| Title:
|
Network character and tightness of the compact-open topology (English) |
| Author:
|
Ball, Richard N. |
| Author:
|
Hager, Anthony W. |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
47 |
| Issue:
|
3 |
| Year:
|
2006 |
| Pages:
|
473-482 |
| . |
| Category:
|
math |
| . |
| Summary:
|
For Tychonof\text{}f $X$ and $\alpha$ an infinite cardinal, let $\alpha \operatorname{def} X := $ the minimum number of $\alpha $\,cozero-sets of the Čech-Stone compactification which intersect to $X$ (generalizing $\Bbb R$-defect), and let $\operatorname{rt} X := \min _\alpha \max (\alpha , \alpha \operatorname{def} X)$. Give $C(X)$ the compact-open topology. It is shown that $\tau C(X)\leq n\chi C(X) \leq \operatorname{rt}X=\max (L(X),L(X) \operatorname{def} X)$, where: $\tau$ is tightness; $n\chi$ is the network character; $L(X)$ is the Lindel"{o}f number. For example, it follows that, for $X$ Čech-complete, $\tau C(X)=L(X)$. The (apparently new) cardinal functions $n\chi C$ and $\operatorname{rt}$ are compared with several others. (English) |
| Keyword:
|
compact-open topology |
| Keyword:
|
network character |
| Keyword:
|
tightness |
| Keyword:
|
defect |
| Keyword:
|
Lindelöf number |
| MSC:
|
22A99 |
| MSC:
|
46E10 |
| MSC:
|
54A25 |
| MSC:
|
54C35 |
| MSC:
|
54D20 |
| MSC:
|
54H11 |
| idZBL:
|
Zbl 1150.54016 |
| idMR:
|
MR2281009 |
| . |
| Date available:
|
2009-05-05T16:58:49Z |
| Last updated:
|
2012-04-30 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119608 |
| . |
| Reference:
|
[BH] Ball R., Hager A.: Epi-topology and epi-convergence in archimedean lattice-ordered groups with unit.submitted. |
| Reference:
|
[CB] Comfort W., Balaglou G.: Compact-covering numbers.Fund. Math. 131 (1988), 69-82. MR 0970915 |
| Reference:
|
[CN] Comfort W., Negrepontis S.: Continuous pseudometrics.Lecture Notes in Pure and Appl. Math. 14, Dekker, New York, 1975. Zbl 0306.54004, MR 0410618 |
| Reference:
|
[CT] Comfort W., Retta T.: Generalized perfect maps and a theorem of I. Juhász.Lecture Notes in Pure and Appl. Math. 95, Dekker, New York, 1985, pp.79-102. Zbl 0564.54012, MR 0789263 |
| Reference:
|
[E] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
| Reference:
|
[GJ] Gillman L., Jerison M.: Rings of Continuous Functions.Van Nostrand, Princeton, 1960. Zbl 0327.46040, MR 0116199 |
| Reference:
|
[H] Hušek M.: The class of $k$-compact spaces is simple.Math. Z. 110 (1969), 123-126. MR 0244947 |
| Reference:
|
[Mc] McCoy R.: Function spaces which are $k$-spaces.Topology Proc. 5 (1980), 139-154. MR 0624467 |
| Reference:
|
[McN] McCoy R., Ntantu I.: Topological Properties of Spaces of Continuous Functions.Lecture Notes in Mathematics 1315, Springer, Berlin, 1988. Zbl 0647.54001, MR 0953314 |
| Reference:
|
[M1] Mrowka S.: On $E$-compact spaces. II.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 597-605. Zbl 0161.19603, MR 0206896 |
| Reference:
|
[M2] Mrowka S.: $\Cal R$-compact spaces with weight $X< {Exp}_{\Cal R}X$.Proc. Amer. Math. Soc. 128 (2000), 3701-3709. MR 1690997 |
| . |