Article
Keywords:
Pettis integrable function space; copy of $c_0$; copy of $\ell _{\infty }$; countably additive vector measure; WRNP; CRP
Summary:
Assuming that $(\Omega , \Sigma , \mu )$ is a complete probability space and $X$ a Banach space, in this paper we investigate the problem of the $X$-inheritance of certain copies of $c_0$ or $\ell _{\infty }$ in the linear space of all [classes of] $X$-valued $\mu $-weakly measurable Pettis integrable functions equipped with the usual semivariation norm.
References:
                        
[1] P.  Cembranos and J.  Mendoza: 
Banach Spaces of Vector-Valued Functions. Lecture Notes in Math. 1676. Springer, 1997. 
MR 1489231[2] J.  Diestel: 
Sequences and Series in Banach Spaces. GTM 92. Springer Verlag. New York-Berlin-Heidelberg-Tokyo, 1984. 
MR 0737004[3] J.  Diestel and J.  Uhl: 
Vector Measures. Math Surveys 15. Amer. Math. Soc. Providence, 1977. 
MR 0453964[6] D.  van Dulst: 
Characterizations of Banach Spaces not containing $\ell _{1}$. CWI Tract. Amsterdam, 1989. 
MR 1002733[9] E.  Hewitt and K.  Stromberg: 
Real and Abstract Analysis. GTM 25. Springer Verlag, 1965. 
MR 0367121