| Title:
             | 
Almost periodic compactifications of group extensions (English) | 
| Author:
             | 
Junghenn, H. D. | 
| Author:
             | 
Milnes, P. | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
52 | 
| Issue:
             | 
2 | 
| Year:
             | 
2002 | 
| Pages:
             | 
237-254 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Let $N$ and $K$ be groups and let $G$ be an extension of $N$ by $K$. Given a property  $\mathcal P$ of group compactifications, one can ask whether there exist compactifications $N^{\prime }$ and $K^{\prime }$ of $N$ and $K$ such that the universal $\mathcal P$-compactification of $G$ is canonically isomorphic to an extension of $N^{\prime }$ by $K^{\prime }$. We prove a theorem which gives necessary and sufficient conditions for this to occur for general properties $\mathcal P$ and then apply this result to the almost periodic and weakly almost periodic compactifications of $G$. (English) | 
| Keyword:
             | 
group extension | 
| Keyword:
             | 
semidirect product | 
| Keyword:
             | 
topological group | 
| Keyword:
             | 
semitopological semigroup | 
| Keyword:
             | 
right topological semigroup | 
| Keyword:
             | 
compactification | 
| Keyword:
             | 
almost periodic | 
| Keyword:
             | 
weakly almost periodic | 
| Keyword:
             | 
strongly almost periodic | 
| MSC:
             | 
22A20 | 
| MSC:
             | 
22D05 | 
| MSC:
             | 
43A60 | 
| idZBL:
             | 
Zbl 1011.22001 | 
| idMR:
             | 
MR1905433 | 
| . | 
| Date available:
             | 
2009-09-24T10:50:34Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127714 | 
| . | 
| Reference:
             | 
[1] J. F.  Berglund, H. D.  Junghenn and P.  Milnes: Analysis on Semigroups: Function Spaces, Compactifications, Representations.Wiley, New York, 1989. MR 0999922 | 
| Reference:
             | 
[2] K.  de  Leeuw and I.  Glicksberg: Almost periodic functions on semigroups.Acta Math. 105 (1961), 99–140. MR 0131785, 10.1007/BF02559536 | 
| Reference:
             | 
[3] H. D.  Junghenn and B.  Lerner: Semigroup compactifications of semidirect products.Trans. Amer. Math. Soc. 265 (1981), 393–404. MR 0610956, 10.1090/S0002-9947-1981-0610956-2 | 
| Reference:
             | 
[4] H. D.  Junghenn and P.  Milnes: Distal compactifications of group extensions.Rocky Mountain Math.  J. 29 (1999), 209–227. MR 1687663, 10.1216/rmjm/1181071687 | 
| Reference:
             | 
[5] M.  Landstad: On the Bohr compactification of a transformation group.Math.  Z. 127 (1972), 167–178. Zbl 0236.54030, MR 0310853, 10.1007/BF01112609 | 
| Reference:
             | 
[6] A. T.  Lau, P.  Milnes and J. S.  Pym: Compactifications of locally compact groups and quotients.Math. Proc. Camb. Phil. Soc. 116 (1994), 451–463. MR 1291752, 10.1017/S030500410007273X | 
| Reference:
             | 
[7] P.  Milnes: Almost periodic compactifications of direct and semidirect products.Coll. Math. 44 (1981), 125–136. Zbl 0482.43005, MR 0633106, 10.4064/cm-44-1-125-136 | 
| Reference:
             | 
[8] M.  Rieffel: $C^{\star }$-algebras associated with irrational rotation algebras.Pacific J.  Math. 93 (1981), 415–429. Zbl 0499.46039, MR 0623572, 10.2140/pjm.1981.93.415 | 
| Reference:
             | 
[9] O.  Schreier: Über die Erweiterung von Gruppen I.Monatsh. Math. Phys. 34 (1926), 165–180. MR 1549403, 10.1007/BF01694897 | 
| Reference:
             | 
[10] W.  R.  Scott: Group Theory.Prentice Hall, Englewood Cliffs, N.  J., 1964. Zbl 0126.04504, MR 0167513 | 
| . |