| Title:
             | 
Bernoulli sequences and Borel measurability in $(0,1)$ (English) | 
| Author:
             | 
Veselý, Petr | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
34 | 
| Issue:
             | 
2 | 
| Year:
             | 
1993 | 
| Pages:
             | 
341-346 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
The necessary and sufficient condition for a function $f : (0,1) \to [0,1] $ to be Borel measurable (given by Theorem stated below) provides a technique to prove (in Corollary 2) the existence of a Borel measurable map $H : \{ 0,1 \}^\Bbb N \to \{ 0,1 \}^\Bbb N$ such that $\Cal L (H(\text{\bf X}^p)) = \Cal L (\text{\bf X}^{1/2})$ holds for each $p \in (0,1)$, where $\text{\bf X}^p = (X^p_1 , X^p_2 , \ldots )$ denotes Bernoulli sequence of random variables with $P[X^p_i = 1] = p$. (English) | 
| Keyword:
             | 
Borel measurable function | 
| Keyword:
             | 
Bernoulli sequence of random variables | 
| Keyword:
             | 
Strong law of large numbers | 
| MSC:
             | 
28A20 | 
| MSC:
             | 
60A10 | 
| idZBL:
             | 
Zbl 0777.60003 | 
| idMR:
             | 
MR1241742 | 
| . | 
| Date available:
             | 
2009-01-08T18:03:49Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/118586 | 
| . | 
| Reference:
             | 
[1] Feller W.: An Introduction to Probability Theory and its Applications. Volume II..John Wiley & Sons, Inc. New York, London and Sydney (1966). MR 0210154 | 
| Reference:
             | 
[2] Štěpán J.: Personal communication.(1992). | 
| . |