| Title:
|
Existence of multiple solutions for a third-order three-point regular boundary value problem (English) |
| Author:
|
Šenkyřík, Martin |
| Language:
|
English |
| Journal:
|
Mathematica Bohemica |
| ISSN:
|
0862-7959 (print) |
| ISSN:
|
2464-7136 (online) |
| Volume:
|
119 |
| Issue:
|
2 |
| Year:
|
1994 |
| Pages:
|
113-121 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
In the paper we prove an Ambrosetti-Prodi type result for solutions $u$ of the third-order nonlinear differential equation, satisfying $u'(0)=u'(1)=u(\eta)=0,\ 0\leq\eta \leq 1$. (English) |
| Keyword:
|
boundary value problem |
| Keyword:
|
lower and upper solutions |
| Keyword:
|
degree theory |
| Keyword:
|
Ambrosetti-Prodi type theorem |
| Keyword:
|
coincidence degree |
| Keyword:
|
Nagumo functions |
| Keyword:
|
Ambrosetti-Prodi results |
| MSC:
|
34B10 |
| MSC:
|
34B15 |
| idZBL:
|
Zbl 0805.34018 |
| idMR:
|
MR1293243 |
| DOI:
|
10.21136/MB.1994.126080 |
| . |
| Date available:
|
2009-09-24T21:03:45Z |
| Last updated:
|
2020-07-29 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126080 |
| . |
| Reference:
|
[1] A. Ambrosetti, G. Prodi: On the inversion of some differentiate mappings with singularities between Banach spaces.Ann. Mat. Pura Appl. 93 (4) (1972), 231-247. MR 0320844, 10.1007/BF02412022 |
| Reference:
|
[2] S. H. Ding, J. Mawhin: A multiplicity result for periodic solutions of higher order ordinary differential equations.Differential and Integral Equations 1(1). Zbl 0715.34086, MR 0920487 |
| Reference:
|
[3] C. Fabry J. Mawhin, M. Nkashama: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations.Bull. London Math. Soc. 18 (1986), 173-180. MR 0818822, 10.1112/blms/18.2.173 |
| Reference:
|
[4] J. Mawhin: Topological degree methods in nonlinear boundary value problems.CBMS Regional Confer. Ser. Math. No. 40. Amer. Math. Soc., Providence, 1979. Zbl 0414.34025, MR 0525202, 10.1090/cbms/040 |
| Reference:
|
[5] J. Mawhin: First order ordinary differential equations with several solutions.Z. Angew. Math. Phys. 38 (1987), 257-265. MR 0885688, 10.1007/BF00945410 |
| Reference:
|
[6] M. Šenkyřík: Method of lower and upper solutions for a third-order three-point regular boundary value problem.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. XXXI (1992), 60-70. MR 1212606 |
| . |