
prumeéru O je 4 3,3 (srovn. odst. 1b).

Soucdet Ctverci kladnych odchylek je 4 16 301 . lO—16
soudet Gtverci zdpornych odchylek 16 382 .10—18. Rozdil
je —81.10—1. Soulet ctvrtych mocnin odchylek je pak
1,64 . 10—24, tedy stredni odchylka rozdflu mezi souctem
¢tverci kladnych a sou¢tem zapornych odchylek od pruméru
0 bude (podle odst. 3)

+ J16a.10-12 = £ 1,3. 10—

Zkouska E. Abbeho: UvaZujeme usporadani odchylek podle
dasu (g, = +24.10-8, ..., go,=—>55.10-8). Pak 4 =
= 32683.10—18, B=67738.10—1 tedy 4 —}B=
= — 1186.10—1¢. Ctverec

32 683
12

Vsechny tyto zkousky ukazuji tedy, Ze uvazZovans rada od-
chylek md vlastnosti nahodilych chyb.

2. VySettiti, maji-li odchylky od aritmetického stfedu
v prikladé 3 z (11, 6) vlastnost inahodilych chyb. (Maji.)

3. Z Besselovych méreni.rektascense Polarky byla stfedni
chyba projednotku vihy my = + 1,3093 sec a podet odchy-
lek od aritmetického priiméru, jejich absolutnf hodnota byla
v mezich 0—0,4 sec; 0,4—0,8 sec atd. az 3,6 sec a vyie, byl po
radé 25, 22, 19, 11, 9, 8, 2, 3, 1, 0. Srovnati tato éfsla s pri-
sluSnymi theoretickymi ¢isly, vypoctenymi za predpokladu,
ze se odchylky ridi normalnim zikonem.*)

Podle odst. 5 nutno poéitati hodnotu argumentu

me =

10— & £ m?)/n = + 9436.10—18.

T —

*) E. Czuber: l. c. str. 192—193.
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02 |/ _» — % ___ _ o211
m)/2 ¥ »—1  1,3003]/198

a jeji dvojnasobek aZ desaterondsobek. Pro tyto hodnoty
argumentu se vypoctou prisludné hodnoty funkce @: 0,2410;
0,4607; 0,6429; 0,7806; 0,8753; 0,9346; 0,9683; 0,9859;
0,9942; 0,9978. Odtud plynou hledana theoreticka ¢isla: 24,1;
22,0; 18,2; 13,8; 9,5; 5,9; 3,3; 1,8; 0,8; 0,4. Rozdily theoretic-
kych éisel a cisel plynoucich z méfeni jsou: —0,9; —0,0;
—0,8; +2,8; —0,5; —2,1; +1,3; —1,2; —0,2; 4+ 0,4.

4.V 61 trojihelnicich jihofinské zdkladni triangulace bylo
v uzdvérech 31 kladnych chyb, 29 zdpornych a 1 chybarovna0.
Stfedni hodnota chyby v uzdvéru byla 4-0,611". Pocéet chyb
s absolutni hodnotou v mezich 0—0,2"; 0,2"—0,4"; 0,4" aZ
0,6”; 0,6"—0,8"; 0,8"—1,0"; 1,0'—1,2"; 1,2"—1,4", byl po
radé: 17; 10; 8; 12,5; 8,5; 4; 1. (Pri tom byla na pf. chyba
0,80” ¢itdna jednou polovinou do skupiny v mezich 0,6” az
0,8” a jednou polovinou do skupiny v mezich 0,8"—1,0".)
Srovnati tato ¢isla s pfislusnymi theoretickymi ¢isly, vypo-
¢tenymi za predpokladu, Ze se chyby v uzévéru ridf normal-
nim zdkonem Cetnosti.*)

V (VII, 2b, B) je ukdzéno, Ze vztah mezi stfedni hodnotou
M chyby v uzdvéru a stredni chybou m, v jednom méreném
uhlu je

My = ]%’ tedy my = + 0’1(;:13_1 . Pak (viz. odst. 6)
x

X X

. Pro x=02" je ——=0,2315.

my ]/E B 0,611”1/5 my Vg

Pro tuto hodnotu a jejf dvojndsobek, trojndsobek atd. byly
z tabulky funkce @ vyhleddny pfisluiné funkénf hodnoty
(0,2567, 0,4904 atd.). Z nich pak plyne, Ze theoreticky pocet

*) T. J. Kukkamiéki: Verbesserung der horizontalen Win-
kelmessungen wegen der Seitenrefraktion. Veroff. des fin. Geod.
Inst. No. 28, Helsinki 1939, str. 14.
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odchylek, jejichZ absolutni hodnota je v mezich od 0 do 0,2”,
je roven 61 .0,2567 = 15,7. Potet odchylek, jejichZz abso-
lutni hodnota je v mezich od 0,2” do 0,4" jest 61 (0,4904 —

— 0,2567) = 14,3. Ddle ply-
nou éfsla 11,2; 8,3;5,4;3,2; 1,7. |
Rozdily theoretickych ¢isel
a ¢isel plynoucich z méfen{
jsou: —1,3; +4,3; + 3,2;
—4.2; —3,1; —0,8; +0,7 (viz
obr. 12). 10+

Na obr. 12 jsou theoretickd |
&isla i éisla plynouci z méfeni |
vyobrazena tak, Ze chyby v u- sl
zadVvéru jsou naneseny na osu
tsedek (0,2” £ 5 mm) aJpo-
cet chyb v uzdvéru na osu

poradnic (10 chyb v uzavéru
2> 25 mm).

5. V téze siti byly sméry opra-
veny vzhledem na ptiénou refrakei.
Kladnych chyb v uzdvérech bylo za-
se 31, zdpornych 29 a 1 byla rovna 0.
Stredni hodnota chyby, v uzdvéru
klesla na 4-0,470". Pocet chyb s ab-
solutni hodnotou v mezich 0 —0,2”
az 1,0'—1,2" byl 21; 16,5; 9; 8,5; 7;
0. Srovnati tato éisla s prislusnymi
theoretickymi ¢isly.*) (Rozdily theo-
retickych c¢isel a ¢isel plynoucich
z méreni jsou: —0,9; +0,3; +2,8;
—1,6; —3,6; +1,4; viz obr. 13.)

8. Systematické vlivy zatéZujiei
méfeni. Neridi-li se odchylky nebo
chyby normalnim zikonem ¢etnosti,

*) T. J. Kukkamiki, 1. c. str. 14.
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nebo ukazuji-li kriteria uvedend v odst. 1—4 na néjaky
systematicky vliv, hled4 se, jaky by to mohl byti vliv.

Na priklad: Pri uréovéani, jak zdvisi doba kyvu kyvadel na
tlaku vzduchu (p) a na teploté kyvadel (), pokud se zdvislost
na tlaku a teploté vyjadfovala vzorcem a,p -+ a,f, nebo
@,d + a,t, kde d je hustota vzduchu, ukazovala kriteria pro
nahodilost chyb na existenci systematickych vlivii. Teprve
kdyz se zavislost na p ana ¢ vyjadrila vzorcem

4P+ a)/p + agt + agpt + agt?,
byla zbyvajici systematickd chyba odstranéna.¥*)

Jiny priklad: Rozdily patrné v pr. 4, obr. 12, mezi theore-
tickym poc¢tem chyb v uzavéru a poétem, ktery plynul z meé-
reni, ukazovaly rovnéz na existenci néjakych systematickych
vlivi. Kdyz byly jednotlivé sméry opraveny vzhledem
k ptiéné refrakei, zlepsil se souhlas mezi theoretickym poétem
chyb v uzavéru a poc¢tem plynoucim z meéreni (pr. 5, obr. 13).
Jak patrno z téchto dvou priklada, vySetfovani odchylek
nebo chyb vede k hleddn{ systematickych vlivi, zatéZujicich
méfen{. Pokud odchylky nebo chyby ukazuji néjaky syste-
maticky vliv, nesmime byti s vysledky mérenf a vyrovnéni
spokojeni.

Uvedu jesté podle Hayforda**) tri pokyny, jak objeviti
systematické chyby.

x) Rozdélime méfeni na nékolik skupin (na pf. vecerni
a ranni méreni azimutu) a uré¢ime vysledky (A4x) a stredni
chyby (m;) vysledki z kaZzdé skupiny mérenf zvlast. Ukd-
ze-li se, Ze rozdily mezi vysledky jednotlivych skupin
(ar — @) jsou vét&f, neZ by mély byti podle piislusnych
sttednich chyb (Vm;,.2 + mg), soudime, Ze méreni v jednotli-
vych skupindch jsou zatiZena néjakou systematickou chybou.

B) UZivame-li pii méreni néjakého piistroje, jehoZ prace se
miZze v jistych mezich za méfeni méniti, je nutno piimo vy-

*) Jahresbericht des Direktors des Geod. Inst. Potsdam 1939,
str. 16.

**) Wright-Hayford, 1. c. str. 277—278.
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Setriti, jaky vliv maji tyto zmény na vysledek, po pripadé
docfliti, aby pristroj pracoval po celé méreni za podminek
pokud mozZno stejnych. (Tak je na pr. nutno kontrolovati
opoZdéni, zavinéné elektromagmetickym relais pri meéreni
tiZe.)

y) Systematické chyby mohou byti konecné zjistény, uzi-
jeme-li k méfenf riznych piistroji a ruiznych method. (Na pf.
uréfme zemeépisnou Sfrku nékterym zplusobem uZivajicim
universdlniho stroje a pak Nusl-Fricovym cirkumzenitdlem.)

139



VI.

MERENI 8 PREDEPSANOU PRESNOSTI.
HOSPODARNOST MERENI.

V meérickych véddch, na pr. v geodesii, astronomii a ¢dstec-
né i ve fysice, nejde jen o to, urciti z mérenf néjakou veliéinu,
nybrZ uréiti ji s uréitou predepsanou presnosti. V oje-
dinélych pripadech pak bylo dokonce uvaZovano, jak uréiti
hledanou veliéinu co nejhospoddrnéji, t. j. jak pri daném
mnozZstvi mérické price ziskati vysledek co nejpresnéjsi,
a méreni byla podle této \ivahy provedena.

1. Mé&¥eni s pfedepsanou pfesnosti. VyloZzim nejprve na
nékolika prikladech, jak pfesné nutno provésti méreni, m4d-li
byti dosaZzeno vysledku urcité pfesnosti. PFi tom umozZnuji
odhadovati presnost méreni a vysledki bud nejvétsi mozné
chyby nebo stredni chyby.

a) Pri tak zv. relativnim méreni tiZze se uréuje doba kyvu
neproménného kyvadla jednak na misté B, kde zrychleni
tize (gp) zndme, jednak na misté x, kde chceme zrychleni
(95) ur¢iti. Oznacéime-li mérené doby kyvu T'g a T, bude
priblizné -

TB =7 _l"r Tx =T '—l—,
9B gz
kde ! je t. zv. redukovand délka kyvadla. Odtud plyne
gBTBz = ng,;z ¢ili
T \2
gz:'gB(TZ)- ‘ (1)

Z tohoto vzorce vyplyvé

Ty o —TB o

“olt
T (T — TB)

(1')

= g — 29 ——F—— T,
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S jakou presnosti musime pfi tom mériti dobu kyvu 7'z a 7',
abychom uréili g, na 1 miligal? (1 mgal = 10—2 cm/sec?).
Vliv chyb ATp a AT, na g, je roven pribliZné

. 095 agz
Agz: aTB ATB + z ATa:,
a protoZe ze vzorce (1’) pro T,i Tp vyplyvé
Gz . +_29_B 99 _  29m
Ty~ ' Ty’ 0T, Ty’
bude
2
Ags== 7= (ATp — ATy). (1)
B
Aby
1 cm
\ —
4921 = 103 sec?’
musi byti
— | ATpg — AT, | <2 5%

ponévadz gp-—— 103 cm/sec?. Nejvétdi mozny vliv chyb
AT g a AT, nastane, budou-li obé chyby miti opa¢nd zna-
ménka. V tomto nejnepriznivéjSim pripadé musf{ tedy byti
| AT | 1 T
2 T ‘_§'2.103’ IATl<4 108
K relativnim méfenim tiZe se uZivd kyvadel pilsekun-
dovych, pii nichZ T — } sec. Pro né tedy mé byti
1 13
3 10° 8eC — 107 secC.
Vysledek lze shrnouti takto: Abychom ze vzorce (1) vypo-
etli zrychlen{ tiZe v misté x schybou nejvySrovnou 1 mgal,
musime zmériti doby kyvu piilsekundovych kyvadel asi na
jednu desetimiliontinu vtefiny presné. Musime tedy k tomu

AT | <
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uziti takové methody, kterd zajiStuje tuto presnost (na pt.
registrace na filmu).

b) S jakou stredni chybou musime uréovati dobu kyvu
kyvadel, chceme-li na ka%dé stanici (z) i na stanici pfipojo-
vaci (B) uréiti vidy ¢tyri fady meéreni a m4-li stfedni chyba
ve vysledne hodnoté tiZe bjrt.l mensf ne% - 0,5 mgal? (Radou
meéreni jmenujeme urceni doby kyvu viech étyr kyvadel
pokud moZno rychle za sebou a pri podminkdch pokud moZno
stejnych.)

Vztah mezi strednimi chybami m, (pro g,), m, (pro T'p),
my (pro T;) podle vzorce (17) je

09z
m1=iV(ag,B) 2+(aT') my =

2
e gB szz + my?.

(2)

Klademe-li
my, = m,, Tp=—14sec,
cm 1 cm
- 103 =
9z = sec2 6 M= I 2 .103 sec?’

plyne ze vzorce (2), Ze m4 byti
1
7
= 4 113 . 10—7 sec.
A protoZe T; je odvozeno ze ¢tyf fad po ¢tyfech méfenich
doby kyvu, musi jedno méfeni doby kyvu mifti stfednf
chybu asi

V16
—7 —7
1 13 10—7sec = + 3,5 . 10— 7 sec.

Ptesnost jednotlivych méfenych elementi mé byti tedy ta-
kovi, aby stfedni chyba ve vysledné dobé kyvu byld nejvys
asi + 3,5 . 10—7 sec (viz pf. c¢) a d)).

c) Pri relativnim méreni tiZze mé,me vypoclstl t. zv. redukeci
na nekoneéné maly vykyv r, = %7 &2, kde 7' je doba kyvu
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kyvadla a x vykyv v obloukové mife. Chceme ji ur¢iti s chy-
bou mensi nebo nejvys rovnou 10—8 sec. Amplituda « se
urcuje z rozkyvu dyp, na filmu, na némz jsou kyvy kyvadla

registrovany, a z konstanty D podle vzorce «——1 )

S jakou presnosti musime urciti mérené veli¢iny ?
Uréime-li rozkyv d s chybou 4d= +4-2.10—2 mm, bude jeji

T d
vliv na vypoétené r, roven 16 X % Klademe-li T = 3 sec,
14,6’

(prameérna hodnota) a D=1,72.103 mm (pfFi-

a_

o
bliznd hodnota konstanty D), bude vliv chyby Ad roven
+ 1,54.10—9 sec.
S ]akou pfesnosti musime pak uréiti konstantu D, aby
celkova chyba v r, nestoupla nad Zddanou mez?

Protoze z celkové chyby 4 10—8sec zbyva po odeéteni
1,54.10—° sec jen 8,46.10—?sec, musi
. 2x O 8,46 8,46

16 3DAD|£_1—O°—SGC ) T-I-ET)?IAl)lS._IO_osec

Klademe-li zase -T\-: % 86C, X = 14—’,6—, D=1,72.103 mm
Y

a za rozkyv na filmu d = 60 mm, musi

846 16.2 1722108
| 4D | < oo - 146 ¢ 7 60

Je tedy patrno, Ze musime konstantu D uréiti s chybou
rovnou nejvys asi 3 mm.

Podobné nutno uvéziti vliv méfickych chyb na ostatni
redukce dob kyvu (redukei na teplotu a hustotu vzduchu, na
chod hodin a na soukyv stativu).*) A stfedni hodnota soué¢tu
viech téchto uvaZovanych chyb na dobu kyvu mus{ byti
podle pf. b) mensi nez 4 3,5 . 10—7 sec. Uk4Zi-li se pii mé-

*) B. Kladivo: K méfeni zrychleni tiZe, %bormk éeské vys.
Skoly techn. v Brné, sv. XII, spis 46.

mm = 3 mm.
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reni vétéi rozdily redukovanych dob kyvi na téZe stanici, ne%
by plynulo ze strednf chyby -+ 3,5 . 10—7 sec, musime hle-
dati dalsf chyby (na pt. zmény v délce kyvadel, otfesy a j.)
a jejich vliv na vysledek pokud mo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>