Article
Keywords:
radical class; factorization system
Summary:
A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
References:
                        
[1] Bousfield A.K.: 
Construction of factorization systems in categories. J. Pure Appl. Algebra 9 (1977), 207-220. 
MR 0478159 
[4] Fay T.H., Walls G.L.: 
Categorically compact locally nilpotent groups. Comm. Algebra 18 (1990), 3423-3435. 
MR 1063986 | 
Zbl 0739.20012 
[5] Gardner B.J.: 
Some degeneracy and pathology in non-associative radical theory. Annales Univ. Sci. Budapest Sect. Math. 22-23 (1979-80), 65-74. 
MR 0588424 | 
Zbl 0447.17004 
[7] Herrlich H., Salicrup G., Strecker G.E.: 
Factorizations, denseness, separation, and relatively compact objects. Topology Appl. 27 (1987), 157-169. 
MR 0911689 | 
Zbl 0629.18003 
[9] Mrówka S.: 
Compactness and product spaces. Colloq. Math. 7 (1959), 19-22. 
MR 0117704 
[12] Stewart P.N.: 
Strict radical classes of associative rings. Proc. Amer. Math. Soc. 39 (1973), 273-278. 
MR 0313296 | 
Zbl 0244.16005