| Title:
             | 
The generalized Holditch theorem for the homothetic motions on the planar kinematics (English) | 
| Author:
             | 
Kuruoğlu, N. | 
| Author:
             | 
Yüce, S. | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
54 | 
| Issue:
             | 
2 | 
| Year:
             | 
2004 | 
| Pages:
             | 
337-340 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
W. Blaschke and H. R. Müller [4, p.  142] have given the following theorem as a generalization of the classic Holditch Theorem: Let $E/E^{\prime }$ be a 1-parameter closed planar Euclidean motion with the rotation number $\nu $ and the period $T$. Under the motion $E/E^{\prime }$, let two points $A = (0, 0)$, $B = (a + b, 0) \in E$ trace the curves $k_A, k_B \subset E^{\prime }$ and let $F_A, F_B$ be their orbit areas, respectively. If $F_X$ is the orbit area of the orbit curve $k$ of the point $X = (a, 0)$ which is collinear with points $A$ and $B$ then \[ F_X = {[aF_B + bF_A] \over a + b} - \pi \nu a b. \] In this paper, under the 1-parameter closed planar homothetic motion with the homothetic scale $ h = h (t)$, the generalization given above by W. Blaschke and H. R. Müller is expressed and \[ F_X = {[aF_B + bF_A]\over a + b} - h^2 (t_0) \pi \nu a b, \] is obtained, where $\exists t_0 \in [0, T]$. (English) | 
| Keyword:
             | 
Holditch Theorem | 
| Keyword:
             | 
homothetic motion | 
| Keyword:
             | 
Steiner formula | 
| MSC:
             | 
53A17 | 
| idZBL:
             | 
Zbl 1080.53011 | 
| idMR:
             | 
MR2059254 | 
| . | 
| Date available:
             | 
2009-09-24T11:12:59Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127891 | 
| . | 
| Reference:
             | 
[1] A.  Tutar and N.  Kuruoğlu: The Steiner formula and the Holditch theorem for the homothetic motions on the planar kinematics.Mech. Machine Theory 34 (1999), 1–6. MR 1738623, 10.1016/S0094-114X(98)00028-7 | 
| Reference:
             | 
[2] H.  Holditch: Geometrical Theorem.Q. J. Pure Appl. Math. 2 (1858), 38–39. | 
| Reference:
             | 
[3] M.  Spivak: Calculus on Manifolds.W. A. Benjamin, New York, 1965. Zbl 0141.05403, MR 0209411 | 
| Reference:
             | 
[4] W.  Blaschke and H. R. Müller: Ebene Kinematik.Oldenbourg, München, 1956. MR 0078790 | 
| . |