| Title:
|
$\Sigma $-products of paracompact Čech-scattered spaces (English) |
| Author:
|
Tanaka, Hidenori |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
47 |
| Issue:
|
1 |
| Year:
|
2006 |
| Pages:
|
127-140 |
| . |
| Category:
|
math |
| . |
| Summary:
|
In this paper, we shall discuss $\Sigma $-products of paracompact Čech-scattered spaces and show the following: (1) Let $\Sigma $ be a $\Sigma $-product of paracompact Čech-scattered spaces. If $\Sigma $ has countable tightness, then it is collectionwise normal. (2) If $\Sigma$ is a $\Sigma$-product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking). (English) |
| Keyword:
|
$\Sigma $-product |
| Keyword:
|
C-scattered |
| Keyword:
|
Čech-scattered |
| Keyword:
|
paracompact |
| Keyword:
|
subparacompact |
| Keyword:
|
collectionwise normal |
| Keyword:
|
shrinking |
| Keyword:
|
subshrinking |
| Keyword:
|
countable tightness |
| MSC:
|
54B10 |
| MSC:
|
54D15 |
| MSC:
|
54D20 |
| MSC:
|
54G12 |
| idZBL:
|
Zbl 1150.54011 |
| idMR:
|
MR2223972 |
| . |
| Date available:
|
2009-05-05T16:56:06Z |
| Last updated:
|
2012-04-30 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119579 |
| . |
| Reference:
|
[AMT] Aoki E., Mori N., Tanaka H.: Paracompactness and the Lindelöf property in countable products.Topology Appl. 146-147 (2005), 57-66. Zbl 1065.54013, MR 2107135 |
| Reference:
|
[Co] Corson H.H.: Normality in subsets of product spaces.Amer. J. Math. 81 (1959), 785-796. Zbl 0095.37302, MR 0107222 |
| Reference:
|
[E] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
| Reference:
|
[Gu] Gul'ko S.P.: On the properties of subsets of $\Sigma$-products.Soviet Math. Dokl. 18 (1977), 1438-1442. |
| Reference:
|
[HaT] Hanaoka J., Tanaka H.: $\Sigma$-products of paracompact $\Cal{DC}$-like spaces.Topology Proc. 26 (2000-2001), 199-212. MR 1966992 |
| Reference:
|
[HiT] Higuchi S., Tanaka H.: Covering properties in countable products, II.preprint. Zbl 1150.54010, MR 2281011 |
| Reference:
|
[HZ] Hohti A., Ziqiu Y.: Countable products of Čech-scattered supercomplete spaces.Czechoslovak Math. J. 49 (1999), 569-583. Zbl 1003.54006, MR 1708354 |
| Reference:
|
[K1] Kombarov A.P.: On $\Sigma$-products of topological spaces.Soviet Math. Dokl. 13 (1971), 1101-1104. Zbl 0243.54001, MR 0284969 |
| Reference:
|
[K2] Kombarov A.P.: On tightness and normality of $\Sigma$-products.Soviet Math. Dokl. 19 (1978), 403-407. MR 0493933 |
| Reference:
|
[KM] Kombarov A.P., Malykhin V.I.: On $\Sigma$-products.Soviet Math. Dokl. 14 (1973), 1780-1783. |
| Reference:
|
[R1] Rudin M.E.: $\Sigma$-products of metric spaces are normal.preprint. |
| Reference:
|
[R2] Rudin M.E.: The shrinking property.Canad. Math. Bull. 28 (1983), 385-388. Zbl 0536.54013, MR 0716576 |
| Reference:
|
[TY] Tanaka H., Yajima Y.: $\Sigma$-products of paracompact C-scattered spaces.Topology Appl. 124 (2002), 39-46. MR 1926133 |
| Reference:
|
[Te] Telgársky R.: C-scattered and paracompact spaces.Fund. Math. 73 (1971), 59-74. MR 0295293 |
| Reference:
|
[Y1] Yajima Y.: On $\Sigma$-products of $\Sigma$-spaces.Fund. Math. 123 (1984), 29-37. Zbl 0556.54008, MR 0755616 |
| Reference:
|
[Y2] Yajima Y.: The shrinking property of $\Sigma$-products.Tsukuba J. Math. 13 (1989), 83-98. Zbl 0697.54006, MR 1003593 |
| . |