[1] I. J. B. F. Adan, J. van der Wal: 
Monotonicity of the throughput of a closed queueing network in the number of jobs. Oper. Res. 57 (1989), 953-957. 
MR 1069884 | 
Zbl 0696.60087 
[2] I. J. B. F. Adan, J. van der Wal: Monotonicity of the throughput in single server production and assembly networks with respect to the buffer sizes. In: Proceedings of the 1st International Workshop on Queueing Systems with Blocking. North-Holland 1989, pp. 345-356.
[3] A. D. Barbour: 
Networks of queues and the method of stages. Adv. in Appl. Probab. 8 (1976), 584-591. 
MR 0440729 | 
Zbl 0342.60065 
[5] X. R. Cao: 
Convergence of parameter sensitivity estimates in a stochastic experiment. IEEE Trans. Automat. Control 30 (1985), 834-843. 
MR 0799478 | 
Zbl 0574.62081 
[6] X. R. Cao: 
First-order perturbation analysis of a single multi-class finite source queue. Performance Evaluation 7 (1987), 31-41. 
MR 0882859 
[7] X. R. Cao, Y. C. Ho: 
Sensitivity estimate and optimization of throughput in a production line with blocking. IEEE Trans. Automat. Control 32 (1987), 959-967. 
MR 0909965 
[8] Y. C. Ho, C. Cassandras: 
Infinitesimal and finite perturbation analysis for queueing networks. Automatica 19 (1983), 4, 439-445. 
Zbl 0514.90028 
[9] Y. C. Ho, S. Li: 
Extensions of infinitesimal perturbation analysis. IEEE Trans. Automat. Control 33 (1988), 427-438. 
MR 0936266 | 
Zbl 0637.90091 
[10] P. Glasserman, Y. C. Ho: Aggregation approximations for sensitivity analysis of multi-class queueing networks. Performance Evaluation.
[11] A. Hordijk, N.M. van Dijk: 
Adjoint process, job-local balance and intensitivity of stochastic networks. Bull. 44th Session Int. Inst. 50 (1983), 776-788. 
MR 0820735 
[12] C. D. Meyer, Jr.: 
The condition of a finite Markov chain and perturbation bounds for the limiting probabilities. SIAM J. Algebraic Discrete Methods 1 (1980), 273-283. 
MR 0586154 | 
Zbl 0498.60071 
[13] J. R. Rohlicek, A. S. Willsky: 
The reduction of perturbed Markov generators: an algorithm exposing the role of transient states. J. Assoc. Comput. Mach. 35 (1988), 675-696. 
MR 0963167 | 
Zbl 0643.60057 
[14] R. Schassberger: 
The intensitity of stationary probabilities in networks of queues. Adv. in Appl. Probab. 10 (1987), 906-912. 
MR 0509223 
[15] P. J. Schweitzer: 
Perturbation theory and finite Markov chains. J. Appl. Probab.  5 (1968), 401-413. 
MR 0234527 
[16] E. Seneta: 
Finite approximations to finite non-negative matrices. Cambridge Stud. Philos. 63 (1967), 983-992. 
MR 0217874 
[17] E. Seneta: 
The principles of truncations in applied probability. Comment. Math. Univ. Carolin. 9 (1968), 533-539. 
MR 0235640 
[18] E. Seneta: 
Non-Negative Matrices and Markov Chains. Springer Verlag, New York 1980. 
MR 2209438 
[19] J. G. Shantikumar, D. D. Yao: 
Stochastic monotonicity of the queue lengths in closed queueing networks. Oper. Res. 35 (1987), 583-588. 
MR 0924950 
[20] J. G. Shantikumar, D. D. Yao: 
Throughput bounds for closed queueing networks with queue-dependent service rates. Performance Evaluation 9 (1987), 69-78. 
MR 0974496 
[21] J. G. Shantikumar, D. D. Yao: Monotonicity properties in cycbc queueing networks with finite buffers. In: Proceedings of the First Int. Workshop on Queueing Networks with Blocking. North Carolina 1988.
[22] D. Stoyan: 
Comparison Methods for Queues and Other Stochastic Models. J. Wiley, New. York 1983. 
MR 0754339 | 
Zbl 0536.60085 
[23] R. Suri: 
A concept of monotonicity and its characterization for closed queueing networks. Oper. Res. 55 (1985), 606-024. 
MR 0791711 | 
Zbl 0567.90040 
[24] R. Suri: 
Infinitesimal perturbation analysis for general discrete event systems. J. Assoc. Comput. Mach. 31, (1987), 3, 686-717. 
MR 0904200 
[25] R. Suri: Perturbation analysis. The state of the art and research issues explained via the GI/GI/1 queue. In: Proceedings of the IEEE.
[26] H. C. Tijms: 
Stochastic Modelling and Analysis. A Computational Approach. J. Wiley, New York 1986. 
MR 0847718 
[27] P. Tsoucas, J. Walrand: Monotonicity of throughput in non-markovian networks. J. Appl. Probab. (1983).
[28] N. M. van Dijk: A formal proof for the insensivity of simple bounds for finite multi-server non-exponential tandem queues based on monotonicity results. Stochastic Process. Appl. 27 (1988), 216-277.
[29] N. M. van Dijk: 
Perturbation theory for unbounded Markov reward process with applications to queueing. Adv. in Appl. Probab. 20 (1988), 99-111. 
MR 0932536 
[30] N. M. van Dijk: Simple performance bounds for non-product form queueing networks. In: Proceedings of the First International Workshop on Queueing Networks with Blocking. North-Holland 1988, pp. 1-18.
[31] N. M. van Dijk: 
Simple bounds for queueing systems with breakdowns. Performance Evaluation 7 (1988), 117-128. 
MR 0938482 | 
Zbl 0698.90034 
[32] N. M. van Dijk: 
A simple throughput bound for large closed queueing networks with finite capacities. Performance Evaluation 10 (1988), 153-167. 
MR 1032181 
[33] N. M. van Dijk: 
A note on extended uniformization for non-exponential stochastic networks. J. Appl. Probab. 28 (1991), 955-961. 
MR 1133809 | 
Zbl 0746.60088 
[34] N. M. van Dijk, B. F. Lamond: 
Bounds for the call congestion of finite single-server exponential tandem queues. Oper. Res. 36 (1988), 470-477. 
MR 0955756 
[35] N. M. van Dijk, M. L. Puterman: 
Perturbation theory for MarJcov reward processes with applications to queueing systems. Adv. in Appl. Probab. 20 (1988), 79-99. 
MR 0932535 
[36] N. M. van Dijk, J. van der Wal: 
Simple bounds and monotonicity results for multi-server exponential tandem queues. Queueing Systems Theory Appl. 4 (1989), 1-16. 
MR 0980419 
[37] E. W. B. van Marion: Influence of holding time distributions or blocking probabilities of a grading. TELE 20 (1968), 17-20.
[38] W. Whitt: 
Comparing counting processes and queues. Adv. in Appl. Probab. 13 (1981), 207-220. 
MR 0595895 | 
Zbl 0449.60064 
[39] W. Whitt: 
Stochastic comparison for non-Markov processes. Math. Oper. Res. 11 (1986), 4, 608-618. 
MR 0865555 
[40] P. Whittle: 
Partial balance and insensitivity. Adv. in Appl. Probab. 22 (1985), 168-175. 
MR 0776896 | 
Zbl 0561.60095