| Title:
             | 
On the best ranges for $A^+_p$ and $RH_r^+$ (English) | 
| Author:
             | 
Riveros, M. S. | 
| Author:
             | 
Torre, A. de la | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
51 | 
| Issue:
             | 
2 | 
| Year:
             | 
2001 | 
| Pages:
             | 
285-301 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper we study the relationship between one-sided reverse Hölder classes $RH_r^+$ and the $A_p^+$ classes. We find the best possible range of $RH_r^+$ to which an $A_1^+$ weight belongs, in terms of the $A_1^+$ constant. Conversely, we also find the best range of $A_p^+$ to which a $RH_\infty ^+$ weight belongs, in terms of the $RH_\infty ^+$ constant. Similar problems for $A_p^+$, $1<p<\infty $ and $RH_r^+$, $1<r<\infty $ are solved using factorization. (English) | 
| Keyword:
             | 
one-sided weights | 
| Keyword:
             | 
one-sided reverse Hölder | 
| Keyword:
             | 
factorization | 
| MSC:
             | 
42B25 | 
| idZBL:
             | 
Zbl 0980.42015 | 
| idMR:
             | 
MR1844311 | 
| . | 
| Date available:
             | 
2009-09-24T10:42:29Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127648 | 
| . | 
| Reference:
             | 
[1] H. Aimar, L. Forzani and F. J. Martín-Reyes: On weighted inequalities for one-sided singular integrals.Proc. Amer. Math. Soc. 125 (1997), 2057–2064. MR 1376747, 10.1090/S0002-9939-97-03787-8 | 
| Reference:
             | 
[2] D. Cruz-Uribe and C. J. Neugebauer: The structure of reverse Hölder classes.Trans. Amer. Math. Soc. 347 (1995), 2941–2960. MR 1308005 | 
| Reference:
             | 
[3] D. Cruz-Uribe, C. J. Neugebauer and V. Olesen: The one-sided minimal operator and the one-sided reverse Hölder inequality.Stud. Math 116 (1995), 255–270. MR 1360706, 10.4064/sm-116-3-255-270 | 
| Reference:
             | 
[4] P. Guan and E. Sawyer: Regularity estimates for oblique derivative problem.Anal. of Mathematics, Second Series 157 (1) (1993), 1–70. MR 1200076, 10.2307/2946618 | 
| Reference:
             | 
[5] F. J. Martín-Reyes: New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions.Proc. Amer. Math. Soc. 117, 691–698. MR 1111435, 10.1090/S0002-9939-1993-1111435-2 | 
| Reference:
             | 
[6] F. J. Martín-Reyes, P. Ortega and A. de la Torre: Weighted inequalities for one-sided maximal functions.Trans. Amer. Math. Soc. 319 (2) (1990), 517–534. MR 0986694, 10.1090/S0002-9947-1990-0986694-9 | 
| Reference:
             | 
[7] F. J. Martín-Reyes, L. Pick and A. de la Torre: $A^+_\infty $ condition.Canad. J. Math. 45 (6) (1993), 1231–1244. MR 1247544 | 
| Reference:
             | 
[8] C. J. Neugebauer: The precise range of indices for the $RH_r$ and $A_p$ weight classes.Preprint  (), . | 
| Reference:
             | 
[9] E. Sawyer: Weighted inequalities for the one-sided Hardy-Littlewood maximal function.Trans. Amer. Math. Soc. 297 (1986), 53–61. MR 0849466, 10.1090/S0002-9947-1986-0849466-0 | 
| . |