[1] Andres J.: 
A nontrivial example of application of the Nielsen fixed-point theory to differential systems: problem of Jean Leray. Proceed. Amer. Math. Soc. 128, 10 (2000), 2921-2931. 
MR 1664285 | 
Zbl 0964.34030[2] Andres J.: 
Multiple bounded solutions of differential inclusions: the Nielsen theory approach. J. Diff. Eqs. 155 (1999), 285-320. 
MR 1698556 | 
Zbl 0940.34008[3] Andres J., Górniewicz L.: 
From the Schauder fixed-point theorem to the applied multivalued Nielsen Theory. Topol. Meth. Nonlin. Anal. 14, 2 (1999), 228-238. 
MR 1766189 | 
Zbl 0958.34015[4] Andres J., Górniewicz L., Jezierski J.: 
A generalized Nielsen number and multiplicity results for differential inclusion. Topol. Appl. 100 (2000), 143-209. 
MR 1733044[6] Brown R. F.: 
On the Nielsen fixed point theorem for compact maps. Duke. Math. J., 1968, 699-708. 
MR 0250290[7] Brown R. F.: 
Topological identification of multiple solutions to parametrized nonlinear equations. Pacific J. Math. 131 (1988), 51-69. 
MR 0917865 | 
Zbl 0615.47042[8] Brown R. F.: 
Nielsen fixed point theory and parametrized differential equations. In: Contemp. Math. 72, AMS, Providence, RI, 1989, 33-46. 
MR 0956478[9] Cecchi M., Furi M., Marini M.: 
About the solvability of ordinary differential equations with assymptotic boundary conditions. Boll. U. M. I., Ser. IV, 4-C, 1 (1985), 329-345. 
MR 0805224[10] Fečkan M.: 
Multiple solution of nonlinear equations via Nielsen fixed-point theory: a survey. In: Nonlinear Anal. in Geometry and Topology (Th. M. Rassias, ed.), Hadronic Press, Inc., Fl., (2000), 77-97. 
MR 1766782[11] Granas A.: 
The Leray-Schauder index and the fixed point theory for arbitrary ANRs. Bull. Soc. Math. France 100 (1972), 209-228. 
MR 0309102 | 
Zbl 0236.55004[12] Krasnosel’skij M. A.: The Operator of Translation along Trajectories of Differential Equations. Nauka, Moscow, 1966 (in Russian).