[BV1] Beir ao da Veiga H.: 
Boundary value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow. Rend. Sem. Mat. Univ. Padova 79 (1988), 247-273. 
MR 0964034[BV2] Beir ao da Veiga H.: Existence results in Sobolev spaces for a stationary transport equation. Ricerche di Matematica, vol. in honour of Prof. C. Miranda, 1987.
[BV3] Beir ao da Veiga H.: 
An $L^p$-theory for the $n$-dimensional, stationary compressible NavierStokes equations and the incompressible limit for compressible fluids. The equilibrium solutions. Comment. Math. Phys. 109 (1987), 229-248. 
MR 0880415[DL] Di Perna R.J., Lions P.L.: 
Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511-547. 
MR 1022305[Fi1] Fichera G.: 
Sulle equazioni differenziali lineari ellitico paraboliche del secondo ordine. Atti Acad. Naz. Lincei, Mem. Sc. Fis. Mat. Nat., Sez. I5 (1956), 1-30. 
MR 0089348[Fi2] Fichera G.: 
On a unified theory of boundary value problem for elliptic-parabolic equations of second order in boundary problems. Diff. Eq., Univ. Wisconsin Press, Madison-Wisconsin, 1960, pp. 87-120. 
MR 0111931[F] Fridrichs K.O.: 
Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11 (1958), 333-418. 
MR 0100718[G] Galdi G.P.: 
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume I: Linearized Stationary Problems. Springer Tracts in Natural Philosophy, 1994. 
MR 1284205[GS] Galdi G.P., Simader Ch.: 
Existence, uniqueness and $L^q$-estimates for the Stokes problem in an exterior domain. Arch. Rational Mech. Anal. 112 (1990), 291-318. 
MR 1077262[GNP] Galdi G.P., Novotný A., Padula M.: On the twodimensional steady-state problem of a viscous gas in an exterior domain. Pacific J. Math., in press.
[H] Heywood J.: 
The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980), 639-681. 
MR 0589434 | 
Zbl 0494.35077[KN] Kohn J.J., Nirenberg L.: 
Elliptic-parabolic equations of second order. Comm. Pure Appl. Math. 20 (1967), 797-872. 
MR 0234118 | 
Zbl 0153.14503[L] Leray J.: 
Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934), 193-248. 
MR 1555394[LP] Lax P.D., Philips R.S.: 
Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11 (1958), 333-418. 
MR 0100718[Mi] Mizohata S.: 
The theory of Partial Differential Equations. Cambridge Univ. Press, 1973. 
MR 0599580 | 
Zbl 0263.35001[N1] Novotný A.: Steady Flows of Viscous Compressible Fluids - $L^2$-approach -. Proc. EQUAM 92, Varenna, Eds. R. Salvi, J. Straškraba, Stab. Anal. Cont. Media, 1993.
[N2] Novotný A.: 
Steady flows of viscous compressible fluids in exterior domains under small perturbation of great potential forces. Math. Meth. Model. Appl. Sci. (M$^3$AS) 3.6 (1993), 725-757. 
MR 1245633[N3] Novotný A.: A note about the steady compressible flows in $\Bbb R^3$, $\Bbb R_+^3$-$L^p$-approach. Preprint Univ. Toulon, 1993.
[N4] Novotný A.: 
About the steady transport equation II - Schauder estimates in domain with smooth boundaries. 1994, to appear. 
MR 1472165[NP1] Novotný A., Padula M.: 
$L^p$-approach to steady flows of viscous compressible fluids in exterior domains. Arch. Rational Mech. Anal. 126 (1994), 243-297. 
MR 1293786[NP2] Novotný A., Padula M.: 
Existence and uniqueness of stationary solutions for viscous compressible heat-conductive fluid with large potential and small nonpotential external forces. Sib. Math. 34 (1993), 120-146. 
MR 1255466[NP3] Novotný A., Padula M.: 
On physically reasonable solutions of steady compressible Navier-Stokes equations in 3-D exterior domains I $(v_\infty =0)$, II $(v_\infty \neq 0)$. to appear. 
MR 1411338[NPe] Novotný A., Penel P.: An $L^p$-approach for steady flows of viscous compressible heat conductive gas. Math. Meth. Model. Appl. Sci. (M$^3$AS), in press.
[O] Oleinik O.A.: Linear equations of second order with nonnegative characteristic form. Amer. Math. Soc. Transl. 65 (1967), 167-199.
[OR] Oleinik O.A., Radekevic E.V.: 
Second Order Equations with Nonnegative Characteristic Form. Amer. Math. Soc. and Plenum Press, New York, 1973. 
MR 0470454[P1] Padula M.: 
A representation formula for steady solutions of a compressible fluid moving at low speed. Transp. Theory and Stat. Phys. 21 (1992), 593-614. 
MR 1194463[P2] Padula M.: 
On the exterior steady problem for the equations of a viscous isothermal gas. Comment. Math. Univ. Carolinae 34.2 (1993), 275-293. 
MR 1241737 | 
Zbl 0778.76087[PP] Padula M., Pileckas K.: Steady flows of a viscous ideal gas in domains with non compact boundaries: Existence and asymptotic behavior in a pipe. to appear.
[Si] Simader Ch.: 
The Weak Dirichlet and Neumann Problem for the Laplacian in $L^q$ for Bounded and Exterior Domains. Applications. in Nonlinear Analysis, Function Spaces and Applications, editors Krbec, Kufner, Opic, Rákosník, Leipzig, Teubner 4 (1990), 180-223. 
MR 1151436[SiSo1] Simader Ch., Sohr. H.: The Weak Dirichlet Problem for $\Delta $ in $L^q$ in Bounded and Exterior Domains. Pitman Research Notes in Math., in press.
[SiSo2] Simader Ch., Sohr. H.: 
A New Approach to the Helmholtz Decomposition and the Neumann Problem in $L^q$-spaces for Bounded and Exterior Domains. in Mathematical Topics Relating to Navier-Stokes Equations, vol. 11, Series of Advances in Mathematics for Applied Sciences, editor G.P. Galdi, World Scientific, 1992. 
MR 1190728