| Title:
             | 
Discrete evolutions: Convergence and applications (English) | 
| Author:
             | 
Bohl, Erich | 
| Author:
             | 
Schropp, Johannes | 
| Language:
             | 
English | 
| Journal:
             | 
Applications of Mathematics | 
| ISSN:
             | 
0862-7940 (print) | 
| ISSN:
             | 
1572-9109 (online) | 
| Volume:
             | 
38 | 
| Issue:
             | 
4 | 
| Year:
             | 
1993 | 
| Pages:
             | 
266-280 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We prove a convergence result for a time discrete process of the form $x(t+h)-x(t)=hV(h,x(t+\alpha_1(t)h), ..., x(t+\alpha_L(t)h)) t=T+jh, j=0, ..., \sigma(h)-1$ under weak conditions on the function $V$. This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations. (English) | 
| Keyword:
             | 
discrete processes | 
| Keyword:
             | 
continuous processes | 
| Keyword:
             | 
convergence of discretisations | 
| Keyword:
             | 
boundary value problems | 
| Keyword:
             | 
minimizing problems | 
| Keyword:
             | 
Newton's iteration and Newton's flow | 
| Keyword:
             | 
discrete evolutions | 
| Keyword:
             | 
systems of nonlinear equations | 
| MSC:
             | 
65H10 | 
| MSC:
             | 
65K10 | 
| MSC:
             | 
65L20 | 
| MSC:
             | 
65L99 | 
| MSC:
             | 
65Q05 | 
| MSC:
             | 
93C55 | 
| idZBL:
             | 
Zbl 0823.65064 | 
| idMR:
             | 
MR1228508 | 
| DOI:
             | 
10.21136/AM.1993.104555 | 
| . | 
| Date available:
             | 
2008-05-20T18:45:55Z | 
| Last updated:
             | 
2020-07-28 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/104555 | 
| . | 
| Reference:
             | 
[1] Boggs P. Т.: The solution of nonlinear systems of equations by A-stable integration techniques.SIAM J. Numer. Anal. 8 (1971), 767-785. Zbl 0223.65047, MR 0297121, 10.1137/0708071 | 
| Reference:
             | 
[2] Bohl E.: Finite Modelle gewöhnlicher Randwertaufgaben.Teubner Studienbücher, B.G. Teubner, 1981. Zbl 0472.65070, MR 0633643 | 
| Reference:
             | 
[3] Bohl E.: Mathematische   Grundlagen  für  die  Modellierung   biologischer   Vorgänge.Springer Hochschultexte, Springer, 1987. Zbl 0643.92001, MR 1032759 | 
| Reference:
             | 
[4] Bohl E.: Mathematik und Leben, Die Frage nach dem Leben.Serie Piper (Fischer, E.P., Mainzer, K., eds.), 1990, pp. 233-263. | 
| Reference:
             | 
[5] Bohl E.: On the convergence of time-discrete processes.to appear in ZAMM 1993. MR 1302474 | 
| Reference:
             | 
[6] Collet P., Eckmann J. P.: Iterated  Maps on  the Interval  as  dynamical  Systems.Progress in Physics, Vol. 1, Basel. Zbl 0458.58002 | 
| Reference:
             | 
[7] Dahlquist G.: Convergence and stability in the numerical integration of ordinary differential equations.Math. Scand. 4 (1956), 33-53. Zbl 0071.11803, MR 0080998, 10.7146/math.scand.a-10454 | 
| Reference:
             | 
[8] Dennis J. E., Schnabel R. B.: Numerical Methods for Unconstrained Optimisation and Nonlinear Equations.Prentice-Hall Inc., Engelwood Cliffs, New Jersey, 1983. MR 0702023 | 
| Reference:
             | 
[9] Gill P. E., Murray W., Wright M. H.: Practical Optimization.Academic Press, London, New York, 1981. Zbl 0503.90062, MR 0634376 | 
| Reference:
             | 
[10] Grigorieff R. D.: Numerik gewöhnlicher Differentialgleichungen  1, 2.Teubner Studienbücher, B.C. Teubner, 1972. MR 0468207 | 
| Reference:
             | 
[11] Hairer E., Wanner G., Norsett P. S.: Solving  Ordinary  Differential  Equations  I.Springer-Verlag, 1980. MR 1439506 | 
| Reference:
             | 
[12] May R.: Simple mathematical models with very complicated dynamics.Nature 261 (1976), 459-467. 10.1038/261459a0 | 
| Reference:
             | 
[13] Michaelis L., Menten M. L.: Die Kinetik der Invertinwirkung.Biochem. Z. 49(1913), 333-369. | 
| Reference:
             | 
[14] Ortega J. M., Rheinboldt W. C.: Iterative Solution of Nonlinear Equations in Several Variables.New York, San Francisco, London, 1970. Zbl 0241.65046, MR 0273810 | 
| Reference:
             | 
[15] Schropp J.: Global dynamics of Newton's flow.in preparation. | 
| Reference:
             | 
[16] Werner J.: Numerische Mathematik I.Vieweg, Braunschweig/Wiesbaden, 1992. | 
| Reference:
             | 
[17] Wissel C.: Theoretische Ökologie.Springer, Berlin, Heidelberg, New York, 1989. | 
| . |