[1] Andres J., Gabor G., Górniewicz L.: 
Acyclicity of Solution Sets to Functional Inclusions. Nonlin. Anal., (to appear). 
MR 1894303 | 
Zbl 1012.34011[2] Aubin J. P., Cellina A.: 
Differential Inclusions. Set-valued Maps and Viability Theory. Springer Verlag, Berlin, 1984. 
MR 0755330 | 
Zbl 0538.34007[3] Benassi C., Gavioli A.: 
Approximation from the exterior of a multifunction with connected values defined on an interval. Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 237-252. 
MR 1282339 | 
Zbl 0873.54021[4] Benassi C., Gavioli A.: 
Approximation from the exterior of multifunctions with connected values. Set-Valued Analysis 2 (1994), 487-503. 
MR 1308481 | 
Zbl 0826.26012[5] Castaing C., Valadier M.: 
Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580, Springer Verlag, Berlin, 1977. 
MR 0467310 | 
Zbl 0346.46038[6] De Blasi F.: 
Characterization of certain classes of semicontinuous multifunctions by continuous approximations. J. Math. Anal. Appl. 106 (1985), 1-18. 
MR 0780314[7] De Blasi F. S., Myjak J.: 
On the solution sets for differential inclusions. Bull. Polish Acad. Sci. 33 (1985), 17-23. 
MR 0798723[8] Deimling K.: 
Multivalued Differential Equations. De Gruyter series in Nonlinear Analysis and Applications, Berlin, 1992. 
MR 1189795 | 
Zbl 0820.34009[9] El Arni A.: Multifonctions séparément mesurables et séparément sémicontinues inférieurement. Doctoral thesis, Université des Sciences et techniques du Languedoc, Montpellier, 1986.
[10] Gavioli A.: 
Approximation from the exterior of a multifunction and its applications in the "sweeping process". J. Differential Equations 92, 2 (1991), 373-383. 
MR 1120911 | 
Zbl 0744.41018[11] Górniewicz L.: 
Topological approach to differential inclusions. In: Topological Methods in Differential Equations and Inclusions, ed. by A. Granas and M. Frigon, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995. 
MR 1368672[12] Haddad G.: 
Topological properties of the sets of solutions for functional differential inclusions. Nonlinear Anal. 5 (1981), 1349-1366. 
MR 0646220 | 
Zbl 0496.34041[13] Ionescu Tulcea C.: 
On the approximation of upper semicontinuous correspondences and the equilibrium of generalized games. J. Math. Anal. Appl. 136 (1988), 267-289. 
MR 0972598