[1] Czédli G., Freese R.: 
On congruence distributivity and modularity. Algebra Universalis 17 (1983), 216-219. 
MR 0726275 | 
Zbl 0548.08003[2] Czédli G., Horváth E. K.: 
Congruence distributivity and modularity permit tolerances. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math., to appear. 
MR 1967338 | 
Zbl 1043.08002[3] Czédli G., Horváth E. K.: 
All congruence lattice identities implying modularity have Mal’tsev conditions. Algebra Universalis, to appear. 
Zbl 1091.08007[4] Day A.: 
A characterization of modularity for congruence lattices of algebras. Canad. Math. Bull. 12 (1969), 167-173. 
MR 0248063[5] Day A.: 
p-modularity implies modularity in equational classes. Algebra Universalis 3 (1973), 398-399. 
MR 0354497 | 
Zbl 0288.06012[6] Day A., Freese R.: 
A characterization of identities implying congruence modularity. I. Canad. J. Math. 32 (1980), 1140-1167. 
MR 0596102 | 
Zbl 0414.08003[7] Freese R., McKenzie R.: 
Commutator theory for congruence modular varieties. London Mathematical Society Lecture Note Series, 125, Cambridge University Press, Cambridge, 1987. iv+227. 
MR 0909290 | 
Zbl 0636.08001[8] Freese R., Nation J. B.: 
3,3 Lattice inclusions imply congruence modularity. Algebra Universalis 7 (1977), 191-194. 
MR 0434906 | 
Zbl 0384.08006[9] Gedeonová E.: 
A characterization of p-modularity for congruence lattices of algebras. Acta Fac. Rerum Natur. Univ. Comenian. Math. Publ. 28 (1972), 99-106. 
MR 0313169 | 
Zbl 0264.06008[10] Grätzer G.: Two Mal’cev-type theorems in universal algebra. J. Combinatorial Theory 8 (1970), 334-342.
[11] Gumm H. P.: 
Geometrical methods in congruence modular algebras. Mem. Amer. Math. Soc. 45, 286 (1983), viii+79. 
MR 0714648 | 
Zbl 0547.08006[12] Herrmann C., Huhn A. P.: 
Zum Begriff der Charakteristik modularer Verbände. Math. Z. 144 (1975), 185-194. 
MR 0384630 | 
Zbl 0316.06006[13] Herrmann C., Huhn A. P.: 
Lattices of normal subgroups which are generated by frames. In: Lattice Theory, Proc. Conf. Szeged 1974, Coll. Math. Soc. J. Bolyai 12, North-Holland, Amsterdam 1976, 97-136. 
MR 0447064[14] Huhn A. P.: 
Schwach distributive Verbände. I. Acta Sci. Math. (Szeged) 33 (1.972), 297-305 (in German). 
MR 0337710 | 
Zbl 0536.08002[15] Huhn A. P.: 
On Gratzer's problem concerning automorphisms of a finitely presented lattice. Algebra Universalis 5 (1975), 65-71. 
MR 0392713[16] Hutchinson G., Czédli G.: 
A test for identities satisfied in lattices of submodules. Algebra Universalis 8 (1978), 269-309. 
MR 0469840[17] Jónsson B.: 
Algebras whose congruence lattices are distributive. Math. Scandinavica 21 (1967), 110-121. 
MR 0237402[18] Jónsson B.: 
Congruence varieties. Algebra Universalis 10 (1980), 355-394. 
MR 0564122[19] McKenzie R.: 
Equational bases and nonmodular lattice varieties. Trans. Amer. Math. Soc. 174 (1972), 1-43. 
MR 0313141[20] Mederly P.: 
Three Mal’cev type theorems and their application. Mat. časopis SAV 25 (1975), 83-95. 
MR 0384650 | 
Zbl 0302.08003[21] Nation J. B.: 
Varieties whose congruences satisfy certain lattice identities. Algebra Universalis 4 (1974), 78-88. 
MR 0354501 | 
Zbl 0299.08002[23] Pálfy P. P., Szabó, Cs.: 
An identity for subgroup lattices of abelian groups. Algebra Universalis 33 (1995), 191-195. 
MR 1318983 | 
Zbl 0820.06003[25] Snow J. W.: 
Mal’tsev conditions and relations on algebras. Algebra Universalis 42 (1999), 299-309. 
MR 1759488 | 
Zbl 0979.08004[27] Wille R.: 
Kongruenzklassengeometrien. Lecture Notes in Mathematics 113, Springer-Verlag, Berlin-New York, 1970, iii+99 (in German). 
MR 0262149 | 
Zbl 0191.51403