| Title:
|
4-dimensional anti-Kähler manifolds and Weyl curvature (English) |
| Author:
|
Kim, Jaeman |
| Language:
|
English |
| Journal:
|
Czechoslovak Mathematical Journal |
| ISSN:
|
0011-4642 (print) |
| ISSN:
|
1572-9141 (online) |
| Volume:
|
56 |
| Issue:
|
1 |
| Year:
|
2006 |
| Pages:
|
267-271 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
On a 4-dimensional anti-Kähler manifold, its zero scalar curvature implies that its Weyl curvature vanishes and vice versa. In particular any 4-dimensional anti-Kähler manifold with zero scalar curvature is flat. (English) |
| Keyword:
|
4-dimensional anti-Kähler manifold |
| Keyword:
|
zero scalar curvature |
| Keyword:
|
Weyl curvature |
| Keyword:
|
flat |
| MSC:
|
32J27 |
| MSC:
|
53B30 |
| MSC:
|
53C25 |
| MSC:
|
53C55 |
| MSC:
|
53C56 |
| MSC:
|
53C80 |
| idZBL:
|
Zbl 1157.53316 |
| idMR:
|
MR2207017 |
| . |
| Date available:
|
2009-09-24T11:32:51Z |
| Last updated:
|
2020-07-03 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128064 |
| . |
| Reference:
|
[1] Arthur L. Besse: Einstein manifolds.Springer Verlag, 1987. MR 0867684 |
| Reference:
|
[2] Andrzej Borowiec, Mauro Francaviglia and Igor Volvovich: Anti-Kählerian Manifolds.Differential Geometry and its Applications 12 (2000), 281–289. MR 1764334 |
| . |