| Title:
|
Class preserving mappings of equivalence systems (English) |
| Author:
|
Chajda, Ivan |
| Language:
|
English |
| Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
| ISSN:
|
0231-9721 |
| Volume:
|
43 |
| Issue:
|
1 |
| Year:
|
2004 |
| Pages:
|
61-64 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
By an equivalence system is meant a couple $\mathcal{A} = (A,\theta )$ where $A$ is a non-void set and $\theta $ is an equivalence on $A$. A mapping $h$ of an equivalence system $\mathcal{A}$ into $\mathcal{B}$ is called a class preserving mapping if $h([a]_{\theta }) = [h(a)]_{\theta {^{\prime }}}$ for each $a \in A$. We will characterize class preserving mappings by means of permutability of $\theta $ with the equivalence $\Phi _{h}$ induced by $h$. (English) |
| Keyword:
|
equivalence relation |
| Keyword:
|
equivalence system |
| Keyword:
|
relational system |
| Keyword:
|
homomorphism |
| Keyword:
|
strong homomorphism |
| Keyword:
|
permuting equivalences |
| MSC:
|
03E02 |
| MSC:
|
08A02 |
| MSC:
|
08A35 |
| idZBL:
|
Zbl 1077.08001 |
| idMR:
|
MR2124603 |
| . |
| Date available:
|
2009-08-21T12:54:09Z |
| Last updated:
|
2012-05-04 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/132935 |
| . |
| Reference:
|
[1] Madarász R., Crvenković S.: Relacione algebre. : Matematički Institut, Beograd., 1992. MR 1215483 |
| Reference:
|
[2] Maltsev A. I.: Algebraic systems. : Nauka, Moskva., 1970, (in Russian). MR 0282908 |
| Reference:
|
[3] Riguet J.: Relations binaires, fermetures, correspondances de Galois.Bull. Soc. Math. France 76 (1948), 114–155. Zbl 0033.00603, MR 0028814 |
| . |