Article
Keywords:
pseudo $MV$-algebras; lattice ordered group; unital lattice ordered group; variety
Summary:
In this paper we investigate the relation between the lattice of varieties of pseudo $MV$-algebras and the lattice of varieties of lattice ordered groups.
References:
                        
[1] R.  Cignoli, M. I.  D’Ottaviano and D.  Mundici: 
Algebraic Foundations of many-valued Reasoning. Trends in Logic, Studia Logica Library, Vol.  7, Kluwer Academic Publishers, Dordrecht, 2000. 
MR 1786097[3] A.  Dvurečenskij: 
States on pseudo $MV$-algebras. Studia Logica (to appear). 
MR 1865858[4] G.  Georgescu and A.  Iorgulescu: 
Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, Buchurest, Romania, 1999, pp. 961–968. 
MR 1730100[5] G.  Georgescu and A.  Iorgulescu: 
Pseudo $MV$-algebras. Multiple-Valued Logic (a special issue dedicated to Gr. C.  Moisil) 6 (2001), 95–135. 
MR 1817439[7] J.  Jakubík: 
Direct product decompositions of pseudo $MV$-algebras. Arch. Math. 37 (2001), 131–142. 
MR 1838410[9] J.  Rachůnek: Prime spectra of non-commutative generalizations of $MV$-algebras. (Submitted).