[1] A. R. Barron L. Gyorfi, E. van der Meulen: 
Distribution estimation consistent in total variation and in two types of information divergence. IEEE Trans. Inform. Theory 38 (1992), 1437-1454. 
MR 1178189 
[2] L. Breiman: 
Optimal gambling systems for favouralbe games. In: Fourth Berkeley Symp. Math. Statist. Probab., Vol. I, Univ. Calif. Press, Berkeley 1961, pp. 65-78. 
MR 0135630 
[3] T. M. Cover: 
An algorithm for maximizing expected log investment return. IEEE Trans. Inform. Theory 30 (1984), 369-373. 
MR 0754868 | 
Zbl 0541.90007 
[6] J. Kelly: 
A new interpretation of information rate. Bell System Tech. J. 35 (1956), 917-926. 
MR 0090494 
[7] H. A. Latane: Criteria for choice among risky ventures. Political Economy 38 (1959), 145-155.
[8] G. Morvai: 
Empirical log-optimal portfolio selection. Problems Control Inform. Theory 20 (1991), 453-464. 
MR 1156460 | 
Zbl 0752.90004 
[9] G. Morvai: 
Portfolio choice based on the empirical distribution. Kybernetika 25(1992), 484-493. 
MR 1204597 | 
Zbl 0776.90009 
[10] J. Pfanzagl: On the measurability and consistency of minimum contrast estimators. Metrika U (1969), 249-272.
[11] R. T. Rockafellar: 
Convex Analysis. Princeton Univ. Press, Princeton, N.J. 1970. 
Zbl 0193.18401 
[12] P. A. Samuelson: 
The 'fallacy' of maximizing the geometric mean in long sequences of investing or gambling. Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2493-2496. 
MR 0295739 | 
Zbl 0226.62111 
[13] P. A. Samuelson: Why we should not make mean log of wealth big though years to act are long. Journal of Banking and Finance 3 (1979), 305-307.
[14] S. van deGeer: The method of sieves and minimum contrast estimators. 20th European Meeting of Statisticians, Programme & Abstracts, University of Bath, September 1992, p. 243.