| Title:
             | 
Completeness properties of function rings in pointfree topology (English) | 
| Author:
             | 
Banaschewski, Bernhard | 
| Author:
             | 
Hong, Sung Sa | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
44 | 
| Issue:
             | 
2 | 
| Year:
             | 
2003 | 
| Pages:
             | 
245-259 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
This note establishes that the familiar internal characterizations of the Tychonoff spaces whose rings of continuous real-valued functions are complete, or $\sigma$-comp\-lete, as lattice ordered rings already hold in the larger setting of pointfree topology. In addition, we prove the corresponding results for rings of integer-valued functions. (English) | 
| Keyword:
             | 
frame of reals | 
| Keyword:
             | 
lattice ordered rings of real valued continuous functions and integer valued continuous functions | 
| Keyword:
             | 
extremally disconnected frame | 
| Keyword:
             | 
basically disconnected frame | 
| Keyword:
             | 
cozero map | 
| MSC:
             | 
06D22 | 
| MSC:
             | 
54C30 | 
| MSC:
             | 
54G05 | 
| idZBL:
             | 
Zbl 1098.06006 | 
| idMR:
             | 
MR2026162 | 
| . | 
| Date available:
             | 
2009-01-08T19:29:08Z | 
| Last updated:
             | 
2020-02-20 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/119384 | 
| . | 
| Reference:
             | 
[1] Ball R.N., Walters-Wayland J.L.: $C$- and $C^*$-embedded sublocales.Dissertationes Math. 412 (2002). Zbl 1012.54025, MR 1952051 | 
| Reference:
             | 
[2] Banaschewski B.: Universal zero-dimensional compactifications.In Categorical Topology and its Relation to Analysis, Algebra, and Combinatorics, Prague, Czechoslovakia, August 1988, World Scientific, Singapore, 1989, pp. 257-269. MR 1047906 | 
| Reference:
             | 
[3] Banaschewski B.: The frame envelope of a $\sigma$-frame.Quaest. Math. 16 (1993), 51-60. Zbl 0779.06009, MR 1217474 | 
| Reference:
             | 
[4] Banaschewski B.: The real numbers in pointfree topology.Textos de Matemática Série B, No. 12, Departamento de Matemática da Universidade de Coimbra, 1997. Zbl 0891.54009, MR 1621835 | 
| Reference:
             | 
[5] Banaschewski B., Mulvey C.J.: Stone-Čech compactification of locales II.J. Pure Appl. Algebra 33 (1984), 107-122. Zbl 0549.54017, MR 0754950, 10.1016/0022-4049(84)90001-X | 
| Reference:
             | 
[6] Gillman L., Jerison M.: Rings of continuous functions.D. Van Nostrand, 1960. Zbl 0327.46040, MR 0116199 | 
| Reference:
             | 
[7] Johnstone P.T.: Conditions related to De Morgan's law.In Applications of Sheaves, Proceedings, Durham, 1977, Springer LNM 753 (1979), pp. 479-491. Zbl 0445.03041, MR 0555556 | 
| Reference:
             | 
[8] Johnstone P.T.: Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982.. MR 0698074 | 
| Reference:
             | 
[9] Nakano H.: Über das System aller stetigen Funktionen auf einen topologischen Raum.Proc. Imp. Acad. Tokyo 17 (1941), 308-310. MR 0014173 | 
| Reference:
             | 
[10] Stone M.H.: Boundedness properties in function lattices.Canad. J. Math. 1 (1949), 176-186. Zbl 0032.16901, MR 0029091, 10.4153/CJM-1949-016-5 | 
| Reference:
             | 
[11] Vickers S.: Topology via Logic.Cambridge Tracts in Theor. Comp. Sci. No 5, Cambridge University Press, 1985. Zbl 0922.54002, MR 1002193 | 
| . |