Previous |  Up |  Next

Article

Title: Generalized intervals and topology (English)
Author: Redfield, R. H.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 26
Issue: 4
Year: 1976
Pages: 527-540
Summary lang: Russian
.
Category: math
.
MSC: 06A45
idZBL: Zbl 0362.06018
idMR: MR0439707
DOI: 10.21136/CMJ.1976.101426
.
Date available: 2008-06-09T14:20:18Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101426
.
Reference: [1] R. A. Alo O. Frink: Topologies of lattice products.Canadian J. Math. 18 (1966), pp. 1004-1014. MR 0209195, 10.4153/CJM-1966-101-2
Reference: [2] G. Birkhoff: Lattice Theory.(second edition). Amer. Math. Soc. Colloquium Pub. 25, Providence, R.I., 1948. Zbl 0033.10103, MR 0029876
Reference: [3] G. Birkhoff: A new interval topology for dually directed sets.Revista Mat. y Fis. Teorica Tucuman 14 (1962), pp. 325-331. Zbl 0135.22702, MR 0166120
Reference: [4] G. Birkhoff: Lattice Theory.(third revised edition). Amer. Math. Soc. Colloquium Pub. 25, Providence, R.I., 1967. Zbl 0153.02501, MR 0227053
Reference: [5] G. Birkhoff O. Frink: Representations of lattices by sets.Trans. Amer. Math. Soc. 64 (1948), pp. 299-316. MR 0027263, 10.1090/S0002-9947-1948-0027263-2
Reference: [6] N. Bourbaki: General Topology, Part 1.Addison-Wesley Pub. Co., Don Mills, Ont., 1966 (translated from the French, Topologie Générale, Hermann, Paris). Zbl 0301.54001
Reference: [7] P. Conrad: Lex-subgroups of lattice-ordered groups.Czech. Math. J. 18 (1968), pp. 86-103. Zbl 0155.05902, MR 0225697
Reference: [8] W. Doyle: An arithmetical theorem for partially ordered sets.Bull. Amer. Math. Soc. 56 (1950), p. 366.
Reference: [9] O. Frink: Topology in lattices.Trans. Amer. Math. Soc. 51 (1942), pp. 569-582. Zbl 0061.39305, MR 0006496, 10.1090/S0002-9947-1942-0006496-X
Reference: [10] O. Frink: Ideals in partially ordered sets.Amer. Math. Monthly 61 (1954), pp. 223 - 234. Zbl 0055.25901, MR 0061575, 10.1080/00029890.1954.11988449
Reference: [11] M. Guillaume: Sur les topologies définies à partir d'une relation d'ordre.Acad. Roy. Belg. Cl. Sci. Mém. Coll. in 8° 29 (1956), no. 6. MR 0102484
Reference: [12] C. Holland: The interval topology of a certain $l$-group.Czech. Math. J. 15 (1965), pp. 311-314. Zbl 0137.25702, MR 0177044
Reference: [13] J. Jakubík: The interval topology of an $l$-group.Coll. Math. 11 (1963), pp. 65-72. MR 0160831, 10.4064/cm-11-1-65-72
Reference: [14] J. L. Kelley: General Topology.D. van Nostrand Co., Inc., Princeton, 1955. Zbl 0066.16604, MR 0070144
Reference: [15] J. D. Lawson: Intrinsic lattice and semilattice topologies.Proceedings of the Conference on Lattice Theory (1973), University of Houston, to аррeаr. Zbl 0293.06011, MR 0401576
Reference: [16] R. J. Loy J. B. Miller: Tight Riesz Groups.J. Australian Math. Soc. 13 (1972), pp. IIA-IAO. MR 0297669
Reference: [17] H. Mayer M. Novotný: On some topologies on products of ordered sets.Arch. Math. (Brno) 1 (1965), pp. 251-257. MR 0195071
Reference: [18] T. Naito: Lattices with $P$-ideal topologies.Tohoku Math. J. (2) 12 (1960), pp. 235-262. Zbl 0094.01801, MR 0121319, 10.2748/tmj/1178244439
Reference: [19] R. H. Redfield: A topology for a lattice-ordered group.Trans. Amer. Math. Soc. 187 (1974), pp. 103-125. Zbl 0302.06028, MR 0327607, 10.1090/S0002-9947-1974-0327607-3
Reference: [20] B. С. Rennie: Lattices.Proc. Lon. Math. Soc. 52 (1951), pp. 386-400. Zbl 0044.37901, MR 0690634
Reference: [21] B. C. Rennie: Lattices.Foister & Jagg, Cambridge, 1952.
Reference: [22] F. Šik: Zur Theorie der halbgeordnete Gruppen.Czech. Math. J. 6 (1956), pp. 1 - 25. MR 0081907
Reference: [23] A. J. Ward: On relations between certain intrinsic topologies in partially ordered sets.Proc. Cambridge Phil. Soc. 51 (1955), pp. 254-261. Zbl 0066.02101, MR 0070995
.

Files

Files Size Format View
CzechMathJ_26-1976-4_3.pdf 1.983Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo