[1] Alsholm P.: 
Existence of limit cycles for generalized Liénard equation. J. Math. Anal. Appl. 171 (1992), 242–255.  
MR 1192504[2] Cartwright M. L.: 
Van der Pol’s equation for relaxation oscillation. In: Contributions to the Theory of Non-linear Oscillations II, S. Lefschetz, ed., Ann. of Math. Studies, vol. 29, Princeton Univ. Press, 1952, pp. 3–18.  
MR 0052617[3] Giacomini H., Neukirch S.: 
On the number of limit cycles of Liénard equation. Physical Review E56 (1997), 3809-3813.  
MR 1476640[4] van Horssen W. T.: 
A perturbation method based on integrating factors. SIAM J. Appl. Math. 59 (1999), 1427-1443.  
MR 1692651 | 
Zbl 0926.34043[5] Lefschetz S.: 
Differential Equations: Geometric Theory. 2nd Ed., Interscience, 1963; reprint, Dover, New York, 1977.  
MR 0153903 | 
Zbl 0107.07101[6] Odani K.: 
The limit cycle of the van der Pol equation is not algebraic. J. Differential Equations 115 (1995), 146–152.  
MR 1308609 | 
Zbl 0816.34023[7] Odani K.: 
Existence of exactly $N$ periodic solutions for Liénard systems. Funkcialaj Ekvacioj 39 (1996), 217–234.  
MR 1418722 | 
Zbl 0864.34032[8] Odani K.: On the limit cycle of the van der Pol equation. In: Equadiff9 CD-ROM: Papers, Z. Došlá, J. Kuben, J. Vosmanský, eds., Masaryk Univ., Czech, 1998, pp. 229-235. 
[9] Ye Y.-Q., al.: 
Theory of Limit Cycles. Transl. of Math. Monographs, vol. 66, Amer. Math. Soc., 1986. (Eng. Transl.)  
MR 0854278 | 
Zbl 0588.34022[10] Zhang Z.-F., al.: 
Qualitative Theory of Differential Equations. Transl. of Math. Monographs, vol. 102, Amer. Math. Soc., 1992. (Eng. Transl.)   
MR 1175631 | 
Zbl 0779.34001