Previous |  Up |  Next

Article

Title: In Memoriam Jindřich Nečas (English)
Author: Hlaváček, I.
Author: John, O.
Author: Kufner, A.
Author: Málek, J.
Author: Nečasová, Š. 
Author: Stará, J.
Author: Šverák, V.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 4
Year: 2004
Pages: 421-446
Summary lang: English
.
Category: news
.
Keyword: partial differential equations
Keyword: obituary
Keyword: anniversary
Keyword: bibliography
MSC: 01A70
MSC: 35-03
idZBL: Zbl 1265.01025
idMR: MR2102615
DOI: 10.21136/MB.2004.134050
.
Date available: 2009-09-24T22:17:07Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134050
.
Reference: [AD] Adams, R. A.: Sobolev Spaces.Academic Press, New York, 1975. Zbl 0314.46030, MR 0450957
Reference: [ADN] Agmon, S., Douglis, A., Nirenberg, J.: Estimates near the boundary for solutions to elliptic PDEs satisfying general boundary conditions I, II.Comm. Pure Appl. Math. 12, 17 (1959, 1964), 623–727, 35–92.
Reference: [AG] Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problems in arbitrary dimension.Czechoslovak Math. J. 44 (1994), 109–141. MR 1257940
Reference: [BA] Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity.Arch. Rat. Mech. Anal. 63 (1977), 337–406. Zbl 0368.73040, MR 0475169
Reference: [BE] Berger, H.: A convergent finite element formulation for transonic flow.Numer. Math. 56 (1989), 425–447. Zbl 0681.76066, MR 1021618
Reference: [BF] Berger, H., Feistauer, M.: Analysis of the finite element variational crimes in the numerical approximation of transonic flow.Math. Comput. 61 (1993), 493–521. MR 1192967
Reference: [BWW] Berger, H., Warnecke, G., Wendland, W.: Finite elements for transonic potential flows.Num. Meth. for PDEs 6, 15–42. MR 1034431
Reference: [BRV] Babuška, I., Rektorys, K., Vyčichlo, F.: Mathematical Theory of Planar Elasticity.NČSAV, Praha, 1955. (Czech)
Reference: [BR1] Browder, F. E.: Variational boundary value problems for quasilinear elliptic equations of arbitrary order I .Proc. Natl. Acad. Sci. USA 50 (1963), 31–37; II. ibid., 592–598; III. ibid., 794–798.
Reference: [BR2] Browder, F. E.: Topological methods for nonlinear elliptic equations of arbitrary order.Pacif. J. Math. 17 (1966), 17–31. MR 0203245
Reference: [BR3] Browder, F. E.: Nonlinear functional analysis and nonlinear partial differential equations.Acta Facult. Rerum Naturalium Univ. Comeniae, Mathematica Publ. (Proceedings of the Conference Equadiff 2, Bratislava, 1966) 17 (1967), 45–64. Zbl 0191.44002
Reference: [ESS] Escauriaza, L., Seregin, G., Šverák, V.: Backward uniqueness for the heat operator in half-space.Algebra i Analiz 15 (2003), 201–214. MR 1979722
Reference: [FE] Feistauer, M.: Mathematical Methods in Fluid Dynamics.Pitman Monographs and Surveys in Pure and Applied Mathematics 67, Longman, Harlow, 1993. Zbl 0819.76001, MR 1266627
Reference: [F] Fučík, S.: Solvability of Nonlinear Equations and Boundary Value Problems.D. Reidel, Holland, in co-edition with Society of Czechoslovak Mathematicians and Physicists, Czechoslovakia, 1980. MR 0620638
Reference: [FK] Fučík, S., Kufner A.: Nonlinear Differential Equations.SNTL, Praha, 1978. (Czech)
Reference: [GI1] Giusti, E.: Regolaritá parziale delle soluzioni di sistemi ellittici quasi lineari di ordine arbitrario.Ann. Sc. Norm. Sup. Pisa 23 (1969), 115–142. MR 0247258
Reference: [GI2] Giusti, E.: Regolaritá parziale delle soluzioni di sistemi ellittici quasi lineari di ordine arbitrario.Ann. Sc. Norm. Sup. Pisa 27 (1973), 161–166. Zbl 0261.35034, MR 0385297
Reference: [GI3] Giusti, E.: Precisazione delle funzioni $H^{1,p}$ e singolaritá delle soluzioni deboli di sistemi ellittici non lineari.Boll. U.M.I. 2 (1969), 71–76. MR 0243190
Reference: [GIA] Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems.Annals Mat. Studies, Princeton University Press, 1983. Zbl 0516.49003, MR 0717034
Reference: [GR] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations.Springer Series in Computational Mathematics, Springer, 1986. MR 0851383
Reference: [GP] Glowinski, R., Pironneau, O.: On the computation of transonic flows.Functional Analysis and Numerical Analysis (H. Fujita ed.), Tokyo and Kyoto, 1976, Japan Society for the Promotion of Science, 1978, pp. 143–173.
Reference: [JMS] John, O., Malý, J., Stará, J.: Nowhere continuous solutions to elliptic systems.Comment. Math. Univ. Carolin. 30 (1989), 33–43. MR 0995699
Reference: [JS] John, O., Stará, J.: On the regularity of the weak solution of Cauchy problem for nonlinear parabolic systems via Liouville property.Comment. Math. Univ. Carolin. 25 (1984), 445–457. MR 0775563
Reference: [KJF] Kufner, A., John, O., Fučík, S.: Function Spaces.Academia, Praha, 1977. MR 0482102
Reference: [LA] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow.Second edition, Gordon and Breach Science Publishers, New York, 1969. Zbl 0184.52603, MR 0254401
Reference: [LE] Leray, J.: Mouvement d’un liquide viscqueus emplissant l’espace.Acta Math. 63 (1934), 193–248. MR 1555394
Reference: [MA] Malý, J.: Nonisolated singularities of solutions to a quasilinear elliptic system.Comment. Math. Univ. Carolin. 29 (1988), 421–426. MR 0972826
Reference: [MEY] Meyers, N. G.: On $L_p$ estimates for the gradient of solutions of second order elliptic divergence equations.Ann. Scuola Norm. Sup. Pisa 17 (1963), 189–206. MR 0159110
Reference: [MRS] Müller, S., Rieger, M. O., Šverák, V.: Parabolic systems with nowhere smooth solutions.Max-Planck-Institut in den Naturwissenschaften, Leipzig, Preprint no. 11 (2003), 1–23. MR 2187312
Reference: [MS] Müller, S., Šverák, V.: Convex integration for Lipschitz functions and counterexamples to regularity.Ann. Math. (2) 158 (2003), 1–23. MR 1983780
Reference: [P1] Fučík, S., Kufner, A. (eds.): Nonlinear Analysis, Function Spaces and Applications I .Teubner-Texte vol. 19, Teubner, Leipzig, 1979. MR 0578906
Reference: [P2] Opic, B., Rákosník, J. (eds.): Nonlinear Analysis, Function Spaces and Applications VII.Math. Inst. Acad. Sci., Praha, 2003. MR 2605640
Reference: [S] Sobolev, S. L.: Applications of Functional Analysis in Mathematical Physics.Izdat. Leningrad. Gos. Univ., Leningrad, 1950. (Russian) MR 0052039
Reference: [SJ] Stará, J., John, O.: On some regularity and nonregularity results for solutions to parabolic systems.Le Matematiche LV 2000-Supplemento n. 2 (2000), 145–163. MR 1899663
Reference: [SOU] Souček, J.: Nonisolated singularities of solutions to a quasilinear elliptic systems.Comment. Math. Univ. Carolin. 25 (1984), 273–281.
Reference: [SS] Serëgin, G., Šverák, V.: Navier-Stokes equations with lower bounds on the pressure.Arch. Ration. Mech. Anal. 163 (2002), 65–86. MR 1905137
Reference: [ST] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton, 1970. Zbl 0207.13501, MR 0290095
Reference: [SY] Šverák, V., Yan, X.: Non-Lipschitz minimizers of smooth strongly convex functionals.Proc. Natl. Acad. Sci. USA 99 (2002), 15269–15276. MR 1946762
Reference: [TA] Tartar, L.: Introduction to oceanography.http://www.math.cmu.edu/cna/publications/OceanoSpring99.ps.
Reference: [TR] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators.Verlag der Wissenschaften, Berlin, 1977, second edition in J. A. Barth Verlag, Heidelberg, 1995. MR 1328645
Reference: [TS] Tsai, T-P.: On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates.Arch. Ration. Mech. Anal. 143 (1998), 29–51. Zbl 0916.35084, MR 1643650
Reference: [A1] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Praha, and Masson et Cie, Éditeurs, Paris, 1967. MR 0227584
Reference: [A2] S. Fučík, J. Nečas, J. Souček, V. Souček: Spectral Analysis of Nonlinear Operators.Springer, Berlin, 1973. MR 0467421
Reference: [A3] S. Fučík, J. Nečas, V. Souček: Einführung in die Variationsrechnung.Teubner, Leipzig, 1977. MR 0487654
Reference: [A4] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Studies in Applied Mechanics vol. 3, Elsevier, Amsterdam, 1980. MR 0600655
Reference: [A5] I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek: Riešenie variačných nerovností v mechanike.Alfa, Bratislava, 1982. (Slovak) MR 0755152
Reference: [A6] J. Nečas: Introduction to the Theory of Nonlinear Elliptic Equations.Teubner-Texte zur Mathematik vol. 52, Teubner, Leipzig, 1983. MR 0731261
Reference: [A7] I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek: Reshenie variatsionnykh neravenstv v mekhanike.Mir, Moskva, 1986. MR 0866889
Reference: [A8] J. Nečas: Introduction to the Theory of Nonlinear Elliptic Equations.John Wiley, Chichester, 1986. MR 0874752
Reference: [A9] I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek: Solution of Variational Inequalities in Mechanics.Applied Mathematical Sciences vol. 66, Springer, New York, 1988. MR 0952855
Reference: [A10] J. Nečas: Écoulements de fluide: compacité par entropie.RMA: Research Notes in Applied Mathematics vol. 10, Masson, Paris, 1989. MR 1269784
Reference: [A11] J. Málek, J. Nečas, M. Rokyta, M. Růžička: Weak and Measure-Valued Solutions to Evolutionary PDEs.Applied Mathematics and Mathematical Computation vol. 13, Chapman & Hall, London, 1996. MR 1409366
Reference: [A12] J. Haslinger, I. Hlaváček, J. Nečas: Numerical methods for unilateral problems in solid mechanics.Handbook of Numerical Analysis vol. 4, Ciarlet, P. G. (ed.), North-Holland, Amsterdam, 1995, pp. 313–485. MR 1422506
Reference: [B1] J. Nečas: Variational Methods for Solutions of Linear Elliptic Equations.ÚTAM ČSAV, 1960. (Czech)
Reference: [B2] J. Nečas, A. Kufner: Functional Analytic Methods of Solutions to Elliptic Partial Differential Equations.MÚ ČSAV, 1963. (Czech)
Reference: [B3] J. Nečas, S. Fučík, V. Souček: Introduction to the Calculus of Variations.SPN, Praha, 1972. (Czech)
Reference: [B4] J. Nečas, O. John: Partial Differential Equations of Mathematical Physics.SPN, Praha, 1972. (Czech)
Reference: [B5] J. Nečas: Introduction to the Mathematical Theory of Elastic and Elasto-Plastic Bodies.SPN, Praha, 1976. (Czech)
Reference: [B6] J. Nečas: Regularité des solutions faibles d’equations elliptiques non-linéaires; applications à l’elasticité.Université Pierre et Marie Curie, Laboratoire d’analyse numerique, No. 81046, 1960.
Reference: [B7] J. Nečas: On the Regularity of Weak Solutions to Nonlinear Elliptic Systems of Partial Differential Equations.Scuola Normale Superiore Pisa, 1979.
Reference: [C1] J. Nečas: Influence of outside temperature on the strain of dams and other concrete masses.Appl. Mat. 1 (1956), 103–118. (Czech)
Reference: [C2] J. Nečas: Influence of outside temperature on the strain of dams and other concrete masses (second part).Appl. Mat. 1 (1956), 186–199. (Czech)
Reference: [C3] D. Mayer, J. Nečas: Das Addieren unendlicher Reihen unter Benützung von Integraltransformationen.Appl. Mat. 1 (1956), 165–185. MR 0099551
Reference: [C4] J. Nečas: Une note sur la propriété caractéristique de la transformée de Laplace d’une fonction et sur certains espace de Hilbert $\bar{H}_{kl}$ dont la somme $\sum ^{\infty }_{k=0,l=0}\bar{H}_{kl}$ est l’ensemble des transformées de Laplace de distributions.Čas. Pěst. Mat. 83 (1958), 160–170. (Czech) MR 0103394
Reference: [C5] J. Nečas: Solution du problème biharmonique pour le coin infini. I.Čas. Pěst. Mat. 83 (1958), 257–286. MR 0102673
Reference: [C6] J. Nečas: Solution du problème biharmonique pour le coin infini. II.Čas. Pěst. Mat. 83 (1958), 399–424. MR 0102673
Reference: [C7] J. Nečas: Résolution du problème de Dirichlet pour les équations elliptiques aux dérivées partielles du second ordre.Czechoslovak Math. J. 9 (1959), 467–469. (Russian) MR 0114993
Reference: [C8] J. Nečas: Solution du problème biharmonique pour le coin infini pas convex.Čas. Pěst. Mat. 84 (1959), 90–98. (Czech) MR 0107099
Reference: [C9] J. Nečas: L’extension de l’espace des conditions aux limites du problème biharmonique pour les domaines à points anguleux.Czechoslovak Math. J. 9 (1959), 339–371. MR 0110900
Reference: [C10] J. Nečas: Über Grenzwerte von Funktionen, welche ein endliches Dirichletsches Integral haben.Apl. Mat. 5 (1960), 202–209. MR 0118782
Reference: [C11] J. Nečas: Sur les solutions des équations elliptiques aux dérivées partielles du second ordre avec intégrale de Dirichlet non-bornée.Czechoslovak Math. J. 10 (1960), 283–289. (Russian) MR 0114994
Reference: [C12] J. Nečas: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle.Czechoslovak Math. J. 11 (1961), 662–683. MR 0141872
Reference: [C13] J. Nečas: Sur le problème de Dirichlet pour l’équation aux dérivées partielles du quatrième ordre du type elliptique.Rend. Sem. Mat. Univ. Padova 31 (1961), 198–231. MR 0126075
Reference: [C14] J. Nečas: Application de l’egalité de Rellich aux problémes aux limites.Collége de France, Sem. Eq. Der. Art., 1962, pp. 143–167.
Reference: [C15] J. Dvořák, J. Nečas: Determination of stresses in a rectangular wedge by superposition of stressed states of halfplanes.Rev. Math. Pures Appl. (Bucarest) 7 (1962), 467–480. (Russian) MR 0176660
Reference: [C16] J. Nečas: On the regularity of solutions of second-order elliptic partial differential equations with an unbounded Dirichlet integral.Arch. Ration. Mech. Anal. 9 (1962), 134–144. MR 0142876
Reference: [C17] J. Nečas: On domains of type $N$.Czechoslovak Math. J. 12 (1962), 274–287. (Russian) MR 0152734
Reference: [C18] J. Nečas: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle.Ann. Scuola Norm. Sup. Pisa 16 (1962), 305–326. MR 0163054
Reference: [C19] J. Nečas: Sur l’existence de la solution classique du problème de Poisson pour les domaines plans.Ann. Scuola Norm. Sup. Pisa 16 (1962), 285–296. MR 0165225
Reference: [C20] J. Nečas: On the solution of elliptic partial differential equations with an unbounded Dirichlet integral.Differential Equations and Their Applications (Proc. Conf., Praha, 1962), Publ. House Czechoslovak Acad. Sci., Praha, 1963, pp. 93–104. MR 0170092
Reference: [C21] J. Nečas: Sur la coercivité des formes bilinéaires pour les equations elliptiques.Atti del VII Congresso UMI Genova 1–2 (1963).
Reference: [C22] J. Nečas: Sur les équations différentielles aux dérivées partielles du type elliptique du deuxième ordre.Czechoslovak Math. J. 14 (1964), 125–146. MR 0174854
Reference: [C23] J. Nečas: Sur la coercivité des formes sesquilinéaires, elliptiques.Rev. Roumaine Math. Pures Appl. 9 (1964), 47–69. MR 0179457
Reference: [C24] J. Nečas: L’application de l’égalité de Rellich sur les systèmes elliptiques du deuxième ordre.J. Math. Pures Appl. 44 (1965), 133–147. MR 0181828
Reference: [C25] J. Nečas: Sur une méthode générale pour la solution des problèmes aux limites non-linéaires.Ann. Scuola Norm. Sup. Pisa 20 (1966), 655–674. MR 0208153
Reference: [C26] J. Nečas, Z. Poracká: On extrema of functionals.Comment. Math. Univ. Carolin. 7 (1966), 509–520. MR 0208440
Reference: [C27] J. Nečas: Sur la méthode variationnelle pour les équations aux dérivées partielles non linéaires du type elliptique; l’existence et la régularité des solutions.Comment. Math. Univ. Carolin. 7 (1966), 301–317. MR 0206470
Reference: [C28] J. Nečas: Sur les normes equivalentes dans $W^k_p$ et sur la coercivité des formes formellement positives.Sem. Math. Sup. Université Montréal (1966), 102–128.
Reference: [C29] J. Kadlec, J. Nečas: Sulla regolarità delle soluzioni di equazioni ellittiche negli spazi ${H}^{k,\lambda }$.Ann. Scuola Norm. Sup. Pisa 21 (1967), 527–545. MR 0223723
Reference: [C30] J. Nečas: Sur l’appartenance dans la classe ${C}^{(k),\,\mu }$ des solutions variationnelles des équations elliptiques non-linéaires de l’ordre $2k$ en deux dimensions.Comment. Math. Univ. Carolin. 8 (1967), 209–217. MR 0217419
Reference: [C31] J. Nečas: Sur la régularité des solutions faibles des equations elliptiques non-lineaires.Collége de France (1967–1968), 20–57.
Reference: [C32] J. Nečas: Sur l’existence de la solution régulière pour le problème de Dirichlet de l’équation elliptique non-linéaire d’ordre $2k$.Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 42 (1967), 347–354. MR 0222452
Reference: [C33] J. Nečas: Sur la régularité des solutions variationelles des équations elliptiques non-linéaires d’ordre $2k$ en deux dimensions.Ann. Scuola Norm. Sup. Pisa 21 (1967), 427–457. MR 0226467
Reference: [C34] J. Nečas: On the existence and regularity of solutions of nonlinear elliptic equations.Acta Fac. Rer. Nat. Univ. Comenianae Math. 17 (1967), 101–119. MR 0273183
Reference: [C35] J. Nečas: On the existence and regularity of solutions of nonlinear elliptic equations.Diff. Equations and Their Applications, Equadiff 2 (Proc. Conf., Bratislava, 1966), pp. 101–119. MR 0273183
Reference: [C36] A. Kufner, J. Nečas: In memoriam Jana Kadlece.Čas. Pěst. Mat. 92 (1967), 490–492. (Czech) MR 0226982
Reference: [C37] A. Kufner, J. Nečas: In memoriam of Jan Kadlec.Czechoslovak Math. J. 18 (1968), 190–192. MR 0226982
Reference: [C38] J. Nečas: Sur la régularité des solutions faibles des équations elliptiques non linéaires.Comment. Math. Univ. Carolin. 9 (1968), 365–413. MR 0241804
Reference: [C39] J. Nečas: Convergence of a method for solving the magnetostatic field in nonlinear media.Appl. Math. 13 (1968), 456–465.
Reference: [C40] J. Nečas: Les équations elliptiques non-linéaires.Czechoslovak Math. J. 19 (1969), 252–274. MR 0252829
Reference: [C41] J. Nečas: Sur l’alternative de Fredholm pour les opérateurs non-linéaires avec applications aux problèmes aux limites.Ann. Scuola Norm. Sup. Pisa 23 (1969), 331–345. MR 0267430
Reference: [C42] J. Nečas: Integral transforms (Operational calculus) Survey of Applicable Mathematics.Iliffe books LTD, London, 1969, pp. 1125–1136.
Reference: [C43] J. Nečas, Z. Poracká, R. Kodnár: Remarks on a nonlinear theory of thin elastic plates.Mat. Čas. Slovensk. Akad. Vied 20 (1970), 62–71. MR 0303085
Reference: [C44] I. Hlaváček, J. Nečas: On inequalities of Korn’s type. I. Boundary-value problems for elliptic system of partial differential equations.Arch. Ration. Mech. Anal. 36 (1970), 305–311. MR 0252844
Reference: [C45] I. Hlaváček, J. Nečas: On inequalities of Korn’s type. II. Applications to linear elasticity.Arch. Ration. Mech. Anal. 36 (1970), 312–334. MR 0252845
Reference: [C46] J. Nečas: The discreteness of the spectrum of a nonlinear Sturm-Liouville equation.Dokl. Akad. Nauk SSSR 201 (1971), 1045–1048. (Russian) MR 0291547
Reference: [C47] A. Kratochvíl, J. Nečas: The discreteness of the spectrum of a nonlinear Sturm-Liouville equation of fourth order.Comment. Math. Univ. Carolin. 12 (1971), 639–653. (Russian) MR 0291882
Reference: [C48] J. Nečas: On the demiregularity of weak solutions of nonlinear elliptic equations.Bull. Amer. Math. Soc. 77 (1971), 151–156. MR 0268512
Reference: [C49] J. Nečas: Fredholm alternatives and application to boundary value problems.Trudy 3. sovetsko-chekhoslovackogo soveschanija, Novosibirsk, 1972, SOAN SSSR 1972, 162–171. (Russian) MR 0420358
Reference: [C50] S. Fučík, J. Nečas, J. Souček, V. Souček: Strengthening upper bound for the number of critical levels of nonlinear functionals.Comment. Math. Univ. Carolin. 13 (1972), 297–310. MR 0305169
Reference: [C51] J. Nečas, J. Stará: Principio di massimo per i sistemi ellittici quasi-lineari non diagonali.Boll. Un. Mat. Ital. 6 (1972), 1–10. MR 0315281
Reference: [C52] S. Fučík, J. Nečas: Ljusternik-Schnirelmann theorem and nonlinear eigenvalue problems.Math. Nachr. 53 (1972), 277–289. MR 0333863
Reference: [C53] J. Nečas: Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type.Comment. Math. Univ. Carolin. 13 (1972), 109–120. MR 0305171
Reference: [C54] J. Nečas: Fredholm alternative for nonlinear operators and applications to partial differential equations and integral equations.Čas. Pěst. Mat. 97 (1972), 65–71. MR 0308882
Reference: [C55] S. Fučík, J. Nečas, J. Souček, V. Souček: New infinite dimensional versions of Morse-Sard theorem.Boll. Un. Mat. Ital. 6 (1972), 317–322. MR 0324724
Reference: [C56] S. Fučík, O. John, J. Nečas: On the existence of Schauder bases in Sobolev spaces.Comment. Math. Univ. Carolin. 13 (1972), 163–175. MR 0306890
Reference: [C57] S. Fučík, J. Nečas, J. Souček, V. Souček: Upper bound for the number of critical levels for nonlinear operators in Banach spaces of the type of second order nonlinear partial differential operators.J. Funct. Anal. 11 (1972), 314–333. MR 0341224
Reference: [C58] S. Fučík, J. Nečas, J. Souček, V. Souček: Upper bound for the number of eigenvalues for nonlinear operators.Comment. Math. Univ. Carolin. 13 (1972), 191–195. MR 0305168
Reference: [C59] J. Nečas: On the discreteness to the spectrum of a nonlinear Sturm-Liouville equation of the fourth order.Trudy 3. sovetsko-chekhoslovackogo soveschanija, Novosibirsk, SOAN SSSR (1972), 107–121. (Russian) MR 0291547
Reference: [C60] S. Fučík, J. Nečas: Spectral theory of nonlinear operators.Proceedings of Equadiff 3, Folia Fac. Sci. Natur. Univ. Purkynianae Brunensis, Ser. Monograph., Tomus 1, 1973, pp. 163–174. MR 0350551
Reference: [C61] J. Nečas: Variational methods in nonlinear elasticity.Acta Polytechnica (1973), 129–133. (Czech)
Reference: [C62] S. Fučík, J. Nečas, J. Souček, V. Souček: Note to nonlinear spectral theory: application to the nonlinear integral equations of the Lichtenstein type.Math. Nachr. 58 (1973), 257–267. MR 0340998
Reference: [C63] J. Nečas, J. Kratochvíl: On the existence of solutions of boundary-value problems for elastic-inelastic solids.Comment. Math. Univ. Carolin. 14 (1973), 755–760. MR 0337100
Reference: [C64] J. Nečas: On the formulation of the traction problem for the flow theory of plasticity.Apl. Mat. 18 (1973), 119–127. MR 0314342
Reference: [C65] S. Fučík, A. Kratochvíl, J. Nečas: Kačanov-Galerkin method.Comment. Math. Univ. Carolin. 14 (1973), 651–659. MR 0365300
Reference: [C66] J. Nečas: Range of nonlinear operators and application to boundary value problems.Math. Balcanica 3 (1973), 383–387. MR 0372702
Reference: [C67] J. Nečas: On the range of nonlinear operators with linear asymptotes which are not invertible.Comment. Math. Univ. Carolin. 14 (1973), 63–72. MR 0318995
Reference: [C68] J. Nečas: Fredholm theory of boundary value problems for nonlinear ordinary differential operators.Proceedings of Summer School at Babylon in 1971, Academia, Praha, 1973, pp. 85–119. MR 0402562
Reference: [C69] S. Fučík, J. Nečas, J. Souček, V. Souček: Upper bound for the number of eigenvalues for nonlinear operators.Ann. Scuola Norm. Sup. Pisa 27 (1973), 53–71. MR 0372918
Reference: [C70] J. Nečas: Mathematical models of elastic-inelastic materials.Schriftenreihe Zentralinst. Math. Mech. Akad. Wiss. DDR, No. 20 (1974), 227–232. MR 0351222
Reference: [C71] S. Fučík, J. Nečas, J. Souček, V. Souček: Krasnoselskii’s main bifurcation theorem.Arch. Ration. Mech. Anal. 54 (1974), 328–339. MR 0380538
Reference: [C72] J. Nečas, J. Naumann: On a boundary value problem in nonlinear theory of thin elastic plates.Apl. Mat. 19 (1974), 7–16. MR 0338557
Reference: [C73] S. Fučík, M. Kučera, J. Nečas, J. Souček, V. Souček: Morse-Sard theorem in infinite dimensional Banach spaces and investigation of the set of all critical levels.Čas. Pěst. Mat. 99 (1974), 217–243. MR 0370649
Reference: [C74] J. Nečas: Application of Rothe’s method to abstract parabolic equations.Czechoslovak Math. J. 24 (1974), 496–500. MR 0348571
Reference: [C75] S. Fučík, A. Kratochvíl, J. Nečas: Kačanov-Galerkin method and its application.Acta Univ. Carolin.-Math. et Phys. 15 (1974), 31–33. MR 0386423
Reference: [C76] J. Nečas: On regularity of solutions to nonlinear variational inequalities for second-order elliptic systems.Rend. Mat. 8 (1975), 481–498. MR 0382827
Reference: [C77] O. John, J. Nečas: On the solvability of von Kármán equations.Apl. Mat. 20 (1975), 48–62. MR 0380099
Reference: [C78] S. Fučík, A. Kratochvíl, J. Nečas: Kačanov’s method and its application.Rev. Roumaine Math. Pures Appl. 20 (1975), 907–916. MR 0669240
Reference: [C79] S. Fučík, M. Kučera, J. Nečas: Ranges of nonlinear asymptotically linear operators.J. Differ. Eq. 17 (1975), 375–394. MR 0372696
Reference: [C80] J. Nečas: An approximate method for finding the critical points of even functionals.Trudy Mat. Inst. Steklov. 134 (1975), 235–239. MR 0391169
Reference: [C81] M. Müller, J. Nečas: Über die Regularität der schwachen Lösungen von Randwertaufgaben für quasilineare elliptische Differentialgleichungen höherer Ordnung.Czechoslovak Math. J. 25 (1975), 227–239. MR 0387796
Reference: [C82] J. Nečas: Theory of locally monotone operators modeled on the finite displacement theory for hyperelasticity.Beiträge Anal. 8 (1976), 103–114. MR 0500313
Reference: [C83] J. Nečas, M. Štípl: A paradox in the theory of linear elasticity.Apl. Mat. 21 (1976), 431–433. MR 0423941
Reference: [C84] A. Doktor, J. Nečas, R. Švarc: A remark on applications of the Laplace transform to abstract differential equations of parabolic type.Čas. Pěst. Mat. 101 (1976), 7–19. MR 0477354
Reference: [C85] J. Nečas: Introduction to variational methods of solution of elliptic equations with applications to theory of elasticity.Proceedings of Summer School on Numerical Solution of Elliptic Equations by Finite Elements Method, Charles University, 1976.
Reference: [C86] J. Nečas: Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity.Abh. Akad. Wiss. DDR Abt. Math.-Natur.-Tech., Jahrgang 1 (1977), 197–206. MR 0509483
Reference: [C87] M. Kučera, J. Nečas: Interior regularity of solutions to systems of variational inequalities.Čas. Pěst. Mat. 102 (1977), 73–82. MR 0442452
Reference: [C88] J. Jarušek, J. Nečas: Sur les domaines des valeurs des opérateurs non-linéaires.Čas. Pěst. Mat. 102 (1977), 61–72. MR 0637071
Reference: [C89] J. Nečas, J. Stará, R. Švarc: Classical solution to a second order nonlinear elliptic system in $\mathbb{R}^{3}$.Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978), 605–631. MR 0519886
Reference: [C90] M. Kučera, J. Nečas, J. Souček: The eigenvalue problem for variational inequalities and a new version of the Ljusternik-Schnirelmann theory.Nonlin. Anal., Academic Press, 1978, pp. 125–143. MR 0513782
Reference: [C91] J. Nečas, L. Trávníček: Variational inequalities of elastoplasticity with internal state variables.Theory of Nonlinear Operators (Proc. Fifth Internat. Summer School, Central Inst. Math. Mech. Acad. Sci. GDR, Berlin, 1977), vol. 6, Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1978, Akademie-Verlag, Berlin, 1978, pp. 195–204. MR 0540460
Reference: [C92] J. Nečas: An example of a nonsmooth solution of a nonlinear elliptic system with analytic coefficients and a smoothness condition.Proceedings of an All-Union Conference on Partial Differential Equations (Moscow State Univ., Moscow, 1976), Mekh., 1978. Moskov. Gos. Univ., pp. 174–177. (Russian) MR 0543814
Reference: [C93] A. Kratochvíl, J. Nečas: Secant modulus method for the construction of a solution of nonlinear eigenvalue problems.Boll. Un. Mat. Ital. B 16 (1979), 694–710. MR 0546485
Reference: [C94] K. Gröger, J. Nečas: On a class of nonlinear initial value problems in Hilbert spaces.Math. Nachr. 93 (1979), 21–31. MR 0579840
Reference: [C95] K. Gröger, J. Nečas, L. Trávníček: Dynamic deformation processes of elastic-plastic systems.Z. Angew. Math. Mech. 59 (1979), 567–572. MR 0563056
Reference: [C96] M. Giaquinta, J. Nečas: On the regularity of weak solutions to nonlinear elliptic systems via Liouville’s type property.Comment. Math. Univ. Carolin. 20 (1979), 111–121. MR 0526152
Reference: [C97] J. Nečas: On the regularity of weak solutions to variational equations and inequalities for nonlinear second order elliptic systems.Equadiff 4 (Proc. Czechoslovak Conf. Differential Equations and Their Applications, Prague, 1977), vol. 703, Lect. Notes Math, Springer, Berlin, 1979, pp. 286–299. MR 0535349
Reference: [C98] J. Nečas, O. A. Oleĭnik: Liouville theorems for elliptic systems.Dokl. Akad. Nauk SSSR 252 (1980), 1312–1316. (Russian) MR 0576139
Reference: [C99] M. Giaquinta, J. Nečas: On the regularity of weak solutions to nonlinear elliptic systems of partial differential equations.J. Reine Angew. Math. 316 (1980), 140–159. MR 0581329
Reference: [C100] J. Nečas, J. Jarušek, J. Haslinger: On the solution of the variational inequality to the Signorini problem with small friction.Boll. Un. Mat. Ital. B 17 (1980), 796–811. MR 0580559
Reference: [C101] J. Nečas, L. Trávníček: Evolutionary variational inequalities and applications in plasticity.Apl. Mat. 25 (1980), 241–256. MR 0583585
Reference: [C102] J. Mawhin, J. Nečas, B. Novák: Zemřel docent Svatopluk Fučík.Čas. Pěst. Mat. 105 (1980), 91–101. (Czech) MR 0560761
Reference: [C103] J. Nečas, O. John, J. Stará: Counterexample to the regularity of weak solution of elliptic systems.Comment. Math. Univ. Carolin. 21 (1980), 145–154. MR 0566246
Reference: [C104] J. Nečas: Variational inequalities in elasticity and plasticity with application to Signorini’s problems and to flow theory of plasticity.Z. Angew. Math. Mech. 60 (1980), 20–26. MR 0607476
Reference: [C105] A. Kratochvíl, J. Nečas: Gradient methods for the construction of Ljusternik-Schnirelmann critical values.RAIRO Anal. Numér. 14 (1980), 43–54. MR 0566089
Reference: [C106] J. Mawhin, J. Nečas, B. Novák: In memoriam professor Svatopluk Fučík.Czechoslovak Math. J. 30, 105 (1980), 153–162. MR 0565918
Reference: [C107] J. Nečas: A necessary and sufficient condition for the regularity of weak solutions to nonlinear elliptic systems of partial differential equations.Nonlinear Analysis (Berlin, 1979), vol. 2, Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1981, Akademie-Verlag, Berlin, 1981, pp. 201–209. MR 0639924
Reference: [C108] J. Nečas: Elliptic differential equations.Math. Kongress DDR 1981, Math. Gesellschaft DDR, Leipzig, 1981.
Reference: [C109] I. Hlaváček, J. Nečas: Optimization of the domain in elliptic unilateral boundary value problems by finite element methods.Equadiff 5, Proceedings 1981, Teubner Texte B 47, pp. 131–135. MR 0684830
Reference: [C110] O. John, J. Nečas, J. Stará : On the regularity for 2nd order nonlinear elliptic systems.Equadiff 5, Proceedings 1981, Teubner Texte B 47, pp. 165–168.
Reference: [C111] I. Hlaváček, J. Nečas: Optimization of the domain in elliptic unilateral boundary value problems by finite element method.RAIRO Anal. Numér. 16 (1982), 351–373. MR 0684830
Reference: [C112] P.-L. Lions, J. Nečas, I. Netuka: A Liouville theorem for nonlinear elliptic systems with isotropic nonlinearities.Comment. Math. Univ. Carolin. 23 (1982), 645–655. MR 0687560
Reference: [C113] M. Giaquinta, J. Nečas, O. John, J. Stará: On the regularity up to the boundary for second order nonlinear elliptic systems.Pacific J. Math. 99 (1982), 1–17. MR 0651482
Reference: [C114] J. Nečas: On the solution of the 19th Hilbert’s problem.Recent trends in mathematics. Reinhardsbrun 1982. Teubner Texte, Leipzig vol. 50, 1982, pp. 214–223.
Reference: [C115] J. Nečas, I. Marek: 60th anniversary of birthday of Professor Karel Rektorys.Czechoslovak Math. J. 33 (1983), 320–323. MR 0699030
Reference: [C116] J. Nečas, I. Marek: Šedesátiny Prof. RNDr. Karla Rektoryse, DrSc.Čas. Pěst. Mat. 108 (1983), 104–109.
Reference: [C117] J. Nečas, I. Hlaváček: Solution of Signorini’s contact problem in the deformation theory of plasticity by secant modules method.Apl. Mat. 28 (1983), 199–214. MR 0701739
Reference: [C118] J. Nečas: On regular solutions to the displacement boundary value problem in finite elasticity.Trends in Applications of Pure Mathematics to Mechanics, vol. 4 (Bratislava, 1981), vol. 20, Monographs Stud. Math, Pitman, Boston, Mass., 1983, pp. 176–185. MR 0731272
Reference: [C119] M. Feistauer, J. Mandel, J. Nečas: Entropy regularization of the transonic potential flow problem.Comment. Math. Univ. Carolin. 25 (1984), 431–443. MR 0775562
Reference: [C120] Ph. G. Ciarlet, J. Nečas: Problèmes unilatéraux en élasticité non linéaire tridimensionnelle.C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), 189–192. MR 0741092
Reference: [C121] M. Feistauer, J. Nečas: On the solvability of transonic potential flow problems.Z. Anal. Anwend. 4 (1985), 305–329. MR 0807140
Reference: [C122] Ph. G. Ciarlet, J. Nečas: Injectivité presque partout, auto-contact, et non-interpénétrabilité en élasticité non-linéaire tridimensionnelle.C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 621–624. MR 0816644
Reference: [C123] Ph. G. Ciarlet, J. Nečas: Unilateral problems in nonlinear, three-dimensional elasticity.Arch. Ration. Mech. Anal. 87 (1985), 319–338. MR 0767504
Reference: [C124] J. Nečas: Entropy compactification of the transonic flow.Equadiff 6 (Brno, 1985), Lect. Notes Math. 1192, Springer, Berlin, 1986, pp. 399–408. MR 0877155
Reference: [C125] J. Nečas: On singularities of solutions to nonlinear elliptic systems of partial differential equations.Nonlinear Functional Analysis and Its Applications, Part 2 (Berkeley, Calif., 1983), vol. 45, Proc. Sympos. Pure Math, Amer. Math. Soc., Providence, R.I., 1986, pp. 219–228. MR 0843610
Reference: [C126] M. Feistauer, J. Nečas: On the solution of transonic flows with weak shocks.Comment. Math. Univ. Carolin. 27 (1986), 791–804. MR 0874673
Reference: [C127] J. Nečas: Entropy compactification of the transonic flow.Mathematical Methods in Engineering, Karlovy Vary I , 1986, pp. 97–101. MR 0877155
Reference: [C128] J. Nečas, A. Lehtonen, P. Neittaanmäki: On the construction of Lusternik-Schnirelmann critical values with application to bifurcation problems.Appl. Anal. 25 (1987), 253–268. MR 0912184
Reference: [C129] Ph. G. Ciarlet, J. Nečas: Injectivity and self-contact in nonlinear elasticity.Arch. Ration. Mech. Anal. 97 (1987), 171–188. MR 0862546
Reference: [C130] J. Mandel, J. Nečas: Convergence of finite elements for transonic potential flows.SIAM J. Numer. Anal. 24 (1987), 985–996. MR 0909059
Reference: [C130a] J. Nečas: Strongly dissipative nonlinear hyperbolic systems.Proceeding of a seminar at Souš, Fyzika a matematika, JČMF Praha (1987), 7–13. (Czech)
Reference: [C131] J. Nečas: Finite element approach to the transonic flow problem.Proceedings of the Second International Symposium on Numerical Analysis (Praha, 1987), vol. 107, Teubner-Texte Math, Teubner, Leipzig, 1988, pp. 70–74. MR 1171689
Reference: [C132] M. Feistauer, J. Nečas: Viscosity method in a transonic flow.Comm. Partial Differ. Equ. 13 (1988), 775–812. MR 0940958
Reference: [C133] M. Feistauer, J. Nečas: Remarks on the solvability of transonic flow problems.Manuscripta Math. 61 (1988), 417–428. MR 0952087
Reference: [C134] J. Nečas: A viscosity solution method for transonic flow.Functional and numerical methods in mathematical physics vol. 271, Naukova Dumka, Kiev, 1988, pp. 155–161. (Russian) MR 1038570
Reference: [C135] A. Friedman, J. Nečas: Systems of nonlinear wave equations with nonlinear viscosity.Pacific J. Math. 135 (1988), 29–55. MR 0965683
Reference: [C136] O. John, V. A. Kondrat’ev, D. M. Lekveishvili, I. Nečas, O. A. Oleĭnik: Solvability of the system of von Kármán equations with nonhomogeneous boundary conditions in nonsmooth domains.Trudy Sem. Petrovsk. 258 (1988), 197–205. (Russian) MR 0961435
Reference: [C137] J. Nečas: Dynamic in the nonlinear thermo-visco-elasticity.Symposium Partial Differential Equations (Holzhau, 1988), vol. 112, Teubner-Texte Math, Teubner, Leipzig, 1989, pp. 197–203. MR 1105810
Reference: [C138] J. Nečas, A. Novotný, M. Šilhavý: Global solution to the ideal compressible heat conductive multipolar fluid.Comment. Math. Univ. Carolin. 30 (1989), 551–564. MR 1031872
Reference: [C139] M. Feistauer, J. Nečas, V. Šverák: On the weak compactness of solutions to the equations of compressible flow.Appl. Anal. 34 (1989), 35–52.
Reference: [C139a] J. Nečas: The current state and future of nonlinear analysis in Czechoslovakia.Pokroky Mat. Fyz. Astronom. 35 (1990), 250–255. MR 1089850
Reference: [C140] J. Nečas, A. Novotný, V. Šverák: Uniqueness of solutions to the systems for thermoelastic bodies with strong viscosity.Math. Nachr. 149 (1990), 319–324. MR 1124813
Reference: [C141] J. Nečas, P. Klouček: The solution of transonic flow problems by the method of stabilization.Appl. Anal. 37 (1990), 143–167. MR 1116164
Reference: [C142] J. Milota, J. Nečas, V. Šverák: On weak solutions to a viscoelasticity model.Comment. Math. Univ. Carolin. 31 (1990), 557–565. MR 1078489
Reference: [C143] J. Nečas, T. Roubíček: Approximation of a nonlinear thermoelastic problem with a moving boundary via a fixed-domain method.Apl. Mat. 35 (1990), 361–372. MR 1072607
Reference: [C144] J. Nečas: Theory of multipolar viscous fluids.The mathematics of finite elements and applications, VII (Uxbridge, 1990), Academic Press, London, 1991, pp. 233–244. MR 1132501
Reference: [C145] H. Bellout, F. Bloom, J. Nečas: Global existence of weak solutions to the nonlinear transmission line problem.Nonlin. Anal. 17 (1991), 903–921. MR 1135950
Reference: [C146] J. Nečas, A. Novotný, M. Šilhavý: Global solution to the compressible isothermal multipolar fluid.J. Math. Anal. Appl. 162 (1991), 223–241. MR 1135273
Reference: [C147] J. Nečas, M. Růžička: A dynamic problem of thermoelasticity.Z. Anal. Anwend. 10 (1991), 357–368. MR 1155615
Reference: [C148] J. Nečas, A. Novotný: Some qualitative properties of the viscous compressible heat conductive multipolar fluid.Comm. Partial Differ. Equ. 16 (1991), 197–220. MR 1104099
Reference: [C149] Ch. P. Gupta, Y. C. Kwong, J. Nečas: Nonresonance conditions for the strong solvability of a general elliptic partial differential operator.Nonlin. Anal. 17 (1991), 613–625. MR 1128963
Reference: [C150] J. Nečas, M. Šilhavý: Multipolar viscous fluids.Quart. Appl. Math. 49 (1991), 247–265. MR 1106391
Reference: [C151] J. Nečas, V. Šverák: On regularity of solutions of nonlinear parabolic systems.Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1991), 1–11. MR 1118218
Reference: [C152] H. Bellout, F. Bloom, J. Nečas: A model of wave propagation in a nonlinear superconducting dielectric.Differ. Int. Equ. 5 (1992), 1185–1199. MR 1171986
Reference: [C153] J. Málek, J. Nečas, A. Novotný: Measure-valued solutions and asymptotic behavior of a multipolar model of a boundary layer.Czechoslovak Math. J. 42 (1992), 549–576. MR 1179317
Reference: [C154] J. Nečas, A. Novotný, M. Šilhavý: Global solution to the viscous compressible barotropic multipolar gas.Theoret. Comput. Fluid Dynamics 4 (1992), 1–11.
Reference: [C155] H. Bellout, F. Bloom, J. Nečas: Phenomenological behavior of multipolar viscous fluids.Quart. Appl. Math. 50 (1992), 559–583. MR 1178435
Reference: [C156] J. Nečas, M. Růžička: Global solution to the incompressible viscous-multipolar material problem.J. Elasticity 29 (1992), 175–202. MR 1184264
Reference: [C157] J. Jarušek, J. Málek, J. Nečas, V. Šverák: Variational inequality for a viscous drum vibrating in the presence of an obstacle.Rend. Mat. Appl. 12 (1993), 943–958. MR 1218596
Reference: [C158] H. Bellout, F. Bloom, J. Nečas: Solutions for incompressible non-Newtonian fluids.C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 795–800. MR 1244433
Reference: [C159] H. Bellout, F. Bloom, J. Nečas: Existence of global weak solutions to the dynamical problem for a three-dimensional elastic body with singular memory.SIAM J. Math. Anal. 24 (1993), 36–45. MR 1199525
Reference: [C160] J. Málek, J. Nečas, M. Růžička: On the non-Newtonian incompressible fluids.Math. Models Methods Appl. Sci. 3 (1993), 35–63. MR 1203271
Reference: [C161] J. Nečas: Theory of multipolar fluids.Problems and Methods in Mathematical Physics (Chemnitz, 1993), Teubner-Texte Math., Teubner, Stuttgart, 1994, pp. 111–119. MR 1288320
Reference: [C162] H. Bellout, F. Bloom, J. Nečas: Young measure-valued solutions for non-Newtonian incompressible fluids.Comm. Partial Differ. Equ. 19 (1994), 1763–1803. MR 1301173
Reference: [C163] Ch. P. Gupta, Y. C. Kwong, J. Nečas: Landesman-Lazer condition for properly elliptic operators.Boll. Un. Mat. Ital. A  8 (1994), 65–74. MR 1273188
Reference: [C164] H. Bellout, J. Nečas: Existence of global weak solutions for a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials.Math. Ann. 299 (1994), 275–291. MR 1275768
Reference: [C165] H. Bellout, F. Bloom, J. Nečas: Bounds for the dimensions of the attractors of nonlinear bipolar viscous fluids.Asymptotic Anal. 11 (1995), 131–167. MR 1350404
Reference: [C166] H. Bellout, F. Bloom, J. Nečas: Existence, uniqueness, and stability of solutions to the initial-boundary value problem for bipolar viscous fluids.Differ. Int. Equ. 8 (1995), 453–464. MR 1296135
Reference: [C167] H. Bellout, F. Bloom, J. Nečas: Bounds for the dimensions of the attractors of nonlinear bipolar viscous fluids.Asymp. Anal. 11 (1995), 131–167. MR 1350404
Reference: [C168] J. Nečas: Theory of multipolar fluids.World Congress of Nonlinear Analysts ’92, vol. I–IV (Tampa, FL, 1992), De Gruyter, Berlin, 1996, pp. 1073–1081. MR 1389142
Reference: [C169] H. Bellout, J. Nečas: The exterior problem in the plane for a non-Newtonian incompressible bipolar viscous fluid.Rocky Mountain J. Math. 26 (1996), 1245–1260. MR 1447585
Reference: [C170] J. Nečas, M. Růžička, V. Šverák: Sur une remarque de J. Leray concernant la construction de solutions singulières des équations de Navier-Stokes.C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 245–249. MR 1404768
Reference: [C171] J. Nečas, M. Růžička, V. Šverák: On Leray’s self-similar solutions of the Navier-Stokes equations.Acta Math. 176 (1996), 283–294. MR 1397564
Reference: [C172] Wenge Hao, S. Leonardi, J. Nečas: An example of irregular solution to a nonlinear Euler-Lagrange elliptic system with real analytic coefficients.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 57–67. MR 1401417
Reference: [C173] J. Málek, J. Nečas: A finite-dimensional attractor for three-dimensional flow of incompressible fluids.J. Differ. Equ. 127 (1996), 498–518. MR 1389407
Reference: [C174] S. Leonardi, J. Málek, J. Nečas, M. Pokorný: On axially symmetric flows in $R^3$.Z. Anal. Anwend. 18 (1999), 639–649. MR 1718156
Reference: [C175] J. Málek, J. Nečas, M. Pokorný, M. E. Schonbeck: On possible singular solutions to the Navier-Stokes equations.Math. Nachr. 199 (1999), 97–114. MR 1676326
Reference: [C176] H. Bellout, J. Nečas, K. Rajagopal: On the existence and uniqueness of flows of multipolar fluids of grade 3 and their stability.Int. Journ. Eng. Sciences 37 (1999), 75–96. MR 1669936
Reference: [C177] F. Mošna, J. Nečas: Nonlinear hyperbolic equations with dissipative temporal and spatial non-local memory.Z. Anal. Anwend. 18 (1999), 939–951. MR 1736259
Reference: [C178] J. Málek, J. Nečas, M. Růžička: On the weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case $p\ge 2$.Adv. Differ. Equ. 6 (2001), 257–302. MR 1799487
Reference: [C179] J. Nečas, T. Roubíček: Buoyancy-driven viscous flow with $L^1$-data.Nonlin. Anal. Ser. A: Theory Methods 46 (2001), 737–755. MR 1857155
Reference: [C180] E. Behr, J. Nečas, H. Wu: On blow up of solution for Euler equations.M2AN Math. Model. Numer. Anal. 35 (2001), 229–238. MR 1825697
Reference: [C181] J. Málek, J. Nečas, K. R. Rajagopal: Global analysis of the flows of fluids with pressure-dependent viscosities.Arch. Ration. Mech. Anal. 165 (2002), 243–269. MR 1941479
Reference: [C182] J. Nečas, J. Neustupa: New conditions for local regularity of a suitable weak solution to the Navier-Stokes equation.J. Math. Fluid Mech. 4 (2002), 237–256. MR 1932862
Reference: [C183] J. Málek, J. Nečas, K. R. Rajagopal: Global existence of solutions for flows of fluids with pressure and shear dependent viscosities.Appl. Math. Lett. 15 (2002), 961–967. MR 1925921
Reference: [C184] H. Bellout, E. Cornea, J. Nečas: On the concept of very weak $L^2$ solutions to Euler’s equations.SIAM J. Math. Anal. 33 (2002), 995–1006. MR 1897698
Reference: [C185] J. Hron, J. Málek, J. Nečas, K. R. Rajagopal: Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities.Modelling 2001 (Pilsen), Math. Comput. Simulation 61 (2003), 297–315. MR 1984133
.

Files

Files Size Format View
MathBohem_129-2004-4_8.pdf 401.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo