| Title:
|
Higher order contact of real curves in a real hyperquadric (English) |
| Author:
|
Villarroel, Y. |
| Language:
|
English |
| Journal:
|
Archivum Mathematicum |
| ISSN:
|
0044-8753 (print) |
| ISSN:
|
1212-5059 (online) |
| Volume:
|
32 |
| Issue:
|
1 |
| Year:
|
1996 |
| Pages:
|
57-73 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
Let $\Phi $ be an hermitian quadratic form, of maximal rank and index $(n,1)$% , defined over a complex $(n+1)$ vectorial space $V$. Consider the real hyperquadric defined in the complex projective space $P^nV$ by \[ Q=\{[\varsigma ]\in P^nV,\;\Phi (\varsigma )=0\}, \] let $G$ be the subgroup of the special linear group which leaves $Q$ invariant and $D$ the $(2n-2)$ distribution defined by the Cauchy Riemann structure induced over $Q$. We study the real regular curves of constant type in $Q$, transversal to $D$, finding a complete system of analytic invariants for two curves to be locally equivalent under transformations of $G$. (English) |
| Keyword:
|
geometric structures on manifolds |
| Keyword:
|
local submanifolds |
| Keyword:
|
contact theory |
| Keyword:
|
actions of groups |
| MSC:
|
32F40 |
| MSC:
|
53B25 |
| MSC:
|
53C15 |
| idZBL:
|
Zbl 0870.53025 |
| idMR:
|
MR1399840 |
| . |
| Date available:
|
2008-06-06T21:30:09Z |
| Last updated:
|
2012-05-10 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107561 |
| . |
| Related article:
|
http://dml.cz/handle/10338.dmlcz/107663 |
| . |
| Reference:
|
[1] Bredon G.E.: Introduction to Compact Transformations groups.Academic Press, New York (1972). MR 0413144 |
| Reference:
|
[2] Cartan E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. II.Ouvres II, 2, 1231-1304; ibid III,2, 1217-1238. |
| Reference:
|
[3] Cartan E.: Théorie des groupes finis el la géométrie différentielle traitées par la Methode du repère mobile.Gauthier-Villars, Paris, (1937). |
| Reference:
|
[4] Chern S. S., Moser J. K.: Real hypersurfaces in complex manifolds.Acta mathematica 133, (1975), 219-271. Zbl 0302.32015, MR 0425155 |
| Reference:
|
[5] Chern S. S., Cowen J. M.: Frenet frames along holomorphic curves.Topics in Differential Geometry, 1972-1973, pp. 191-203. Dekker, New York, 1974. MR 0361170 |
| Reference:
|
[6] Ehresmann C.: Les prolongements d’un space fibré diferéntiable.C.R. Acad. Sci. Paris, 240 (1955), 1755-1757. MR 0071083 |
| Reference:
|
[7] Green M. L.: The moving frame, Differential invariants and rigity theorems for curves in homogeneous spaces.Duke Math. Journal, Vol 45, No.4(1978), 735-779. MR 0518104 |
| Reference:
|
[8] Griffiths P.: On Cartan’s method of Lie groups and moving frames as applied to existence and uniqueness questions in differential geometry.Duke Math. J. 41(1974), 775-814. MR 0410607 |
| Reference:
|
[9] Hermann R.: Equivalence invariants for submanifolds of Homogeneous Spaces.Math. Annalen 158, 284-289 (1965). Zbl 0125.39502, MR 0203653 |
| Reference:
|
[10] Hermann R.: Existence in the large of parallelism homomorphisms.Trans. Am. Math. Soc. 108, 170-183 (1963). MR 0151924 |
| Reference:
|
[11] Jensen G. R.: Higher Order Contact of Submanifolds of Homogeneous Spaces.Lectures notes in Math. Vol. 610, Springer-Verlag, New York (1977). Zbl 0356.53005, MR 0500648 |
| Reference:
|
[12] Jensen G.R.: Deformation of submanifolds of homogeneous spaces.J. of Diff. Geometry, 16(1981), 213-246. Zbl 0473.53044, MR 0638789 |
| Reference:
|
[13] Kolář I.: Canonical forms on the prolongations of principle fibre bundles.Rev. Roum. Math. Pures et Appl., Bucarest, Tome XVI, No.7, (1971), 1091-1106. MR 0301668 |
| Reference:
|
[14] Rodrigues A. M.: Contact and equivalence of submanifolds of homogeneous spaces.Aspects of Math. and its Applications. Elsevier Science Publishers B.V. (1986). Zbl 0601.53017, MR 2342861 |
| Reference:
|
[15] Villarroel Y.: Equivalencia de curvas.Acta Científica Venezolana. Vol. 37, No. 6, p. 625-631, (1987). MR 0897828 |
| Reference:
|
[16] Villarroel Y.: Teoria de contacto y Referencial móvil.Public. Universidad Central de Venezuela. Dpto. de Matemática. 1991. |
| . |