| Title:
             | 
$C^{1,\alpha}$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac{1}{\sqrt{5}}<p\le2$ (English) | 
| Author:
             | 
Marchi, Silvana | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
44 | 
| Issue:
             | 
1 | 
| Year:
             | 
2003 | 
| Pages:
             | 
33-56 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We prove the Hölder continuity of the homogeneous gradient of the weak solutions $u\in W_{\operatorname{loc}}^{1,p}$ of the p-Laplacian on the Heisenberg group $\Cal H^n$, for $1+\frac{1}{\sqrt{5}} <p\le 2$. (English) | 
| Keyword:
             | 
degenerate elliptic equations | 
| Keyword:
             | 
weak solutions | 
| Keyword:
             | 
regularity | 
| Keyword:
             | 
higher differentiability | 
| MSC:
             | 
35B65 | 
| MSC:
             | 
35D10 | 
| MSC:
             | 
35H20 | 
| MSC:
             | 
35J60 | 
| MSC:
             | 
35J70 | 
| idZBL:
             | 
Zbl 1098.35055 | 
| idMR:
             | 
MR2045844 | 
| . | 
| Date available:
             | 
2009-01-08T19:27:16Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/119366 | 
| . | 
| Related article:
             | 
http://dml.cz/handle/10338.dmlcz/119394 | 
| . | 
| Reference:
             | 
[1] Capogna L.: Regularity of quasilinear equations in the Heisenberg group.Comm. Pure Appl. Math. 50 (1997), 867-889. MR 1459590 | 
| Reference:
             | 
[2] Capogna L.: Regularity for quasilinear equations and $1$-quasiconformal maps in Carnot groups.Math. Ann. 313 (1999), 263-295. Zbl 0927.35024, MR 1679786 | 
| Reference:
             | 
[3] Capogna L., Danielli D., Garofalo N.: An embedding theorem and the Harnack inequality for nonlinear subelliptic equations.Comm. Partial Differential Equations 18 (9-10) (1993), 1765-1794. Zbl 0802.35024, MR 1239930 | 
| Reference:
             | 
[4] Cutrí A., Garroni M.G.: Existence, uniqueness and regularity results for integro-differential Heisenberg equations.Adv. in Differential Equations 1 (1996), 920-939. MR 1409894 | 
| Reference:
             | 
[5] Di Benedetto E.: $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations.Nonlinear Anal. 7 8 (1983), 827-850. MR 0709038 | 
| Reference:
             | 
[6] Evans C.L.: A new proof of local $C^{1+\alpha }$ regularity for solutions of certain degenerate elliptic P.D.E..J. Differential Equations 45 (1982), 356-373. MR 0672713 | 
| Reference:
             | 
[7] Folland G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups.Ark. Mat. 13 (1975), 161-207. Zbl 0312.35026, MR 0494315 | 
| Reference:
             | 
[8] Folland G.B., Stein E.M.: Estimates for the $øverline{\partial}_h$ complex and analysis on the Heisenberg group.Comm. Pure Appl. Math. 27 (1974), 459-522. MR 0367477 | 
| Reference:
             | 
[9] Giusti E.: Direct methods in the calculus of variations (in Italian).Unione Matematica Italiana, Bologna (1994). MR 1707291 | 
| Reference:
             | 
[10] Hörmander L.: Hypoelliptic second order differential equations.Acta Math. 119 (1967), 147-171. MR 0222474 | 
| Reference:
             | 
[11] Jerison D.: The Poincaré inequality for vector fields satisfying Hörmander's condition.Duke Math. J. 53 (1986), 503-523. Zbl 0614.35066, MR 0850547 | 
| Reference:
             | 
[12] Ladyzenskaja O.A., Ural'tzeva N.N.: Linear and Quasilinear Elliptic Equations.Academic Press, New York, 1968. MR 0244627 | 
| Reference:
             | 
[13] Lewis J.: Capacitary functions in convex rings.Arch. Rational Mech. Anal. 66 (1977), 201-224. Zbl 0393.46028, MR 0477094 | 
| Reference:
             | 
[14] Lewis J.: Regularity of the derivatives of solutions of certain degenerate elliptic equations.Indiana Univ. Math. J. 32 6 (1983), 849-858. MR 0721568 | 
| Reference:
             | 
[15] Lu G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications.Rev. Mat. Iberoamericana 8 3 (1992), 367-439. Zbl 0804.35015, MR 1202416 | 
| Reference:
             | 
[16] Maz'ja V.G.: Sobolev Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1985. Zbl 0692.46023 | 
| Reference:
             | 
[17] Marchi S.: Hölder continuity and Harnack inequality for De Giorgi classes related to Hörmander vector fields.Ann. Mat. Pura Appl. (IV) CLXVIII (1995), 171-188. Zbl 0861.35018, MR 1378243 | 
| Reference:
             | 
[18] Marchi S.: $C^{1,\alpha}$ local regularity for the solutions of the p-Laplacian on the Heisenberg group. The case $2\le p<1+\sqrt{5}$.Z. Anal. Anwendungen 20 (2001), 3 617-636. Zbl 0988.35066, MR 1863937 | 
| Reference:
             | 
[19] Marchi S.: $L^p$ regularity of the derivatives in the second commutator's direction for nonlinear elliptic equations on the Heisenberg group.in print on Accademia dei XL. Zbl 0102.20501 | 
| Reference:
             | 
[20] Moser J.: On Harnack's theorem for elliptic differential equations.Comm. Pure Appl. Math. XIV (1991), 577-591. MR 0159138 | 
| Reference:
             | 
[21] Nagel A., Stein E.M., Wainger S.: Balls and metrics defined by vector fields I: Basic properties.Acta Math. 155 (1985), 103-147. Zbl 0578.32044, MR 0793239 | 
| Reference:
             | 
[22] Serrin J.: Local behaviour of solutions of quasi-linear elliptic equations.Acta Math. 111 (1964), 247-302. MR 0170096 | 
| Reference:
             | 
[23] Stein E.M.: Singular Integrals and Differentiability Properties.Princeton Univ. Press, Princeton, 1970. Zbl 0281.44003, MR 0290095 | 
| Reference:
             | 
[24] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators.North Holland, Amsterdam-New York-Oxford, 1978. Zbl 0830.46028, MR 0503903 | 
| Reference:
             | 
[25] Triebel H.: Theory of Function Spaces.Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983. Zbl 1104.46001, MR 0781540 | 
| Reference:
             | 
[26] Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations.J. Differential Equations 51 (1984), 126-150. MR 0727034 | 
| Reference:
             | 
[27] Uhlenbeck K.: Regularity for a class of nonlinear elliptic systems.Acta Math. 138 (1977), 219-240. Zbl 0372.35030, MR 0474389 | 
| Reference:
             | 
[28] Ural'tzeva N.N.: Degenerate quasilinear elliptic systems.Zap. Nauchno Sem. Leningrad Otdel. Mat. Steklov 7 (1968), 184-222. MR 0244628 | 
| Reference:
             | 
[29] Xu C.J.: Regularity for quasilinear second-order subelliptic equations.Comm. Pure Appl. Math. XLV (1992), 77-96. Zbl 0827.35023, MR 1135924 | 
| . |