| Title:
             | 
On positive solutions of quasilinear elliptic systems (English) | 
| Author:
             | 
Cheng, Yuanji | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
47 | 
| Issue:
             | 
4 | 
| Year:
             | 
1997 | 
| Pages:
             | 
681-687 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems \[ \left\rbrace \begin{array}{ll}-\Delta _p u = f(x,u,v), &\quad \text{in} \ \Omega , -\Delta _p v = g(x,u,v), &\quad \text{in} \ \Omega , u = v = 0, &\quad \text{on} \ \partial \Omega , \end{array}\right.\] where $-\Delta _p$ is the $p$-Laplace operator, $p>1$ and $\Omega $ is a $C^{1,\alpha }$-domain in $\mathbb R^n$. We prove an analogue of [7, 16] for the eigenvalue problem with $f(x,u,v)=\lambda _1 v^{p-1}$, $ g(x,u,v)=\lambda _2u^{p-1}$ and obtain a non-existence result of positive solutions for the general systems. (English) | 
| Keyword:
             | 
Eigenvalue problem | 
| Keyword:
             | 
Degenerate elliptic operator | 
| Keyword:
             | 
Nonlinear systems | 
| Keyword:
             | 
Positive solutions. | 
| MSC:
             | 
35B05 | 
| MSC:
             | 
35J55 | 
| MSC:
             | 
35J65 | 
| MSC:
             | 
35J70 | 
| idZBL:
             | 
Zbl 0899.35032 | 
| idMR:
             | 
MR1479312 | 
| . | 
| Date available:
             | 
2009-09-24T10:09:27Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127386 | 
| . | 
| Reference:
             | 
[1] Y. Cheng: On the existence of radial solutions of a nonlinear elliptic BVP in an annulus.Math. Nachr. 165 (1994), 61–77. Zbl 0836.35050, MR 1261363, 10.1002/mana.19941650106 | 
| Reference:
             | 
[2] Y. Cheng: On the existence of radial solutions of a nonlinear elliptic equation on the unit ball.Nonlinear Analysis, TMA, 24:3 (1995), 287–307. Zbl 0819.35050, MR 1312769 | 
| Reference:
             | 
[3] Y. Cheng: An eigenvalue problem for a quasilinear elliptic equation.U.U.M.D. Report NO:19, 1994. | 
| Reference:
             | 
[4] Ph. Clément, D. de Figueiredo, E. Mitidieri: Positive solutions of semilinear elliptic systems.Comm. P.D.E. 17 (1992), 923–940. MR 1177298, 10.1080/03605309208820869 | 
| Reference:
             | 
[5] Ph. Clément, R. Manásevich, E. Mitidieri: Positive solutions of quasilinear elliptic systems via blow up.Comm. P.D.E. 18 (1993), 2071-2116. MR 1249135 | 
| Reference:
             | 
[6] R. Courant, D. Hilbert: Methods of Mathematical Physics II.Interscience, 1953. MR 0065391 | 
| Reference:
             | 
[7] R. Dalmasso: Positive solutions of nonlinear elliptic systems.Annl. Pol. Math. LVIII.2 (1993), 201–213. Zbl 0791.35014, MR 1239024, 10.4064/ap-58-2-201-212 | 
| Reference:
             | 
[8] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Second edition, Springer-Verlag, 1992. | 
| Reference:
             | 
[9] J. Heinonen, T. Kilpelaninen, O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford, University Press, 1993. MR 1207810 | 
| Reference:
             | 
[10] H. A. Levine: The role of critical exponents in blow-up theorems.SIAM Review 32:2 (1990), 262–288. MR 1056055, 10.1137/1032046 | 
| Reference:
             | 
[11] P. Lindqvist: On the equation div$(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2} u=0$.Proc. Amer. Math. Soci. 109 (1990), 157–164. Zbl 0714.35029, MR 1007505, 10.1090/S0002-9939-1990-1007505-7 | 
| Reference:
             | 
[12] P. Lions: On the existence of positive solutions of semilinear elliptic equations.SIAM Review 24 (1982), 441–467. Zbl 0511.35033, MR 0678562, 10.1137/1024101 | 
| Reference:
             | 
[13] M. Mitidieri: A Rellich type identity and applications.Comm. P.D.E. 18 (1993), 125–151. Zbl 0816.35027, MR 1211727, 10.1080/03605309308820923 | 
| Reference:
             | 
[14] L. Peletier, R.C.M. van der Vorst: Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equations.Diff Interg. Equa. 5 (1992), 747–767. MR 1167492 | 
| Reference:
             | 
[15] S. Sakaguchi: Concavity property of solutions to some degenerate quasilinear elliptic Dirichlet problems.Ann. Scuola. Norm. Pisa 14 (1987), 403–421. MR 0951227 | 
| Reference:
             | 
[16] R.C.M. van der Vorst: Variational identities and applications to differential systems.Arch. rational Mech. Anal. 116c (1991), 375–398. Zbl 0796.35059, MR 1132768 | 
| . |