| Title:
             | 
Separation theorems for sets in product spaces and equivalent assertions (English) | 
| Author:
             | 
Thierfelder, Jörg | 
| Language:
             | 
English | 
| Journal:
             | 
Kybernetika | 
| ISSN:
             | 
0023-5954 | 
| Volume:
             | 
27 | 
| Issue:
             | 
6 | 
| Year:
             | 
1991 | 
| Pages:
             | 
522-534 | 
| . | 
| Category:
             | 
math | 
| . | 
| MSC:
             | 
46A22 | 
| MSC:
             | 
46A40 | 
| MSC:
             | 
46A99 | 
| MSC:
             | 
46N10 | 
| MSC:
             | 
49J27 | 
| MSC:
             | 
90C29 | 
| idZBL:
             | 
Zbl 0778.46005 | 
| idMR:
             | 
MR1150940 | 
| . | 
| Date available:
             | 
2009-09-24T18:28:43Z | 
| Last updated:
             | 
2012-06-05 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/124294 | 
| . | 
| Reference:
             | 
[1] W. Bonnice, R. Silverman: The Hahn-Banach extension and the least upper bound properties are equivalent.Proc. Amer. Math. Soc. 18 (1967), 843 - 850. Zbl 0165.46802, MR 0215050 | 
| Reference:
             | 
[2] J. M. Borwein: Continuity and differentiability properties of convex operators.Proc. London Math. Soc. 44 (1982), 3, 420-444. Zbl 0487.46026, MR 0656244 | 
| Reference:
             | 
[3] J. M. Borwein: On the Hahn-Banach extension property.Proc. Amer. Math. Soc. 86 (1982), 1,42-46. Zbl 0499.46002, MR 0663863 | 
| Reference:
             | 
[4] K.-H. Elster, J. Thierfelder: A general concept on cone approximations in nondifferentiable optimization.In: Nondifferentiable Optimization: Motivations and Applications (V. F. Demjanov; D. Pallaschke, eds.).(Lecture Notes in Economics and Mathematical Systems vol. 255.) Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1985, pp. 170-189. MR 0822014 | 
| Reference:
             | 
[5] R. B. Holmes: Geometric Functional Analysis and its Applications.Springer-Verlag, Berlin-Heidelberg-New York 1975. Zbl 0336.46001, MR 0410335 | 
| Reference:
             | 
[7] G. Jameson: Ordered Linear Spaces.(Lecture Notes in Mathematics, vol. 141.) Springer- Verlag, Berlin -Heidelberg-New York 1970. Zbl 0196.13401, MR 0438077 | 
| Reference:
             | 
[8] G. Köthe: Topologische Lineare Raume I.Springer-Verlag, Berlin-Heidelberg-New York 1966. MR 0194863 | 
| Reference:
             | 
[9] R.   Nehse: The   Hahn-Banach   property  and  equivalent  conditions.Comment.   Math. Univ. Carolinae 19 (1978), 1, 165-177. Zbl 0373.46011, MR 0492379 | 
| Reference:
             | 
[10] R. Nehse: Separation of two sets in product spaces.Math. Nachrichten 97 (1980), 179-187. MR 0600832 | 
| Reference:
             | 
[11] R. Nehse: Zwei Fortsetzungssätze.Wiss. Zeitschrift TH Ilmenau 30 (1984), 49-57. Zbl 0566.46002, MR 0749750 | 
| Reference:
             | 
[12] A. L. Peressini: Ordered Topological Vector Spaces.Harper and Row, New York-Evanston-London 1967. Zbl 0169.14801, MR 0227731 | 
| Reference:
             | 
[13] J. Thierfelder: Nonvertical affine manifolds and separation theorems in product spaces (to appear). MR 1121215 | 
| Reference:
             | 
[14] T. O. To: The equivalence of the least upper bound property and the Hahn-Banach property in ordered linear spaces.Proc. Amer. Math. Soc. 30 (1971), 287-295. MR 0417746 | 
| Reference:
             | 
[15] M. Valadier: Sous-differentiabilité des fonctions convexes a valeurs dans un espace vectoriel ordoné.Math. Scand. 30 (1972), 65-74. MR 0346525 | 
| Reference:
             | 
[16] J. Zowe: Subdifferential of convex functions with values in ordered vector spaces.Math. Scand. 34(1974), 69-83. MR 0380400 | 
| . |