[1] Igošin, V. I.: Selfduality of lattices of intervals of finite lattices. Inst. matem. Sibir. Otdel. AN SSSR, Meždunarodnaja konferencija po algebre posvjaščennaja pamjati A. I. Maĺceva, Tezisyy dokladov po teoriji modelej i algebraičeskich sistem, Novosibirsk 1989, s. 48.
[2] Igošin, V. I.: Lattices of intervals and lattices of convex sublattices of lattices. Uporjadočennyje množestva i rešotki. Saratov 6 (1990), 69–76.
[3] Igošin, V. I.: 
Identities in interval lattices of lattices. Coll. Math. Soc. J. Bolyai 33 (Contributions to Lattice Theory), Szeged 1980 (1983), 491–501. 
MR 0724279[4] Igošin, V. I.: On lattices with restriction on their intervals. Coll. Math. Soc. J. Bolyai 43 (Lectures in Universal Algebra), Szeged 1983 (1986), 209–216.
[5] Igošin, V. I.: 
Algebraic characteristic of lattices of intervals. Uspechi matem. nauk 40 (1985), 205–206. 
MR 0795195[6] Igošin, V. I.: 
Semimodularity in lattices of intervals. Math. Slovaca 38 (1988), 305–308. 
MR 0978760[7] Jakubík, J.: 
Selfduality of the system of intervals of a partially ordered set. Czechoslov. Math. J. 41 (1991), 135–140. 
MR 1087633[8] Jakubík, J., Lihová, J.: 
Systems of intervals of partially ordered sets. Math. Slovaca 46 (1996 No. 4), 355–361. 
MR 1472629[9] Kolibiar, M.: 
Intervals, convex sublattices and subdirect representations of lattices. Universal Algebra and Applications, Banach Center Publications, Vol. 9, Warsaw 1982, 335–339. 
MR 0738826 | 
Zbl 0506.06003[10] Lihová, J.: 
Posets having a selfdual interval poset. Czechoslov. Math. J. 44 (1994), 523–533. 
MR 1288170[11] Lihová, J.: 
On posets with isomorphic interval posets. Czechoslov. Math. J. 49 (1999), 67–80. 
MR 1676841[12] Slavík, V.: 
On lattices with isomorphic interval lattices. Czechoslov. Math. J. 35 (1985), 550–554. 
MR 0809041