Article
Summary:
By using Schwarz-Christoffel theorem the author deduces the conformal mapping of a halfplane onto an infinitely long strip whose one boundary id a straight line while the other one is a polygonal line consisting of two half lines parallel to the first boundary and connected by a segment whose slope angle is a fractional multiple of $\pi$. This mapping is expressed by means of elementary functions distinguishing the cases when $\pi$ is divided by odd or even integer; some important properties of this mapping are shown.
References:
                        
[2] Mieczik J.: Rozklad pola tellurycznego nad uskokiem. Acta Geoph. Polon. 13, 1965, 257.
[3] Gibbs W. J.: 
Conformal Transformations in Electrical Engineering. London 1958. 
Zbl 0084.07006[4] Binns K. J., Lawrenson P. J.: 
Analysis and Computation of Electric and Magnetic Field Problems. Pergamon Press 1963. 
Zbl 0119.42901[5] Филъчаков П. Ф.: 
Приближенные методы конформных отображений. Киев 1964, стр. 235. 
Zbl 1117.65300[6] Градштейн И. С., Рыжик И. M.: 
Таблицы интегралов сумм рядов и произведений. Москва 1963, стр. 79. 
Zbl 1145.93303[7] Говорков В. А.: 
Электрические и магнитные поля. Москва 1960, стр. 243. 
Zbl 1004.90500