Article
Keywords:
natural bundle; natural transformation; natural operator
Summary:
For natural numbers $r$ and $n$ and a real number $a$ we construct a natural vector bundle $T^{(r),a}$ over $n$-manifolds such that $T^{(r),0}$ is the (classical) vector tangent bundle $T^{(r)}$ of order $r$. For integers $r\ge 1$ and $n\ge 3$ and a real number $a<0$ we classify all natural operators $T_{\vert M_n}\rightsquigarrow TT^{(r),a}$ lifting vector fields from $n$-manifolds to $T^{(r),a}$.
References:
                        
[1] Doupovec, M.: 
Natural operators transforming vector fields to the second order tangent bundle. Cas. pest. mat. 115 (1990), 64–72. 
MR 1044015 | 
Zbl 0712.58003[2] Kolář, I.: 
On the natural operators transforming vector fields to the $r$-th tensor power. Suppl. Rendiconti Circolo Mat. Palermo, 32(II) (1993), 15–20. 
MR 1283617[3] Kolář, I., Michor, P. W., Slovák, J.: 
Natural operations in differential geometry. Springer-Verlag, Berlin 1993. 
MR 1202431[4] Mikulski, W. M.: 
Some natural operations on vector fields. Rendiconti Math. Roma 12(VII) (1992), 783–803. 
MR 1205977 | 
Zbl 0766.58005[5] Sekizava, M.: 
Natural transformations of vector fields on manifolds to vector fields on tangent bundles. Tsukuba J. Math. 12 (1988), 115–128. 
MR 0949905