| Title:
             | 
Mixed problem for semilinear hyperbolic equation of second order with Dirichlet boundary condition (English) | 
| Author:
             | 
Doktor, Alexander | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
23 | 
| Issue:
             | 
1 | 
| Year:
             | 
1973 | 
| Pages:
             | 
95-122 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| MSC:
             | 
35L20 | 
| idZBL:
             | 
Zbl 0255.35061 | 
| idMR:
             | 
MR0348276 | 
| DOI:
             | 
10.21136/CMJ.1973.101149 | 
| . | 
| Date available:
             | 
2008-06-09T14:00:23Z | 
| Last updated:
             | 
2020-07-28 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/101149 | 
| . | 
| Reference:
             | 
[1] B. Э. Аболиня A. Д. Мышкис: О смешанной задаче для линейной гиперболической системы на плоскости.Уч. зап. Латвии, гос. унив. XX (1958), 87-104. Zbl 1225.70002 | 
| Reference:
             | 
[2] В. Э. Аболиня А. Д. Мышкис: Смешанная задача для почти линейной гиперболической системы на плоскости.Матем. Сборник 50 (1960), 423-442. Zbl 1225.94001, MR 0111939 | 
| Reference:
             | 
[3] R. Courant: Partial Differential Equations.(Russian) Moskva 1964. Zbl 0121.07801, MR 0180738 | 
| Reference:
             | 
[4] M. Ikawa: Mixed problem for hyperbolic equation of second order.J. Math. Soc. Japan 20 (1968), 580-608. MR 0233077, 10.2969/jmsj/02040580 | 
| Reference:
             | 
[5] M. Ikawa: A Mixed Problem for Hyperbolic Equation of Second Order with a First Order Derivative Boundary Condition.Publ. RIMS Kyoto Univ. 5 (1969), 119-147. MR 0277890, 10.2977/prims/1195194627 | 
| Reference:
             | 
[6] M. Ikawa: A Mixed Problem for Hyperbolic Equation of Second Order with Non-homogeneous Neumann Type Boundary Condition.Osaka J. Math. 6 (1969), 339-374. MR 0277894 | 
| Reference:
             | 
[7] M. Ikawa: On the Mixed Problem for Hyperbolic Equation of Second Order with the Neumann Boundary Condition.Osaka J. Math. 7 (1970), 203 - 223. MR 0283395 | 
| Reference:
             | 
[8] H.-O. Kreiss: Initial Boundary Value Problems for Hyperbolic Systems.Comm. Pure Appl. Math. 9 23 (1970), 277-298. Zbl 0215.16801, MR 0437941, 10.1002/cpa.3160230304 | 
| Reference:
             | 
[9] O. A. Ладыжeнcкая: Смешанная задача для гиперболического уравнения.Москва 1953. | 
| Reference:
             | 
[10] S. Mizohata: Lectures on the Cauchy Problem.Tata Institute of Fundamental Research, Bombay 1965. MR 0219881 | 
| Reference:
             | 
[11] S. Mizohata: Quelques problèmes au bord, du type mixte, pour des équations hyperboliques.Séminaire sur les équations aux dérivées partielles. Collége de France (1966-67), 23-60. MR 0390442 | 
| Reference:
             | 
[12] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia Praha 1967. MR 0227584 | 
| Reference:
             | 
[13] Б. Л. Рождественский H. H. Яненко: Системы квазилинейных уравнений.Москва 1968. Zbl 1236.41005 | 
| Reference:
             | 
[14] R. Sakamoto: Mixed Problems for Hyperbolic Equations I. Energy Inequalities.J. Math. Kyoto Univ. 10 (1970), 349-373. Zbl 0203.10001, MR 0283400, 10.1215/kjm/1250523767 | 
| Reference:
             | 
[15] R. Sakamoto: Mixed Problems for Hyperbolic Equations II.J. Math. Kyoto Univ. 10 (1970), 403-417. Zbl 0206.40101, MR 0283401, 10.1215/kjm/1250523767 | 
| Reference:
             | 
[16] R. Sakamoto: Iterated Hyperbolic Mixed Problems.Publ. RIMS Kyoto Univ. 6 (1970), 1-42. Zbl 0225.35065, MR 0412622, 10.2977/prims/1195194186 | 
| Reference:
             | 
[17] J. Sather: The initial-boundary value problem for a non-linear hyperbolic equation in relativistic quantum mechanics.J. Math. Mech. vol. 16, 1966/1, 27-50. Zbl 0141.28803, MR 0196301 | 
| Reference:
             | 
[18] J. Sather: The existence of a Global Classical Solution of the Initial-Boundary Value Problem for $\square u+u\sp{3}=f$.Arch. Rat. Mech. Anal. 22 (1966), 292-307. Zbl 0141.28802, MR 0197965, 10.1007/BF00285421 | 
| Reference:
             | 
[19] С Л. Соболев: Некоторые пнименения функционального анализа в математической физике.Новосибирск 1962. Zbl 1005.68507 | 
| . |