Article
Keywords:
finite elements; penalty method; axisymmetric problems; extrapolation; a priori error estimates
Summary:
A second order elliptic problem with axisymmetric data is solved in a finite element space, constructed on a triangulation with curved triangles, in such a way, that the (nonhomogeneous) boundary condition is fulfilled in the sense of a penalty. On the basis of two approximate solutions, extrapolates for both the solution and the boundary flux are defined. Some a priori error estimates are derived, provided the exact solution is regular enough. The paper extends some of the results of J.T. King [6], [7].
References:
                        
[1] I. Babuška: 
The finite element method with penalty. Math. Соmр. 27, (1973), 221 - 228. 
MR 0351118 
[2] J. H. Bramble V. Thomée: 
Semidiscrete-least squares methods for a parabolic boundary value problem. Math. Соmр. 26 (1972), 633-648. 
MR 0349038 
[3] E.J.Haug K. Choi V. Komkov: 
Design sensitivity analysis of structural systems. Academic Press, London 1986. 
MR 0860040 
[4] I. Hlaváček M. Křížek: Dual finite element analysis of 3D-axisymmetric elliptic problems. (To appear).
[5] I. Hlaváček: 
Domain optimization in axisymmetric elliptic boundary value problems by finite elements. Apl. Mat. 33 (1988), 213-244. 
MR 0944785 
[7] J. T. King S. M. Serbin: 
Boundary flux estimates for elliptic problems by the perturbed variational method. Computing 16 (1976), 339-347. 
DOI 10.1007/BF02252082 | 
MR 0418485 
[8] J. Nečas: 
Les methodes directes en théorie des équations elliptiques. Academia, Prague, 1967. 
MR 0227584 
[9] B. Mercier G. Raugel: 
Resolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et séries de Fourier en $\theta$. RAIRO, Anal. numér. 16 (1982), 405-461. 
DOI 10.1051/m2an/1982160404051 | 
MR 0684832