[1] Boeckx E., Kowalski O., Vanhecke L.: 
Riemannian Manifold of Conullity Two. World Scientific, Singapore, 1996.  
MR 1462887[2] Deprez J., Deszcz R., Verstraelen L.: 
Examples of pseudo-symmetric conformally flat warped products. Chinese J. Math 17(1989), 51–65.  
MR 1007875 | 
Zbl 0678.53022[3] Deszcz R.: On pseudo-symmetric spaces. Bull. Soc. Math. Belgium, Série A. 44(1992), 1–34. 
[4] Eisenhart L. P.: 
Riemannian Geometry. Princeton University, Sixth Printing 1966. (First Printing 1925.)  
MR 1487892[5] Hájková V.: Foliated semi-symmetric spaces in dimension 3. (in Czech), Doctoral Thesis, Prague, 1995. 
[6] Kowalski O.: 
A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. Nagoya Math. J. 132(1993), 1–36.  
MR 1253692[7] Kowalski O.: 
An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. Czechoslovak Math. J. 46(121) (1996), 427–474. (Preprint 1991).  
MR 1408298 | 
Zbl 0879.53014[8] Kowalski O., Sekizawa M.: 
Locally isometry classes of Riemannian 3-manifolds with constant Ricci eigenvalues $\rho _1=\rho _2\ne \rho _3>0$. Arch. Math. 32(1996), 137–145.  
MR 1407345[9] Kowalski O., Sekizawa M.: 
Riemannian 3-manifolds with $c$-conullity two. Bollenttino, U.M.I., (7)11-B (1997), Suppl. face. 2, 161–184.  
MR 1456259 | 
Zbl 0879.53034[10] Kowalski O., Sekizawa M.: 
Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces. Rendiconti di Matematica, Serie VII, Vol.17, Roma (1997), 477–512.  
MR 1608724 | 
Zbl 0889.53026[11] Kowalski O., Sekizawa M.: 
Pseudo-symmetric spaces of constant type in dimension three-non-elliptic spaces. Bull. Tokyo Gakugei University Sect.IV. 50(1998), 1–28.  
MR 1656076 | 
Zbl 0945.53020[12] Kowalski O., Sekizawa M.: 
Pseudo-symmetric Spaces of Constant Type in Dimension Three. Personal Note, Charles University-Tokyo Gakugei University, Prague-Tokyo, 1998.  
Zbl 0945.53020[13] Mikeš J.: 
Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci.,  New York 1996, 311–333.  
MR 1384327 | 
Zbl 0866.53028[14] Milnor J.: 
Curvatures of left invarinat metrics on Lie groups. Adv. Math. 21(1976), 293–329.  
MR 0425012[15] O’Neill B.: 
Semi-Riemannian Geometry With Applications to Relativity. Academic Press, New York-London, 1983.  
MR 0719023 | 
Zbl 0531.53051[16] Takagi H.: 
Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tôhoku Math. Journ. 27(1975), 103–110.   
MR 0442852 | 
Zbl 0323.53037